Localization Game on Geometric and Planar Graphs

Abstract : The main topic of this paper is motivated by a localization problem in cellular networks. Given a graph G we want to localize a walking agent by checking his distance to as few vertices as possible. The model we introduce is based on a pursuit graph game that resembles the famous Cops and Robbers game. It can be considered as a game theoretic variant of the metric dimension of a graph. We provide upper bounds on the related graph invariant ζ(G), defined as the least number of cops needed to localize the robber on a graph G, for several classes of graphs (trees, bipartite graphs, etc). Our main result is that, surprisingly, there exists planar graphs of treewidth 2 and unbounded ζ(G). On a positive side, we prove that ζ(G) is bounded by the pathwidth of G. We then show that the algorithmic problem of determining ζ(G) is NP-hard in graphs with diameter at most 2. Finally, we show that at most one cop can approximate (arbitrary close) the location of the robber in the Euclidean plane.
Type de document :
[Research Report] Inria. 2017
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

Contributeur : Nicolas Nisse <>
Soumis le : vendredi 20 octobre 2017 - 14:49:50
Dernière modification le : mercredi 31 janvier 2018 - 10:24:06
Document(s) archivé(s) le : dimanche 21 janvier 2018 - 14:25:34


Localization Game 171018.pdf
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01620365, version 1



Bartłomiej Bosek, Przemyslaw Gordinowicz, Jaroslaw Grytczuk, Nicolas Nisse, Joanna Sokol, et al.. Localization Game on Geometric and Planar Graphs. [Research Report] Inria. 2017. 〈hal-01620365〉



Consultations de la notice


Téléchargements de fichiers