Noise sensitivity of functionals of fractional Brownian motion driven stochastic differential equations: Results and perspectives - Archive ouverte HAL Access content directly
Book Sections Year : 2017

Noise sensitivity of functionals of fractional Brownian motion driven stochastic differential equations: Results and perspectives

(1, 2) , (3)
1
2
3

Abstract

We present an innovating sensitivity analysis for stochastic differential equations: We study the sensitivity, when the Hurst parameter $H$ of the driving fractional Brownian motion tends to the pure Brownian value, of probability distributions of smooth functionals of the trajectories of the solutions $\{X^H_t\}_{t\in \mathbb{R}_+}$ and of the Laplace transform of the first passage time of $X_H$ at a given threshold. We also present an improvement of already known Gaussian estimates on the density of $X^H_t$ to estimates with constants which are uniform w.r.t. $t$ in the whole half-line $\mathbb{R}_+ \setminus \{0\}$ and w.r.t. $H$ when $H$ tends to $\frac{1}{2}$.
Fichier principal
Vignette du fichier
Konakov_ARDT-2.pdf (218.54 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01620377 , version 1 (20-10-2017)

Identifiers

Cite

Alexandre Richard, Denis Talay. Noise sensitivity of functionals of fractional Brownian motion driven stochastic differential equations: Results and perspectives. Vladimir Panov. Modern Problems of Stochastic Analysis and Statistics, Springer, pp.219-236, 2017, 978-3-319-65313-6. ⟨10.1007/978-3-319-65313-6_9⟩. ⟨hal-01620377⟩
605 View
207 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More