Noise sensitivity of functionals of fractional Brownian motion driven stochastic differential equations: Results and perspectives

Abstract : We present an innovating sensitivity analysis for stochastic differential equations: We study the sensitivity, when the Hurst parameter $H$ of the driving fractional Brownian motion tends to the pure Brownian value, of probability distributions of smooth functionals of the trajectories of the solutions $\{X^H_t\}_{t\in \mathbb{R}_+}$ and of the Laplace transform of the first passage time of $X_H$ at a given threshold. We also present an improvement of already known Gaussian estimates on the density of $X^H_t$ to estimates with constants which are uniform w.r.t. $t$ in the whole half-line $\mathbb{R}_+ \setminus \{0\}$ and w.r.t. $H$ when $H$ tends to $\frac{1}{2}$.
Type de document :
Chapitre d'ouvrage
Vladimir Panov. Modern Problems of Stochastic Analysis and Statistics, Springer, pp.219-236, 2017, 978-3-319-65313-6. 〈10.1007/978-3-319-65313-6_9 〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01620377
Contributeur : Alexandre Richard <>
Soumis le : vendredi 20 octobre 2017 - 14:56:11
Dernière modification le : mercredi 12 septembre 2018 - 01:16:25
Document(s) archivé(s) le : dimanche 21 janvier 2018 - 13:31:49

Fichier

Konakov_ARDT-2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandre Richard, Denis Talay. Noise sensitivity of functionals of fractional Brownian motion driven stochastic differential equations: Results and perspectives. Vladimir Panov. Modern Problems of Stochastic Analysis and Statistics, Springer, pp.219-236, 2017, 978-3-319-65313-6. 〈10.1007/978-3-319-65313-6_9 〉. 〈hal-01620377〉

Partager

Métriques

Consultations de la notice

606

Téléchargements de fichiers

52