
An Efficient Communication Aware Heuristic for
Multiple Cloud Application Placement

Pedro Silva∗ and Christian Perez∗

pedro.silva@inria.fr, christian.perez@inria.fr

∗ Univ. Lyon, Inria, CNRS, ENS de Lyon, UCBL 1, LIP

Abstract. To deploy a distributed application on the cloud, cost, re-
source and communication constraints have to be considered to select the
most suitable Virtual Machines (VMs), from private and public cloud
providers. This process becomes very complex in large scale scenarios
and, as this problem is NP-Hard, its automation must take scalability
into consideration. In this work, we propose a heuristic able to calculate
initial placements for distributed component-based applications on pos-
sibly multiple clouds with the objective of minimizing VM renting costs
while satisfying applications’ resource and communication constraints.
We evaluate the heuristic performance and determine its limitations by
comparing it to other placement approaches, namely exact algorithms
and meta-heuristics. We show that the proposed heuristic is able to com-
pute a good solution much faster than them.

1 Introduction

To place an application onto the Cloud, in the context of Infrastructure as a
Service (IaaS), a designer must choose the best set of machines, generally virtual
machines, from public and private cloud providers, which satisfies application
performance constraints. When the placement aims at minimizing renting costs,
the abundant number of available cloud providers and their offerings makes this
task challenging. Although automation becomes crucial, the placement problem
is NP-hard, and hence scalability must be taken in consideration, particularly in
the cases where applications are large and time constraints are tight.

In spite of important contributions made by previous works, issues concern-
ing, mainly, scalability and the modeling of communication constraints are still
open, in particular in the case of multiple cloud deployment. Scalability issues
are observed in works that propose time consuming solutions based on exact al-
gorithms, meta-heuristics or solvers. Issues related to modeling communication
constraints become apparent in works that either do not consider them at all
or assume complete knowledge of cloud network and application topologies. In
reality, users usually do not have access to the exact network topology of cloud
provider data centers. Furthermore, due to hardware virtualization, the identity
and location of physical machines where VM instances run may vary. Hence,
placement algorithms that rely on those assumptions may not work correctly.

We tackle the problem of finding an initial placement for distributed applica-
tions modeled as component-based applications on multiple clouds. For brevity,
we call this problem CAPDAMP, for Communication Aware Placement of Dis-
tributed Applications on the Multi-cloud Problem. The objective is to map each
application component to an instance of a virtual machine (VM) minimizing
renting costs and satisfying resource and communication constraints. Compo-
nents can be any piece of code. They expose what they provide/require through
interfaces, hiding their implementations to enhance reusability.

Each application component has resource requirements and communication
requirements for its connections to other components. VM types have their ca-
pacities, renting prices and communication capacities to other VM types. This
means that the resource capacities of a VM instance must be larger than or equal
to the sum of resource requirements of the components it hosts. We call those
resource capacities or requirements dimensions. Similarly, communication re-
quirements between components must be inferior or equal to the communication
capacities between the VM instances hosting them. We assume communication
requirements and capacities can be expressed numerically.

Our hypothesis is that users describe communication constraints because
they want a placement that respects their application latency requirements.
Thus, to satisfy this constraint and to overcome the lack of available informa-
tion about network topologies of public cloud providers, we introduce a flexible
approach that allows an application designer to describe communication con-
straints using a less accurate view of the Cloud topology as well as a more
accurate schema when in the context of private cloud providers.

Benefiting from this model, we propose an efficient and scalable heuristic that
mixes graph clustering techniques and which is able to compute good quality
placements very quickly for small to large scenarios. As this work considers
initial placements, we do not assume a priori information concerning expected
workload, renting times, or dynamic actors that would allow online modifications
of the placement. This is left for future work. This paper extends our previous
work [18], where we proposed bin packing based greedy heuristics to solve a
communication-oblivious placement problem.

Section 2 deals with the state of the art. Section 3 presents our applica-
tion and cloud models and details the proposed heuristic which is evaluated in
Section 4. Finally, Section 5 concludes the paper and discusses future directions.

2 Related Work

We divide the related work into three groups based on the approach used to
tackle the CAPDAMP and related communication-aware problems: exact ap-
proaches, meta-heuristic approaches, and heuristic based approaches. Then, we
discuss them with respect to the CAPDAMP.

Exact Algorithms: In [19], a Mixed Integer Programming (MIP) is proposed
for the placement of distributed applications on the Cloud. The objective is

to maximize availability by modeling fault-tolerance measures. Similarly, [10]
proposes a MIP to minimize application downtime. Both approaches neither
consider renting cost minimizations nor allow for more than two dimensions of
interest. In [13], a very expressive MIP to compute the placement of services on
multiple clouds is presented. Despite allowing for cost optimization, heteroge-
neous VM types, and resource constraints, it does not allow for an explicit de-
scription of communication constraints. Finally, in [12], a hierarchical approach
to the process placement in multi-core clusters is presented. However, only the
communication problem is considered and both processes and hosting machines
are homogeneous, contratry to our work.

Meta-heuristics: In [3] and [20], the authors propose two very similar ap-
proaches based on genetic algorithms to calculate the placement of services on
the Cloud targeting cost minimization while satisfying CPU, memory, disk and
latency constraints. In [9], a simulated annealing based approach to the VM
consolidation problem is presented. In the same topic, an ant colony algorithm
for a multi-objective VM consolidation problem aiming at minimizing energy
consumption and resource waste is described in [7]. In [6] another ant colony
based approach for the VM consolidation problem is proposed.

Heuristics: A communication-aware greedy heuristic for calculating the task
mapping on supercomputer clusters is presented in [4]. Using a max-clique based
approach, [2] and [14] describe algorithms for the consolidation of VM types. An
analogous problem is addressed in [16], which adds the challenge of having to
place a virtual network aiming at satisfying resource and network constraints.
Using a min cut approach, a hierarchical representation of the network and a
graph modeling of the application, [15] tackles the traffic aware virtual ma-
chine placement on data centers. A hierarchical approach for the deployment
of distributed scientific applications on the Cloud is presented in [5]. In [21],
a graph matching algorithm based on a graph query approach for the service
placement on the cloud is proposed. [8] presents a heuristic based on a relaxed
MILP to compute a solution for a VM consolidation problem. In [11], an ap-
proach for placing services onto clouds while minimizing communication costs
is proposed. Despite presenting a hierarchical cloud topology description and
clustering heuristics similar to ours, the only considered resources is CPU. Com-
munication constraints are viewed as soft constraints.

2.1 Discussion

As the CAPDAMP is NP-hard, using exact algorithms to calculate optimal place-
ments is feasible only for very small problem instances. To overcome this lim-
itation there is a plethora of more scalable approaches based mainly on meta-
heuristics and heuristics. Meta-heuristics have their solution qualities propor-
tional to the time given to process a problem. Hence, depending on problem
size, using a meta-heuristic may still be unfeasible. Furthermore, as they are

generic tools, meta-heuristics tend to be very sensitive to parameter tuning spe-
cific for each scenario.

Other heuristics usually aim primarily at solving the graph partitioning (or
communication constraint) problem letting the packing (or resource constraint
problem) in second place. Graph-based modeling can efficiently describe commu-
nication constraints, however, describing at the same time resource constraints
and renting costs tends to be more difficult. Thus, issues like VM heterogeneity,
renting costs and multi-dimensionality are not addressed at the same time.

The main contribution of this paper is an efficient and scalable heuristic
(cf. Section 3) which addresses the aforementioned problems. Using a graph
clustering and multidimensional bin packing strategies, it manages to calculate
good quality solutions very quickly, as described in Section 4.

3 The 2PCAP Heuristic

Before presenting the heuristic proposed in Section 3.1, we introduce the com-
munication topology models for applications and multi-clouds upon which our
heuristic strongly relies on.

Multi-cloud Network Topology: In this work, we model the network topol-
ogy as a tree. It is a hierarchical approximation of intra cloud provider and long
distance networks as well as an approximation of their inherent communication
capacity uncertainties.

Figure 1(a) gives an example of this modeling. Leaves are sets of rentable
resources, like VM types (or physical machines), that we call machine groups.
An inner node m of the multi-cloud tree models a level of connection between all
machine groups available in the sub-tree having m as root. The level of an inner
node represents the quality of the machine group connection. In Figure 1(a),
machine groups m1 and m2 are connected at levels 0, 1, and 2. Thus, their
connection qualities may be 0, 1 or 2. Machine groups m1 and m3 have a con-
nection quality 1. Resources in the same machine group are always connected
with a connection quality equals to the level of the leaves. In Figure 1(a), all
connections between VM types inside the same machine group have quality 3.

The concept of connection quality aims at characterizing the latency of a con-
nection. The closest an internal node is to the leaves, the smallest the latency
is. This is sufficiently general to describe detailed internal data center topologies
as well as general Internet links. We suppose that this model is sufficient for
describing VM localization (within the same data center, city, or country).

Application Communication Topology: In this work, we represent a component-
based application as a graph. Components are nodes and connections between
components are weighted edges. Weights are connection requirements, defined
in terms of connection quality matching the multi-cloud topology. In Figure 2,
components c1 and c2 communicate and require a connection quality of at least
2, while c2 and c3 require at least 1.

2

1

L0

i = min(g, h)

2 1

L2

2

a b c

d e f

L1

2

1

h = c + f
min(a, b)

+
min(d, e)

g =

Level 0

Level 1

Level 2

Level 3

m1 m2 m3 m4

Application Graph:
(a) (b)

(c) (d)

c1 c2 c3

c1

c3

c2

c2 c2

c1

c3

c1

c3

Fig. 1. Placement example.

3.1 Two Phase Communication Aware Placement Heuristic

We propose a divide-and-conquer heuristic called Two Phase Communication
Aware Placement Heuristic (2PCAP) to calculate solutions for the CAPDAMP.
2PCAP, described in Algorithm 1, has two phases. i) It recursively decomposes
components and machine groups into subsets, creating communication-aware
sub-placements, until sub-placements can be calculated with communication-
oblivious heuristics. ii) From the leaves to the root of the tree, sub-placements
with best costs compose the solution for their parents.

Phase 1 – Decomposition: A component subset i` is a set of nodes from a
connected subgraph from the application graph. Component subsets have the
property that every connection between its components has a communication
quality requirement superior or equal to `, where 0 ≤ ` < H and H is the height
of the multi-cloud tree. A machine group subset s` contains machine groups from
sub-trees of the multi-cloud tree topology. All machine groups contained in the
same subset are connected with connection quality superior or equal to `.

The process that generates component and machine group subsets is called
decomposition. Given a level `, machine group subsets are generated through
the gathering of leaves whose subtree roots are in level `. Component subsets

Algorithm 1 Pseudo-code of 2PCAP.

Input: level, comp subset,mg subset
Output: min cost plac
1: min cost plac←∞
2: if is calculated(comp subset⇒ mg subset) then
3: return plac(comp subset⇒ mg subset)
4: else if level = l max then
5: calculate(comp subset⇒ mg subset)
6: return plac(comp subset⇒ mg subset)
7: else if level < l max then
8: if size(decompose(mg subset, level)) = 1 then
9: plac← null

10: for cs in decompose(comp subset, level) do
11: temp plac← 2PCAP (level + 1, cs,mg subset)
12: plac← compose(plac + temp plac)
13: min cost plac← plac
14: else if size(decompose(mg subset, level)) > 1 then
15: plac← null
16: for cs in decompose(comp subset, level) do
17: min plac← null
18: for ms in decompose(mg subset, level) do
19: temp plac← 2PCAP (level + 1, cs,ms)
20: if cost(temp plac) < min plac then
21: min plac← temp plac
22: plac← compose(plac + min plac)
23: min cost plac← plac
24: for ms in decompose(mg subset, l max) do
25: temp plac← 2PCAP (l max, comp subset,ms)
26: if cost(temp plac) < cost(min cost plac) then
27: min cost plac← plac
28: return min cost plac

are connected sub-graphs resulting from the removal of all connections requiring
connection qualities inferior to ` from the original application graph. I` and S`
are the sets containing, respectively, all components and machine groups subsets
constructed on level `.

In Figures 1(b), 1(c) and 1(d) there are examples of machine group and
component decompositions. Table names (L0, L1 and L2) refer to the level of
decomposition, component subsets (I`) are represented in the left and machine
group subsets (S`), in the upper part.

A sub-placement is the placement of a subset of components on a subset of
machine groups. It also aims at minimizing VM renting costs while satisfying
resource and communication constraints. Given a level `, i` ∈ I` and s` ∈ S`, the
sub-placement of i` on s` can only be computed if it is a bottom sub-placement or
if the sub-placements generated by the decomposition of i` and s` were computed.

A bottom sub-placement is a sub-placement that can be computed by com-
munication oblivious heuristics while satisfying communication quality require-

ments. Hence, any pair of VM types from machine groups contained in s` will
satisfy the communication requirements from any pair of components from i`.

Let lmax be the highest connection quality requirement present in the com-
ponent graph. Observe that every sub-placement of i` ∈ I` on s`max ∈ S`max is
a valid bottom sub-placement. Hence, there is no reason to continue the decom-
position process beyond lmax.

Phase 2 – Composition: Bottom sub-placements are calculated by efficient
communication-oblivious heuristics for the multi-dimensional bin packing prob-
lem presented in a previous work [18]. Once all necessary bottom sub-placements
are calculated, 2PCAP starts the process of composition of sub-placements.
The objective is to choose, at each composition step, the less expensive sub-
placements. Given the set I ′`+1 containing all component groups decomposed
from i` ∈ I` and the set S ′`+1 decomposed from the machine group s` ∈ S`,
let uis`+1 be the sub-placement of i`+1 on s`+1. Thus, the solution for the sub-
placement of i` on s` is one of the following:

Case 1: uis`+1, if S`+1 = S` and I`+1 = I`.
Case 2:

∑
i∈I`+1

uis`+1 for s ∈ S`+1, if |S`+1| = |S`| and |I`+1| > |I`|;
Case 3:

∑
i∈I`+1

min(uis`+1, ∀s ∈ S`+1), if |S`+1| > |S`|;

In Case 1, The decomposed subset of components and machine groups are
identical to the original subsets. Hence, uis` = uis`+1. This is described in lines 2
and 3 from Algorithm 1. In Case 2, the decomposed subset of machine groups
is identical to the original, but this is not true for the decomposed component
subset. In this case, 2PCAP composes the |I`+1| sub-placements on s`+1. Sub-
placements c and f (cf. Figure 1(d)) compose sub-placement h (cf. Figure 1(c)).
This situation is described between lines 8 and 13 from Algorithm 1. In Case 3,
when |S`+1| > |S`| machine groups are decomposed in more than one subset.
Thus, for each decomposed component subset there are |S`+1| possible sub-
placements, from which, only the less expensive one is used in the composition
process. Sub-placement i (cf. Figure 1(b)) is composed by sub-placements g and
h (cf. Figure 1(c)). Furthermore, sub-placement g (cf. Figure 1(c)) is composed
by sub-placements a, b, d and e (cf. Figure 1(d)). This can be observed between
lines 14 and 23 from Algorithm 1.

3.2 Discussion

The 2PCAP heuristic does not compute, during the decomposition phase, all
possible sub-placements. Doing this would result in a factorial complexity which
would lead to prohibitive execution times for large problems. To further explore
the solution space without increasing too much the time complexity, 2PCAP
computes the sub-placement of every generated subset which is not part of a
bottom sub-placement on machine group subsets generated at level lmax (cf.
Lines 24 to 27 of Algorithm 1).

The complexity of 2PCAP is dominated by decomposition operations (decompose
function) and the computation of placements (plac function). Let I, S and T
be the sets of components, sites and VM types, respectively. Decomposition op-
erations have a O(|I|3 + |I| × |S|2 × log|S|) complexity while the computation
of placements has O(|S| × |T |log|T × |I|2).

4 Evaluation

As the CAPDAMP is NP-Hard, we divide the evaluation process in two steps.
First, using small problem instances and a MIP solver, we compare 2PCAP solu-
tions to optimal ones. Then, we compare 2PCAP on medium and large problem
instances using meta-heuristics and a relaxed version of the CAPDAMP as base-
line algorithms.

4.1 Methodology

An experiment is the resolution of a set of placement problem instances by a set of
algorithms within a given time. Each problem instance has seven parameters: the
number nd of considered resources or dimensions, the number nc of components,
the number nv of VM types, the number ns of sites, the height ht of the multi-
cloud tree, the topology tc of the component-based application and the multi-
cloud tree connection schema xt.

Experiments are organized in three experiment classes, namely A, B, and C.
Small, and thus easier to solve, problem instances compose Class A; medium-
sized problem instances are present in Class B, and, finally, large problems form
Class C. Table 1 details the range of problem instance parameters that define
each class and the total of generated problem instances per class.

class nd nc nv ns ht tc xs # exps

A 4 3, 5, 7, 10 100, 250, 500, 700 25, 50, 100 3, 5 l, s, f, r u 384

B 5 10, 20, 30, 40, 50 500, 1k, 1.5k, 2k 100, 300, 500 5 l, s, f, r d, a, u 720

C 6 60, 80, 100, 120, 140 2.5k, 5k, 7.5k, 10k 500, 750, 1k 7 l, s, f, r d, a, u 720
Table 1. Parameters of experiment classes. Column tc indicates the application topolo-
gies: line (l), star (s), full connected (f), or random (r). Column xs indicates the
multi-cloud tree connection schemas: distant(d), agglomerate (a), or uniform (u).

Component requirements and VM capacities are pseudo-random values, picked
uniformly from pre-defined intervals (Table 2). We consider that VM types are
distributed equally among the sites. We generate three different component com-
munication patterns: distant, agglomerated, and uniform. The difference between
them is the probability of connecting two or more subtrees. The distant pattern
has higher probability to connect subtrees near the root; agglomerated gives

Dimension (i) (ii) (iii) (iv) (v) (vi)

Requirements 800 ∼ 3k 1 ∼ 16 1 ∼ 32 50 ∼ 3.5k 5 ∼ 30 1 ∼ 8

Capacities 1k ∼ 3.5k 2 ∼ 32 2 ∼ 40 150 ∼ 4k 10 ∼ 80 1 ∼ 16
Table 2. Intervals of dimension data generation.

higher connection probabilities to subtrees near the leaves and the uniform

schema gives the same connection probability
(

1
ht

)
to every subtree.

The four component-based application topologies we consider are line, star,
full connected (cf. Figure 2), and random. In the random schema, a pair of com-
ponents is connected with a probability of 50%. Communication requirements
from component connections are pseudo-random integers picked uniformly be-
tween 0 and ht − 1.

...(a)
...

(b) (c)

...

Fig. 2. Schemas of part of the generated application topologies. (a) line, (b) star and
(c) full connected.

Renting prices depend on the resource dimensions of each VM. Let c∗t,d be the

ratio
ct,d

maxd
between the capacity ct,d of dimension d from VM type t and maxd

the maximum value for dimension d (cf. Table 2). Each dimension is multiplied
by a coefficient to create scenarios where some dimensions are more expensive
than others. Hence, the price of a VM type pt is α + β + γ + δ + ε + ζ, where
α = c∗t,1 × random(1, 3), β = c∗t,2 × random(8, 20), γ = c∗t,3 × random(5, 8),
δ = c∗t,4 × random(10, 15), if c∗t,4 ≤ 500, otherwise δ = c∗t,4 × random(20, 25),
ε = c∗t,5 × random(5, 10), and ζ = c∗t,6 × random(2, 5).

The 2PCAP algorithm is implemented in Python. Experiments were con-
ducted on Dell PowerEdge R630 2.4GHz (2 CPUs, 8 cores) nodes from the
Parasilo and Paravance clusters of the Grid’5000 experimental platform1.

4.2 2PCAP Performance on Small Problems

In this section we use the SCIP solver [1], a framework for constraint integer
programming and branch-cut-and-price, together with an optimization formu-
lation of the CAPDAMP to generate a set of optimal solutions which will be
compared to solutions computed by 2PCAP. Problems from experiment Class A
(Table 1) were used and SCIP was given 24 hours to solve each one of them.

1 cf. https://www.grid5000.fr

https://www.grid5000.fr

Fig. 3. (Left) Cost distances as percentage of 2PCAP solutions compared to optimal
solutions aggregated by application topology type. The green solid line is the median
and the brown dashed line is the average. (Right) Sum of execution times in seconds
from 2PCAP and SCIP solver aggregated by application topology – SCIP: average
4180s, median 1800s. 2PCAP: average 0.1s, median: 0.08s.

SCIP solver was able to solve only around 48% of Class A problem instances
in time, i.e., 180 problem instances. Figure 3 illustrates the cost distance from
solutions computed by 2PCAP to the optimal ones as a percentage of the latter
for problem instances successfully solved by SCIP. Cost distances are grouped
by application topology.

In Figure 3(Left) we can see that cost distances vary between 0% and at
most 12.3%. The median is always 0% and the average between 2% and 3%.
Figure 3(Right) complements this data. It depicts the sum of the execution
times in seconds that each approach used to calculate the 48% of Class A prob-
lem instances solved by SCIP, grouped by application topology schema. While
2PCAP takes some seconds to solve all problems, the solver’s execution time is
in the scale of days. Hence, in spite of being much faster than the solver, 2PCAP
manages to produce a solution at most around 12% worse than the optimal and,
in the median, the solutions are optimal.

4.3 2PCAP Performance on Large Problems

The evaluation of 2PCAP on large problems cannot rely on using a solver to
generate optimal solutions. It is necessary to use scalable baseline algorithms.

Heuristics presented in Section 2 cannot handle the complexity of CAP-
DAMP. Hence, as a first approach, we implement a Simulated Annealing (SA)
meta-heuristic for the CAPDAMP as a baseline algorithm. We used Python
module Simanneal [17] and problem instances from Classes B and C. The meta-
heuristic is initialized with a random – not necessarily valid – placement. Despite
the timeout of 1 hour per problem instance, SA managed to calculate a solution
for only around 10% of problem instances. As CAPDAMP’s search space is very
large, SA would need more time to be able to produce more solutions.

Running SA with an initial solution computed by 2PCAP shows how much
SA can improve a 2PCAP solution in one hour. Figure 4 (Left) illustrates this
metric for Class C problems. SA managed to improve the solutions by at most 9%

Fig. 4. (Left) Improvement of 2PCAP solutions by SA for Class C. (Right) Cost dis-
tances between 2PCAP and lower bound for Class C. The green solid line is the median
and the brown dashed line is the average.

and the median is always bellow 4%. This small improvement is a good indicator
of 2PCAP’s solution qualities. Due to space limitations, we do not illustrate the
same metric for Class B problems, however the observed curves are very similar:
the largest improvement is around 9% and the median is always bellow 2%.

In a second approach, we compute baseline solutions obtained through the
relaxation of CAPDAMP’s communication constraints and compare them to
2PCAP solutions. CAPDAMP is, thus, reduced to a cost-aware multi-dimensional
bin packing placement problem which is calculated by an adapted SA meta-
heuristic initialized with the less expensive placement among those calculated
by 2PCAP and other efficient heuristics [18]. Figure 4 (Right) illustrates the
evolution of cost distances between 2PCAP and SA solutions for Class C prob-
lems. Cost distances vary between 0% and around 22% and the median is always
bellow 10%. Due to space constraints, we do not plot this metric for Class B
problems, nevertheless, we observe a similar pattern: cost distances vary between
0% and 30% and the median is always bellow 10%. The consistent distance to
baseline solution costs is a good indicator of the 2PCAP’s solution quality. Con-
cerning 2PCAP execution times for Classes B and C, the average was around 11
seconds and the median around 3 seconds for each problem instance. At most,
2PCAP took around 110 seconds to calculate a placement.

The results presented in this section indicate that, even on large scenarios,
2PCAP manages to quickly calculate compatible or better solutions than those
calculated by SA.

5 Conclusion and Future Work

In this paper we presented an approach to calculate initial placements for component-
based applications with the objective of minimizing costs while satisfying re-
source and communication constraints. This approach is based on a hierarchical
model of the cloud topology which allows the introduction of latency require-
ments despite the uncertainties inherent to cloud networks, mainly due to virtu-

alization. This model is used by 2PCAP, an efficient heuristic whose evaluation
shows its capability of producing good quality solutions very quickly.

Future work aims to go beyond the initial placement by adding the notion of
application reconfiguration and, consequently, modeling the migration of virtual
machines. We also plan to extend the placement heuristics to support applica-
tions described with more abstract component models, including, for example,
concepts such as cardinality, hierarchy, genericity, etc.

Acknowledgment

All experiments were carried out using the Grid’5000 testbed, supported by a
group hosted by Inria and including CNRS, RENATER, and several Universities
as well as other organizations (cf. https://www.grid5000.fr). This work was
partially supported by the PaaSage (FP7-317715) EU project.

References

1. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Pro-
gramming Computation (2009)

2. Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., Silvera, E.: A
Stable Network-Aware VM Placement for Cloud Systems. In: CCGrid (2012)

3. Chen, W., Qiao, X., Wei, J., Huang, T.: A Profit-Aware Virtual Machine Deploy-
ment Optimization Framework for Cloud Platform Providers. In: CLOUD (2012)

4. Deveci, M., Kaya, K., Uçar, B., Catalyurek, U.V.: Fast and High Quality Topology-
Aware Task Mapping. In: IPDPS (2015)

5. Fan, P., Chen, Z., Wang, J., Zheng, Z., Lyu, M.R.: Topology-Aware Deployment
of Scientific Applications in Cloud Computing. In: CLOUD (2012)

6. Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.: Virtual Machine Con-
solidation in Cloud Data Centers Using ACO Metaheuristic. In: Europar (2014)

7. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A Multi-objective Ant Colony Sys-
tem Algorithm for Virtual Machine Placement in Cloud Computing. Journal of
Computer and System Sciences (2013)

8. Gu, L., Zeng, D., Guo, S., Xiang, Y., Hu, J.: A General Communication Cost
Optimization Framework for Big Data Stream Processing in Geo-Distributed Data
Centers. IEEE Transactions on Computers (2016)

9. Hyser, C., Mckee, B., Gardner, R., Watson, B.J.: Autonomic virtual machine place-
ment in the data center. Tech. Rep. HPL-2007-189, HP Laboratories (2007)

10. Jammal, M., Kanso, A., Shami, A.: High Availability-Aware Optimization Digest
for Applications Deployment in Cloud. In: ICC (2015)

11. Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, I., Snible, E.: Improving
Performance and Availability of Services Hosted on IaaS Clouds with Structural
Constraint-Aware Virtual Machine Placement. In: SCC (2011)

12. Jeannot, E., Mercier, G., Tessier, F.: Process Placement in Multicore Clusters: Al-
gorithmic Issues and Practical Techniques. IEEE Transactions Parallel Distributed
Systems (2014)

13. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.:
Scheduling Strategies for Optimal Service Deployment across Multiple Clouds.
Future Generation Computer Systems (2013)

https://www.grid5000.fr

14. M. Alicherry, T.L.: Network Aware Resource Allocation in Distributed Clouds.
INFOCOM (2012)

15. Meng, X., Pappas, V., Zhang, L.: Improving the Scalability of Data Center Net-
works with Traffic-aware Virtual Machine Placement. In: INFOCOM (2010)

16. Nonde, L., El-Gorashi, T.E.H., Elmirghani, J.M.H.: Energy Efficient Virtual Net-
work Embedding for Cloud Networks. Journal of Lightwave Technology (2015)

17. Perry, M.: Simanneal: Python Module for Simulated Annealing Optimization,
https://github.com/perrygeo/simanneal

18. Silva, P., Perez, C., Desprez, F.: Efficient Heuristics for Placing Large-Scale Dis-
tributed Applications on Multiple Clouds. In: CCGrid (2016)

19. Spinnewyn, B., Braem, B., Latre, S.: Fault-Tolerant Application Placement in Het-
erogeneous Cloud Environments. In: CNSM (2015)

20. Yusoh, Z.I.M., Tang, M.: Clustering Composite SaaS Components in Cloud Com-
puting using a Grouping Genetic Algorithm. In: CEC (2012)

21. Zong, B., Raghavendra, R., Srivatsa, M., Yan, X., Singh, A.K., Lee, K.W.: Cloud
Service Placement via Subgraph Matching. In: ICDE (2014)

https://github.com/perrygeo/simanneal

	An Efficient Communication Aware Heuristic for Multiple Cloud Application Placement

