R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX + XB = C [F4], Communications of the ACM, vol.15, issue.9, pp.820-826, 1972.
DOI : 10.1145/361573.361582

M. Benaim and J. Boudec, A class of mean field interaction models for computer and communication systems, Performance Evaluation, vol.65, issue.11-12, pp.823-838, 2008.
DOI : 10.1016/j.peva.2008.03.005

L. Bortolussi, J. Hillston, D. Latella, and M. Massink, Continuous approximation of collective system behaviour: A tutorial, Performance Evaluation, vol.70, issue.5, pp.317-349, 2013.
DOI : 10.1016/j.peva.2013.01.001

A. Braverman and J. Dai, Stein???s method for steady-state diffusion approximations of $M/\mathit{Ph}/n+M$ systems, The Annals of Applied Probability, vol.27, issue.1, pp.550-581, 2017.
DOI : 10.1214/16-AAP1211

A. Braverman, J. Dai, and . Feng, Stein???s Method for Steady-state Diffusion Approximations: An Introduction through the Erlang-A and Erlang-C Models, Stochastic Systems, vol.6, issue.2, pp.301-366, 2017.
DOI : 10.1287/15-SSY212

J. Cho, J. Boudec, and Y. Jiang, On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protocol, IEEE Transactions on Information Theory, vol.58, issue.11, pp.11-6879, 2012.
DOI : 10.1109/TIT.2012.2208582

R. Datko, Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space, SIAM Journal on Mathematical Analysis, vol.3, issue.3, pp.428-445, 1972.
DOI : 10.1137/0503042

J. Eldering, Normally Hyperbolic Invariant Manifolds?the Noncompact Case, Atlantis Series in Dynamical Systems, vol.2, 2013.
DOI : 10.2991/978-94-6239-003-4

URL : http://arxiv.org/pdf/1204.1310

N. Gast, Expected values estimated via mean-ï¿¿eld approximation are 1/N-accurate, Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol.1, issue.1, p.17, 2017.
DOI : 10.1145/3143314.3078523

N. Gast and G. Bruno, A mean field model of work stealing in large-scale systems, ACM SIGMETRICS Performance Evaluation Review, vol.38, issue.1, pp.13-24, 2010.
DOI : 10.1145/1811099.1811042

URL : https://hal.archives-ouvertes.fr/hal-00788862

N. Gast and B. Gaujal, Markov chains with discontinuous drifts have differential inclusion limits, Performance Evaluation, vol.69, issue.12, pp.623-642, 2012.
DOI : 10.1016/j.peva.2012.07.003

URL : https://hal.archives-ouvertes.fr/hal-00787999

I. Gurvich, Diffusion models and steady-state approximations for exponentially ergodic Markovian queues, The Annals of Applied Probability, vol.24, issue.6, pp.2527-2559, 2014.
DOI : 10.1214/13-AAP984

URL : http://arxiv.org/pdf/1409.3393.pdf

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientiï¿¿c tools for Python, 2001.

H. K. Khalil, Nonlinear Systems, 1996.

G. Thomas and . Kurtz, Solutions of Ordinary Diï¿¿erential Equations as Limits of Pure Jump Markov Processes, Journal of Applied Probability, vol.7, pp.49-58, 1970.

G. Thomas and . Kurtz, Strong approximation theorems for density dependent Markov chains, Stochastic Processes and Their Applications, vol.6, issue.3, pp.223-240, 1978.

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods and stochastic modeling, 1999.
DOI : 10.1137/1.9780898719734

J. Boudec, D. Mcdonald, and J. Mundinger, A generic mean ï¿¿eld convergence result for systems of interacting objects, Quantitative Evaluation of Systems Fourth International Conference on the. IEEE, pp.3-18, 2007.

M. Lin, B. Fan, J. C. Lui, and D. Chiu, Stochastic analysis of file-swarming systems, Performance Evaluation, vol.64, issue.9-12, pp.856-875, 2007.
DOI : 10.1016/j.peva.2007.06.006

L. Massoulié and M. Vojnovi?, Coupon replication systems, ACM SIGMETRICS Performance Evaluation Review, vol.33, issue.1, pp.2-13, 2005.
DOI : 10.1145/1071690.1064215

W. Minnebo and B. Van-houdt, A Fair Comparison of Pull and Push Strategies in Large Distributed Networks, IEEE/ACM Transactions on Networking, vol.22, issue.3, pp.996-1006, 2014.
DOI : 10.1109/TNET.2013.2270445

M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE Transactions on Parallel and Distributed Systems, vol.12, issue.10, pp.1094-1104, 2001.
DOI : 10.1109/71.963420

M. David and M. , The Power of Two Random Choices in Randomized Load Balancing, 1996.

C. Moore, Unpredictability and undecidability in dynamical systems, Physical Review Letters, vol.99, issue.20, pp.20-2354, 1990.
DOI : 10.1103/PhysRevLett.61.2729

N. Vu, T. T. Phat, and . Kiet, On the Lyapunov equation in Banach spaces and applications to control problems, International Journal of Mathematics and Mathematical Sciences, vol.29, issue.3, pp.155-166, 2002.

V. Simoncini, Computational Methods for Linear Matrix Equations, SIAM Review, vol.58, issue.3, pp.377-441, 2016.
DOI : 10.1137/130912839

N. John, K. Tsitsiklis, and . Xu, On the power of (even a little) centralization in distributed processing, ACM SIGMETRICS Performance Evaluation Review, vol.39, issue.1, pp.121-132, 2011.

B. Van-houdt, A mean field model for a class of garbage collection algorithms in flash-based solid state drives, ACM SIGMETRICS Performance Evaluation Review, vol.41, issue.1, pp.191-202, 2013.
DOI : 10.1145/2494232.2465543

N. D. Vvedenskaya, L. Roland, F. Dobrushin, and . Karpelevich, Queueing system with selection of the shortest of two queues: An asymptotic approach, Problemy Peredachi Informatsii, vol.32, issue.1, pp.20-34, 1996.

Q. Xie, X. Dong, Y. Lu, and R. Srikant, Choices for Large-Scale Bin Packing, ACM SIGMETRICS Performance Evaluation Review, vol.43, issue.1, pp.321-334, 2015.
DOI : 10.1109/INFOCOM.2015.7218487

L. Ying, On the Approximation Error of Mean-Field Models, Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science (SIGMETRICS '16, pp.285-297, 2016.

L. Ying, Stein's Method for Mean Field Approximations in Light and Heavy Traï¿¿c Regimes, Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol.1, issue.1, p.12, 2017.