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Lyapunov stability analysis of the implicit
discrete-time twisting control algorithm

Olivier Huber, Vincent Acary, Bernard Brogliato

Abstract—An implicit discrete-time version of the twisting
sliding-mode control algorithm is considered. The framework
of variational inequalities is used to define the control input
values. This provides the foundation for both the analysis of
the controller and the numerical computations. The controller
is shown to be well-defined and the discrete-time closed-loop
system’s fixed point is finite-time globally stable in the sense
of Lyapunov. The analysis is led in the unperturbed case, and
numerical simulations demonstrate the efficiency of the proposed
controller when a disturbance acts on the system.

Index Terms—sliding mode control, sampled-data system,
discrete-time Lyapunov stability, implicit discretization, finite-
time stability, robust control

I. INTRODUCTION

Sliding-mode control (SMC) is widely appreciated for its
robustness and ease of implementation. One of its drawbacks
is the so-called chattering phenomenon, which consists of un-
wanted, high-frequency oscillations in the output (the sliding
variable) and in the input (whose shape is a high-frequency
bang-bang-like signal). Especially it has been recognized that
the time-discretization of such set-valued controllers can have
crucial consequences on the chattering [1], that is in this case
a numerical chattering. Roughly speaking, explicit discretiza-
tions of the set-valued controller yield numerical chattering,
even in the absence of perturbations. The regularization of
the set-valued controller (usually a signum multifunction) at
zero, is often considered as a universal remedy to chattering.
However, it has severe drawbacks: it introduces additional
control parameters (the regularization slopes), whose tuning
is not so clear even in the case of a single attracting surface
[2], and in the case of co-dimension ≥ 2 sliding surface,
regularizations become even harder to analyze [3], [4]. More-
over, the precision is decreased and one has to choose a
regularization with a steep slope, and a very small sampling
period. In discrete-time, the choice of the sampling period
as a function of this slope is not clear, even in the simplest
cases [2]. Recently, an alternative to the explicit discretization
method has been introduced, which is based on an implicit dis-
cretization of the set-valued controller [5], and takes the form
in the simplest cases of a simple projection over the interval
[−1, 1]. It has been successfully implemented and tested for
first order SMC in [6], [2], [7], where it is demonstrated that
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the chattering at both the input and output signals, is drastically
decreased compared with the explicit method. In particular
it has been proved [8] that the explicit Euler method may
yield instability, while the implicit one enjoys global stability.
The twisting and super-twisting algorithms were tackled in [5],
[6], with preliminary analytical and experimental results. The
main properties of the implicit approach (which are impossible
to obtain with the explicit one, or with a saturation) are: (i)
a rigorous definition of the sliding-surface in discrete-time,
(ii) global Lyapunov stability, (iii) finite-time convergence
to the sliding-surface, (iv) convergence of the input to its
continuous-time counterpart, (v) insensitivity of the control
input with respect to the gains in the sliding-mode phase
(in accordance with the continuous-time analysis using for
instance Filippov’s framework), (vi) robustness with respect
to a large class of disturbances, and (vii) the possibility to
choose large sampling periods without deteriorating too much
the performance. Properties (v) (vi) (vii) have been validated
experimentally in [6], [2], [7]. In parallel with discrete-time
SMC analysis, a great deal of work has been dedicated in the
past twenty years, to the analysis of the higher-order SMC
(HOSMC), a class of SMC introduced by A. Levant [9], [10],
[11], [12]. In particular, finding Lyapunov functions for the
order-two twisting and super-twisting algorithms, has been a
challenge [13], [14]. HOSMC is known to enable reduction of
chattering, at the price however of tolerating only a smaller
class of disturbances than the classical, first order SMC. But it
is noteworthy that when discretized with an explicit method,
HOSMC may also suffer from severe chattering effects, see
[1] and experiments on the twisting algorithm in [6]. The goal
of this article is to analyze in detail the implicit discretization
of the twisting algorithm (in the disturbance-free case) and
to show that, under a modification of the basic algorithm
used in [6, Equation (5)], Lyapunov global stability and finite-
time convergence results can be obtained, hence extending
the results in [13] to the discrete-time case. As demonstrated
experimentally in [6], the unmodified version of the implicit
twisting scheme (called in this article the regular implicit
control), results in a much better behavior (with important
chattering reduction) than its explicitly discretized version.
However, as shown in [15], the regular implicit control yields
always, in theory, oscillations around the origin. The objective
of this article is to prove that stronger stability properties can
be obtained when the regular implicit discrete-time scheme is
suitably modified, where the goal may also be to improve the
precision of the closed-loop system.

This article is organized as follows: the discrete-time con-
troller is introduced in Section II. The well-posedness (ex-
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istence and uniqueness of the controller) is shown in Sec-
tion III, and the stability analysis of the closed-loop system
is established in Section IV. The computation of the control
law and simulations are presented in Section V, on a system
with perturbations. Conclusions are given in Section VI. Some
proofs are in the Appendix.

Notation and definitions: The tools used in this article
are classical tools from Convex Analysis (see [16], [17]), and
from Complementarity Theory ([18], [19]). Let K ⊆ Rp be a
closed non-empty convex set. Its normal cone NK is defined
as follows: for any x ∈ K, NK(x) = {d ∈ Rp : 〈d, y − x〉 ≤
0,∀y ∈ K}. The indicator function of K ⊆ Rp is defined as:
δK(x) = 0 if x ∈ K, δK(x) = +∞ if x 6∈ K. The support
function σK is defined as: σK(y) = supx∈K〈y, x〉. It is the
conjugate of the indicator function, that is σK(y) = δ∗K(y) =
supx∈Rp [〈x, y〉−δK(x)]. Let f : Rn → R∪{±∞} be convex,
proper (that is f(x) < +∞ for at least one x, and f(x) > −∞
for all x), and lower semi-continuous (lsc) function (that is,
its epigraph epi f := {(x, α) ∈ Rp × R : f(x) ≤ α} is a
closed set). Its subdifferential ∂f is defined as: ∂f(x) := {g :
f(z) ≥ f(x) + 〈g, z − x〉, ∀z}. When K is closed convex
non-empty, then δK is proper, convex and lsc, and one has
∂δK(x) = NK(x) for all x ∈ K. Using the definition, it is
easy to see that NK(−x) = −N−K(x).

Fact 1. The subdifferentials of the indicator and the support
function are inverses, that is y ∈ ∂δ∗K(x) = ∂σK(x) ⇔ x ∈
NK(y) for all x, y ∈ Rp.

The set-valued signum function is Sgn(x) = −1 if x <
0, Sgn(x) = 1 if x > 0, Sgn(0) = [−1, 1]. Let g(x) =
|x|, x ∈ R, one has Sgn(x) = ∂g(x) for all x ∈ R. Then
g(x) = δ∗[−1,1](x), so that y ∈ Sgn(x) ⇔ x ∈ ∂δ[−1,1](y) =
N[−1,1](y) = [0,+∞) if y = 1, (−∞, 0] if y = −1, 0 if
y ∈ [−1, 1]. Let the unit ball for the maximum norm be defined
as B∞ = {x ∈ Rn : ||x||∞ := max1≤i≤n |xi| ≤ 1}.

Fact 2. Let x ∈ Rn. We have δ∗B∞ = |x1|+ |x2|+ . . .+ |xn| =
||x||2, and ∂δ∗B∞ = (Sgn(x1),Sgn(x2), . . . ,Sgn(xn))T .

Now let us give an explicit expression for the normal cone
in the polyhedral case.

Fact 3. [17, p. 67] Let K be a closed convex polyhedron
defined as:

K = {x ∈ Rn | Hx ≤ b} , with H ∈ Rm×n, b ∈ Rm.

The normal cone at a point x ∈ K is generated by the outward
normals of the actives constraints: NK(x) =

{
HT
α•r, r ≥ 0

}
,

with α ∈ {1, . . . ,m} the set of active constraints, that is for
all i ∈ α, we have Hi•x = bi.

II. DISCRETE-TIME TWISTING CONTROLLER

Let us quickly recall the basics of the twisting algorithm. We
deal in this section with the unperturbed case. The case with a
perturbation will be tackled in Section V. In the following, is
its shown that a “naive” implicit discretization of the twisting
algorithm, called the regular implicit control does not allow
one to get the asymptotic stability. Thus, a modified algorithm
is proposed. In the general setting, the sliding variable is

supposed to be twice differentiable and has dynamics given
by

σ̈ = a(x, t) + gs(x, t)u

−u ∈ a Sgn(σ) + bSgn(σ̇),

with a > b > 0, and x is the state of the original plant.
To simplify the analysis let us consider the case of a double
integrator without perturbation, that is

σ̈ ∈ −aSgn(σ)− bSgn(σ̇).

Recasting this as a first order system, we get

Σ̇ = AΣ +Bλ with A =

(
0 1
0 0

)
, B =

(
0 0
a b

)
and Σ :=

(
σ
σ̇

)
,−λ ∈ Sgn

(
σ
σ̇

)
= Sgn Σ.

The condition a > b > 0 ensures the finite-time global
Lyapunov stability of the closed-loop fixed point, see [13].
Let us discretize the dynamics using the ZOH method. The
discontinuous control input is implemented using the following
discretization:

Σk+1 = A∗Σk +B∗λk+1 with λk+1 =

(
λ1,k+1

λ2,k+1

)
(1)

and A∗ =

(
1 h
0 1

)
, B∗ = h

(
h
2
1

)(
a b

)
. (2)

The piecewise constant control input value, to be calculated
at time tk and applied on [tk, tk+1) with h := tk+1 − tk > 0
constant, is given by uk = aλ1,k+1 + bλ2,k+1. The discrete-
time dynamics is thus given by

(a) σk+1 = σk + hσ̇k + h2

2 uk
(b) σ̇k+1 = σ̇k + huk.

(3)

The precise definition of the relationship between λk+1 and
Σk+1 is formalized later. First let us state a result which will
be used later in Section IV for the stability analysis, and which
concerns the set of points reaching the origin in one step.

Lemma 1. Suppose that the piecewise constant control law
is such that uk can be freely chosen in [−uM , uM ] whenever
Σk+1 = 0. Then the origin of the closed-loop system (3) is
only reachable from the line segment S0 defined as

S0 :=
{

(σk, σ̇k) ∈ R2 : σk + h
2 σ̇k = 0, |σ̇k| ≤ huM

}
.

The proof is in Appendix A. Therefore, a necessary
condition for the global asymptotic stability of the closed-
loop system is that S0 is an attracting surface. If we were
to perform a straightforward implicit discretization of the
inclusion −λ ∈ Sgn Σ as done in [6], we would get

−λk+1 ∈ Sgn(Σk+1) ⇐⇒ −Σk+1 ∈ NH(λk+1), (4)

with H := [−1, 1]2. Note that inclusion (4) together with (1)
defines the regular implicit control. It has been shown in [15]
that S0 is not an attracting surface with a controller defined
from the implicit discretization in (4), and that the set of points
that can reach the origin is a set of measure zero. Whence, let
us state a more general type of control law than (4), by setting

−Σk+1 ∈ NK(λk+1), (5)
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with K a polyhedral compact set. Then, we obtain from this
inclusion and (1) the generalized equation (GE):

0 ∈ A∗Σk +B∗λk+1 +NK(λk+1). (6)

This type of inclusion is also known as an Affine Variational
Inequality (AVI). Let us denote by SOL(M, q,K) the set of
solutions to the AVI 0 ∈ Mx + q + NK(x). Therefore, we
shall write λk+1 ∈ SOL(B∗, A∗Σk,K) whenever λk+1 is a
solution to (6). The sliding variables and control input are
then given as follows:

Σk+1 = AΣk +B∗λk+1 (7)
uk = aλ1,k+1 + bλ2,k+1,

whenever λk+1 ∈ SOL(B∗, A∗Σk,K). Let us now study the
existence and uniqueness of a solution to the AVI in (6).

III. THE EXTENDED IMPLICIT TWISTING CONTROLLER

A. Definition of the control law
As eluded to above, the basic idea in (5) is to consider the

variable λk+1 to be defined as

−Σk+1 ∈ NK(λk+1) ⇐⇒ − λk+1 ∈ ∂δ∗−K(Σk+1), (8)

with K a bounded polytopic convex set. This can be seen as
a generalization of the inclusion −λk+1 ∈ Sgn(Σk+1), which
can be rewritten equivalently as −λk+1 ∈ ∂δ∗

[−1,1]2(Σk+1)

given that Sgn(·) = ∂δ∗
[−1,1]2(·) (see (4) and Fact 1). With the

dynamics (7), the relation (8) is transformed into an AVI of
the type (6).
Remark 1. The controller calculated from (6) is non-
anticipative, since the solution of (6) depends only on Σk and
h.

Lemma 1 provides us with an interesting insight on how to
define the control input, such that the origin can be reached
from a set of initial conditions with measure greater than zero
in R2. Using this approach based on AVI is interesting since
we want to be able to design a control law that steers a set
with positive measure to the origin. To achieve this, we choose
a set K, in which λk+1 takes its values, that is not the box
[−1, 1]2. We impose that a half-line containing a part of −S0

belongs to the normal cone to K. Let us define K as a convex
polytope:

K := {x ∈ R2 | Ex ≤ b} with E ∈ R4×2 and b ∈ R4. (9)

From Fact 3, we know that the normal cone is generated by the
rows of E. Hence, a simple way to have a half-line containing
a part of −S0 as at least one line of the normal cones, is to
include it as a constraint, that is at least one row of E has to
be proportional to (h/2,−1). To be more concrete, the square
[−1, 1]

2 admits the representation
{
x ∈ R2 | Hx ≤ b

}
with

H =


1 0
0 1
−1 0
0 −1

 and b =


1
1
1
1

. We propose to use instead

the matrix

E(h) =


1 0
−h/2 1
−1 0
h/2 −1



in (9), where E(0) = H . The choice of the vector b depends
on the constraints we want to impose on the control inputs.
Let us discuss three possible choices:

b1 = b, b2(h) =


1

1− h/2
1

1− h/2

 , b3(h) =


1

1 + h/2
1

1 + h/2

 . (10)

which satisfy b1 = b2(0) = b3(0) = b. With b1, we obtain a
parallelogram, which is not contained in the square [−1, 1]

2.
If the original control constraints were important to respect,
then by using the vector b2, the resulting set is a parallelogram
contained in the unit square. Finally, another choice could be
b3, which gives a set containing the original square. Note
that all those sets are symmetric with respect to the origin.
Solving (6) with K defined by (9), gives us the value of the
extended implicit twisting control input.

B. Existence and uniqueness of the control input

Let us now investigate the well-posedness of the extended
implicit twisting controller. In the following, the sliding vari-
ables have the dynamics (3) and the control variables are
defined by the inclusion (8), with the set K defined as
in (9), and b1 choosen as (10). The transformation from
B∞ = [−1, 1]

2 to K is given by

L =

(
1 0
h
2 1

)
. (11)

Recall that the control input is defined as uk = aλ1,k+1 +
bλ2,k+1, with λk+1 a solution to (6). The well-posedness of
the controller is now investigated.

Lemma 2. The system composed of the double integrator sys-
tem and the implicit twisting controller as defined in (8) enjoys
the existence and uniqueness of Σk+1 and uk. Moreover, if
Σk+1 6= 0, then λk+1 is also unique.

The proof is in Appendix A.
Remark 2. In this section and the foregoing one, it has
been proved that the controller exists and is unique and non
anticipative. A way to calculate it on a real implementation,
is indicated in Section V-A.

IV. STABILITY ANALYSIS

Let us turn our attention to the stability analysis of the
discrete-time closed-loop system (3) (8) (9) with b1 in (10). It
is clear that the origin is a fixed point, and we are now going
to prove its global stability (which in passing proves that it is
the unique fixed point).

Theorem 4. Let 0 < h < 2 and a >
(
1 + h

2

)
b > 0. The

origin is the unique equilibrium of the discrete-time system (3)
with the controller given by (7) (8) and is globally Lyapunov
finite-time stable.

Proof. The remaining part of this section is dedicated to
the proof of this theorem. Before searching for a candidate
Lyapunov function, let us provide some relations between the
variables used in the twisting controller (3) and (8). First note
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that we can relate the support functions of the set K and of
[−1, 1]

2 as follows:

δ∗−K(x) = sup
y∈−K

〈y, x〉 = sup
z∈−[−1,1]2

〈Lz, x〉

= sup
z∈[−1,1]2

〈z, LTx〉 = δ∗[−1,1]2(LTx).

Using the chain rule for proper lower semi-continuous convex
functions [20, Theorem 23.9], we get: for all Σ ∈ R2,

∂δ∗−K(Σ) = L∂δ∗[−1,1]2(LTΣ).

Thus, using (11), the relation (8) can be rewritten at step k as:

−λ1,k ∈ Sgn(σk + h
2 σ̇k) (12)

−λ2,k ∈ Sgn(σ̇k) + {−h2λ1,k}. (13)

This gives rise to the following bounds:

|λ1,k| ≤ 1 |λ2,k| ≤ 1 + h
2 (14)

|uk| ≤ a+ b(1 + h
2 ).

Now, let us provide additional relations between the controller
and the sliding variables. The inclusion (12) can be inverted
as:

σk +
h

2
σ̇k ∈ N[−1,1](−λ1,k),

⇐⇒ ∀λ′1 ∈ [−1, 1], (λ′1 + λ1,k)

(
σk +

h

2
σ̇k

)
≤ 0. (15)

Note that from (12), we have∣∣∣∣σk +
h

2
σ̇k

∣∣∣∣ = −λ1,k
(
σk +

h

2
σ̇k

)
. (16)

Also, whenever h < 2, the relation (13) implies that

−λ2,kσ̇k > 0 if σ̇k 6= 0 and − λ2,kσ̇k = 0 if σ̇k = 0, (17)

since for σ̇k 6= 0, the first term in the right-hand side of (13)
always dominates the second one. Now that we have those
relations ready for use, let us propose the Lyapunov function
candidate:

Vk := V (σk, σ̇k) = a

∣∣∣∣σk +
h

2
σ̇k

∣∣∣∣+
1

2
σ̇2
k −

h

2
bλ2,kσ̇k.(18)

Using (16) yields

Vk = −aλ1,k(σk + h
2 σ̇k) + 1

2 σ̇
2
k − h

2 bλ2,kσ̇k

=
(
−aλ1,k 1

2 (σ̇k − ahλ1,k − hbλ2,k)
)

Σk. (19)

Starting from (18) and using (17), it is easy to assess that if
h < 2, then Vk(·) is positive everywhere except at the origin
where it vanishes, and that it is also radially unbounded. The
remaining part is to prove that this function decreases between
two iterates, that is ∆Vk := Vk+1−Vk < 0 whenever Vk 6= 0.
Recall that the dynamics of the system is in (3). First note that
inserting (3)(b) in (19), we can write

Vk+1 = −aλ1,k+1σk+1 + 1
2 σ̇kσ̇k+1.

Now we investigate the evolution of Vk:

∆Vk = −aλ1,k+1

(
σk + hσ̇k + h2

2

?︷ ︸︸ ︷
(aλ1,k+1 + bλ2,k+1)

)

+aλ1,kσk + 1
2 (σ̇kσ̇k+1 − σ̇k(σ̇k

?

−ahλ1,k − hbλ2,k)),

where we used (19) to get the last term. Using (3)(b), we
substitute the terms tagged with ? to get

∆Vk = a(λ1,k − λ1,k+1)σk − ah
2 λ1,k+1(σ̇k+1 + σ̇k)

+h
2 (aλ1,k+1 + bλ2,k+1 + aλ1,k + bλ2,k)σ̇k

= a(λ1,k − λ1,k+1)(σk + h
2 σ̇k) + h

2 (−aλ1,k+1σ̇k+1

+(aλ1,k+1 + bλ2,k+1 + bλ2,k)σ̇k).

Let us replace σ̇k+1 with its expression in (3)(b), to obtain:

∆Vk = a(λ1,k − λ1,k+1)(σk + h
2 σ̇k)

+h
2 (−ahλ1,k+1(aλ1,k+1 + bλ2,k+1) + (bλ2,k+1 + bλ2,k)σ̇k).

Using again relation (3)(b) to replace the term λ2,k+1σ̇k, we
get

∆Vk = a(λ1,k − λ1,k+1)(σk + h
2 σ̇k)+

h

2

(
−ahλ1,k+1(aλ1,k+1 + bλ2,k+1) + bλ2,k+1σ̇k+1

−hbλ2,k+1(aλ1,k+1 + bλ2,k+1)) + bλ2,kσ̇k

)
.

A final rearrangement in the second term yields

∆Vk = a(λ1,k − λ1,k+1)(σk + h
2 σ̇k)

−h
2

2 (aλ1,k+1 + bλ2,k+1)2 + bh
2 (λ2,k+1σ̇k+1 + λ2,kσ̇k).(20)

Let us analyze the last equality term by term: using (15) with
the choice λ′1 = −λk+1, the first term is nonpositive. The
second term is clearly nonpositive and the third one too, using
the relation (17). Thus, ∆Vk ≤ 0. Let us show now that the
variation ∆Vk is negative as long as the origin is not reached.
The second term in (20) is zero if and only if

aλ1,k+1 + bλ2,k+1 = 0. (21)

Using (14) and the second gain condition in Theorem 4, it
follows that (21) has a solution if and only if |λ1,k+1| < 1.
Thus, from (12) at step k + 1, (21) holds if and only if

σk+1 +
h

2
σ̇k+1 = 0. (22)

Using (21) in the dynamics (3)(b), we get that in such a case
σ̇k+1 = σ̇k. Going back to the analysis of (20), using (17), the
last term in the right-hand side is zero if and only if σ̇k+1 =
σ̇k = 0, which combined with (22) implies that σk+1 = 0, and
by (12) that σk = 0. Whence, ∆Vk can be zero only when the
system has already reached the origin. Otherwise, ∆Vk < 0.

Let us now prove the finite-time stability. Remember that the
three terms in the right-hand side of (20) are all nonpositive.
Hence, we can find an upper bound of ∆Vk by considering
only one of those terms. Let us take a closer look at the second
one:

−h
2

2 (aλ1,k+1 + bλ2,k+1)2 = −h
2

2 u
2
k.

We have shown that uk = 0 ⇔ |λ1,k+1| < 1 ⇔ σk+1 +
h
2 σ̇k+1 = 0. Thus uk 6= 0 ⇒ |λ1,k+1| = 1 and σk+1 +
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h
2 σ̇k+1 6= 0 (using (22)). Suppose that σk + h

2 σ̇k 6= 0. Then
0 6= uk ∈ ±(a− h

2 b)+bSgn(σ̇k+1). The second gain condition
in the theorem statement gives us a− bh2 − b > 0. Therefore,
we get that u2k ≥ (a− (1 + h

2 )b)2, so that

∆Vk ≤ −
h2

2
u2k ≤ −

h2

2

(
a− (1 + h

2 )b
)2
< 0. (23)

Inequality (23) holds everywhere outside the line σk + h
2 σ̇k =

0. From Lemma 1, we know that if the state of the system
belongs to S0, the origin is reached at the next time instant.
If we prove that this segment is reachable in finite-time from
any initial conditions, then the origin is globally finite-time
reachable. Hence, given that (23) holds everywhere except on
the line (22), we just need to bound ∆Vk away from 0 if Σk+1

belongs to the line (22) minus S0. Thus, suppose that Σk+1

belongs to the line (22), and that |σ̇k+1| > h(a + b). In the
third term in the right-hand side of (20), and using (12) (13)
we get:

λ2,k+1σ̇k+1 = −|σ̇k+1| − h
2λ1,k+1σ̇k+1

≤ −(1− h
2 )|σ̇k+1| ≤ −h(1− h

2 )(a+ b).

Hence, disregarding all other terms (which are all non positive)
but λ2,k+1σ̇k+1 in the right-hand side of (20), we obtain the
upperbound:

∆Vk ≤ − bh
2

2 (1− h
2 )(a+ b), (24)

the right-hand side of (24) being negative for all 0 < h < 2.
For all k ≥ 0, ∆Vk is smaller than the maximum of the right-
hand side of (23) and (24). Both quantities being negative
constants, the finite-time convergence to S0 holds, hence the
finite-time convergence to the origin.

Remark 3. The discrete-time Lyapunov function Vk(·) is close
to its continuous-time counterpart used in [13], which is given
by a|σ|+ σ̇2/2.

Corollary 1. Let 0 < h < 2 and a >
(
1 + h

2

)
b > 0. The

origin is the unique equilibrium of the closed-loop system,
consisting of a double-integrator with the piecewise constant
controller obtained from (7)-(8), and it is globally Lyapunov
finite-time stable.

Proof. The ZOH discretization being exact, we know by the
previous Theorem that there exists k0 ∈ N such that Σk0 = 0.
Then for all k > k0, Σk = 0, with the control input
uk = 0, as we can easily infer from (3). On each sampling
interval [tk, tk+1], k > k0, the continuous-time system has the
dynamics

Σ̇ =

(
0 1
0 0

)
Σ +

(
0 0
a b

)
0 = 0.

This concludes the proof.

Remark 4. From (3) it follows that once the origin has been
attained, then the (unperturbed) discrete-time system stays at
the origin for all future times. Therefore, there is no numerical
chattering with the implicit controller, contrarily to its explicit
counterpart [1]. Let us illustrate this point numerically on the
double integrator: on Fig. 1 the phase plot of the explic-
itly discretized control law, uk = −a sgn(σk) − b sgn(σ̇k),

and the enhanced implicit twisting given by (7)-(8). This
is confirmed experimentally in [6] with the regular implicit
twisting controller calculated from (4). The enhanced implicit
twisting controller is expected to provide even better results.
The regular implicit twisting algorithm has also been analyzed
in [5, Propositions 7 and 8], including a perturbation. It is
shown therein that during the discrete-time sliding mode, the
disturbance is attenuated with a factor h2 on σk and with a
factor h on σ̇k.
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(a) Overview of the phase plot
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(b) Zoom around the origin

Fig. 1: The blue trajectory is with the enhanced implicit control
law, the red one is obtained with an explicit discretization. The
timestep is h = 10ms.

V. ENHANCED IMPLICIT TWISTING WITH PERTURBATIONS

A. Computation of the control input

Let us now tackle the case with perturbations, with the
same setup as before: we consider the ZOH discretization of
a double integrator. Let us denote by Σ̃k and Σ̃k+1 the sliding
variables for the real plant, i.e., with perturbations, whereas
the sliding variables Σk and Σk+1 are the variables of the
nominal system, i.e., without perturbation. The latter obey the
same system (1), whereas Σ̃k+1 is given by:

Σ̃k+1 = A∗Σ̃k +
(
h2/2
h

)
uk + d with
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uk = aλ1,k+1 + bλ2,k+1 and − λk+1 ∈ ∂δ∗−K(Σk+1),

where R2 3 d = O(h) captures the contribution from the
perturbations. At each timestep, the value Σk of the nominal
system is set to the value Σ̃k, measured (or estimated) on the
real system. The inclusion −λk+1 ∈ ∂δ∗−K(Σk+1) combined
with the one step relation Σk+1 = A∗Σ̃k +B∗λk+1 gives the
AVI

0 ∈ A∗Σ̃k +B∗λk+1 +NK(λk+1). (25)

Again, a solution to this AVI is computed with data known at
time tk. Therefore, the control law is causal. Note that from
these equations, it is easy to see that the discrepancy on one
time step between Σk+1 and Σ̃k+1, is d.

Let us now detail how a solution to the AVI (25) can be
computed. Since we are dealing with an AVI of dimension 2,
it is possible to apply a simple algorithm. Note that with our
choice of K, each λi can take values in 3 sets: λ1 in {1}, {−1}
and [−1, 1], and λ2 in {1 + h

2λ1}, {−1 + h
2λ1} and [−1 +

h
2λ1, 1 + h

2λ1]. Each corresponds to the arguments of the Sgn
multifunction to be either nonnegative, nonpositive and 0. This
gives 9 possible cases to consider. Therefore, it is tractable
to find a solution by enumerating the candidates. Thanks to
the result of existence and uniqueness of the control input in
Lemma 2, this approach is well defined. Let us first describe
the enumeration procedure, before giving some heuristic to
find a solution in a faster way.

First, whenever λ is one of the extreme point of K,
then checking that it is a solution consists of computing
Σk+1 based on that value of λ, and check that the set
(Sgn(σk+1),Sgn(σ̇k+1)+ h

2 Sgn(σk+1))T contains that value.
When the candidate λ belongs to the boundary of set K,

the procedure consists of computing uk as a solution to either
σk+1 = 0 or σ̇k+1 = 0, and checking that there exists a λ that
can give that value uk. Whenever we consider a candidate λ
with λ1 = 0 (resp. λ2), we compute the value of uk solution
to σk+1 = 0 (resp. σ̇ = 0). Then, we compute the value of λ1
(resp. λ2) giving that control input value uk:

- λ = (1, λ2), then λ2 ∈ [−1 + h
2 , 1 + h

2 ].
- λ = (−1, λ2), then λ2 ∈ [−1− h

2 , 1−
h
2 ].

For the case λ = (λ1, λ2) such that λ2 − h
2λ1 = ±1, then we

combine this with the equation aλ1 + bλ2 = uk. It is easy to
check that this 2×2 system always has a unique solution, our
candidate λ. To check that it is in the constraint set K, it is
sufficient that λ1 ∈ [−1, 1].

Finally, the last case is when Σk+1 = 0 for which λ ∈ K.
For this last case, the method consists in computing uk as the
solution of σ̇k+1. If |uk| < a+b(1+ h

2 ), then the value of σk+1

is checked to be 0. If the latter condition holds, then the control
input value is uk. Indeed, one can check that whenever |uk| ≤
a+ b(1 + h

2 ), the vector λ such that λ1 = uk/(a+ b(1 + h
2 )

and λ2 = (1 + h
2 )λ1 belongs to K, and provides the required

control input value.
A simple and efficient heuristic consists in trying first the

value of λ = (sgn(σk), sgn(σk+1) + h
2 sgn(σk+1))T , since

the value of the control is likely not to change, especially
away from the origin. Note that we used the single-valued
signum function. If this candidate fails, then the remaining 8
combinations are tried.

B. Numerical simulations

Let us illustrate the above developments on a disturbed
double integrator. The control input value is supposed to be
piecewise constant: u(t) = uk for t ∈ [tk, tk+1), k ≥ 0. Three
control laws are compared, with G and β such that a = G
and b = Gβ:

- explicit control: uk = −G(sgn(σk) + β sgn(σ̇k))
- regular implicit control: uk = aλ1,k+1 + bλ2,k+1, and
λk+1 ∈ SOL(A∗Σ̃k, B

∗, [−1, 1]2).
- enhanced implicit control: uk = aλ1,k+1 + bλ2,k+1, and
λk+1 ∈ SOL(A∗Σ̃k, B

∗,K).
The plant dynamics with a perturbation, σ̈(t) = u(t) +
α sin(ωt), is integrated using the Lsodar method from ODE-
PACK, for a high fidelity integration process mimicking the
continuous-time plant. In the following, ω = 50 and α = 1.
Since B∗ is not symmetric positive definite, the AVI cannot
be solved with a projection as for first-order SMC [7], [2].
However, the algorithm from [21] can always find a solution.
Thanks to the linear nature of the problem, the maximum
number of iterations is nine [22]. Furthermore, each iteration
requires solving a linear system with only two variables.
Hot-start strategy is also very easy to set up, since in the
reaching phase the values of λ do not frequently change.
The implementation of the proposed implicit control is avail-
able in the open-source software SICONOS and its module
SICONOS/CONTROL [23]. Otherwise, it is possible to perform
the simulation with the algorithm described in Section V-A.

Let us first show the control input values in Fig. 2, for
the three control laws. The explicit control law behaves as
a bang-bang signal, while the regular implicit twisting has a
control magnitude about twice as big as the enhanced implicit
control law. Let us now analyze Figures 3 and 4. The enhanced
implicit control law has the best performance when taking
into account the control input effort, the chattering and the
precision (on both σ and σ̇). The control effort is defined
as ‖{uk}‖1, the chattering is the total variation (TV) of that
sequence: TV (u) :=

∑
k |uk+1 − uk|. The chattering of the

sliding variables is also defined as the total variation of the
sequences {σk} and {σ̇k}. The following trends can be ob-
served: the enhanced implicit control law always outperforms
the other two. It provides the best precision, in the same range
as the regular implicit control law (magenta crosses), but each
time with less chattering or less control effort. As expected,
the closed-loop system with the explicitly discretized control
law delivers the worst performances.

The continuous time twisting algorithm enjoys the invari-
ance of the control input with respect to the gain in the sliding
phase, given that the magnitude of the control input is large
enough to overcome the perturbation. This is illustrated in
Fig. 4, which is obtained as follows: for each gain value,
simulations for 49 initial conditions in a ball of radius 2e−2

around (1, 2) are performed. The worst case performance is
then used to create this picture. This methodology is needed
since the controller obtained by a regular implicit discretiza-
tion is very sensitive to the initial value, as documented in [15,
Section 2.3.4]. From Fig. 4 it is clear that the enhanced implicit
controller is not sensitive with respect to an increase of the
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control gain, hence confirming a property of the implicit first-
order discrete-time SMC [2], [7]. On the other hand, both
the explicitly discretized controller and the regular implicit
controller are sensitive to an increase of the gain, linearly for
the errors and the control effort.

Finally, let us investigate the influence of the sampling
period on the closed-loop performance, depicted in Fig. 5. The
average error on σ is quadratic for all control laws. Moreover
the results about the control chattering show that the enhanced
implicit control law achieves a much better performance than
the other two controllers: its chattering level remains constant,
whereas it is inversely proportional to the sampling period in
the other two cases. This is also coherent with results obtained
in [7], [2] for the first order SMC.
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Fig. 2: Control inputs for the three control laws
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Fig. 3: Comparisons between the 3 controllers with different
metrics. Each point represents a different sampling period with
values between 50 ms and 1 ms.

VI. CONCLUSION

In this article, an enhanced implicit discrete-time twisting
sliding-mode controller is studied. Fundamental properties
are investigated: existence and uniqueness of the controller
at each step, and the global finite-time Lyapunov stability
of the closed-loop system. Affine variational inequalities are
at the core of the analysis and computational algorithms.
Numerical comparisons illustrate the superior performances of
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Fig. 4: Evolution of the performance of the controllers with
respect to the gain.
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Fig. 5: Evolution of the performance of the controllers with
respect to the sampling period (in seconds).

the enhanced implicit twisting controller and illustrate some
properties shared by the continuous time and discrete-time
twisting algorithms. Future work should tackle the analysis
of the case with perturbations.

APPENDIX A
PROOF OF LEMMAE 1 AND 2

Proof of Lemma 1. Let us first study the set of points Σk such
that Σk+1 = (0, 0). Using the recurrence relations in (3), we
get the system {

σk + hσ̇k + h2

2 uk = 0

σ̇k + huk = 0.

(26a)
(26b)

Inserting (26b) in (26a) yields σk = h2

2 uk. Combining
with (26b) we get σk + h

2 σ̇k = 0. Hence, the origin can only
be reached from this hyperplane. Since |uk| ≤ uM , we get the
constraint |σ̇k| ≤ huM .

Proof of Lemma 2. The existence of a solution to the AVI (6)
is ensures by the continuity of the functional L defined as λ 7→
A∗Σk +B∗λ, and the compactness of the convex set K. The
outline of the proof (that can be found in [19, Corollary 2.2.5,
p. 148]), is as follows: consider the mapping Λ 7→ ΠK(Λ −
L(Λ)), with ΠK the projector onto K. Since K is convex,
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it is single valued from K → K. By Brouwer’s fixed-point
theorem, there exists a fixed point Λ0. From [16, Prop. 6.17],
Π−1K = (I+NK), in the sense of set-valued mappings. Hence,
Π−1K (Λ0) = Λ0 + NK(Λ0) = {Λ0 − L(Λ0)}. Rearranging
terms gives that −L(Λ0) ∈ NK(Λ0), whence Λ0 is a solution
to the AVI.

For the uniqueness property, note that since B∗, from (2), is
a rank-one matrix, LTB∗L is also a rank-one matrix given by
the outer product LTB∗L = h(h, 1)T (a+ h

2 b, b). This matrix
is singular with positive diagonal elements. By construction
its columns are linearly dependent. Hence, we have by [15,
Proposition 2.3.4 and Remark 2.3.5], the uniqueness of Σk+1.
As shown in the proof of that proposition, this implies that
the difference between any two solutions lies the kernel of the
linear mapping, here B∗. Note that kerB∗ = span (b,−a)T

and that uk is defined as (a, b)λ. It is easy to see that any
element of kerB∗ is orthogonal to (a, b)T , which ensures
the uniqueness of uk. For the last part of the statement, the
uniqueness of Σk+1 implies that if λ1k+1 and λ2k+1 are two
distinct solutions, then their opposites are both in the set
∂δ∗−K(Σk+1) (see (8)). This implies that λ1k+1 and λ2k+1 are
such that 〈−λ1k+1,Σk+1〉 = 〈−λ2k+1,Σk+1〉 = δ∗−K(Σk+1).
Whence, ∆λk+1 := λ1k+1 − λ2k+1 is orthogonal to Σk+1. But
we know that ∆λ ∈ kerM = span (−ba ), which means that
Σk+1 = s( ab ), for some s ∈ R. We are interested in the case
Σk+1 6= 0 which means that s 6= 0. Given that a > b > 0, we
get that:

∂δ∗−K(Σk+1) = arg sup
y∈−K

〈y,Σk+1〉 =


{(

1

1+
h
2

)}
if s > 0{( −1

−1−h2

)}
if s < 0.

The two sets in the right-hand side are both singletons:
the solution λk+1 of the AVI is therefore unique whenever
Σk+1 6= 0.
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