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Function Approach
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Abstract

This work deals with the problem of nite-time and xed-time observation of linear multiple input multiple output (MIMO) control
systems. The proposed nonlinear dynamic observers guarantee convergence of the observer states to the original system state in a nite
and in a xed (de neda priori) time. Algorithms for the observers parameters tuning are also provided and a robustness analysis against
input disturbances and measurement noises is carried out. The theoretical results are illustrated by numerical examples that consider both
noisy and noise-free measurements and a comparison with a high-gain observer is included.

Key words: Finite-Time Stability, Fixed-Time Stability, Implicit Lyapunov Function, Homogenous Systems

1 Introduction etc.). In this approach, the observer is designed by studying

the stability of the error equation in order to guarantee nite-
State estimation (observation) is a classical problem in con-time or xed-time (prescribed in advance) convergence of
trol theory [1], [2] that still forms an active research domain the observation error to zero. To attain this type of conver-
[3], [4], [5]. Observer design algorithms give background for gence, high order sliding mode (HOSM) differentiators [15],
the development of fault detection [6], data assimilation [7] [16], [17] and homogeneous observers [11], [10], [3] can be
systems and system parameter estimation [8], among othefysed and they admit a rather simple and constructive repre-
relevant research topics. sentation. However, the practical implementation is compli-
cated since, to the best of our knowledge, proper algorithms
for parameter tuning and convergence time adjustment are
not yet developed for high order systems.

Observation with time constraintagn-asymptotic observa-
tion) is an interesting problem for both control theory [9]
[10] and practice [11]. On the one hand, nite-time observa-
tion is a simple way to realize the separation principle, the The present paper, for which [18] is a preliminary version,
condition under which the control and the observation algo- develops effective computational algorithms for tuning the
rithms can be designed and analyzed independently. On theparameters of a nite-time observer and a novel xed-time
other hand, in many control systems the transition processesone; both of them based on homogeneity properties. In com-
are strongly restricted in times.g. the state estimate of a  parison with previous works, the algorithms here developed
walking robot must be provided before each impact with the translate the observer parameter selection into a system of
ground,i.e. calculated within the length of each step [12].  Linear Matrix Inequalities (LMI)[19], which allows to ad-

- h ling time.
One of the most popular approaches to system state es'umaJ—UStt e settling time

tion is the so-called dynamic observer design, which uses aNotation: Let i, (P) and max (P) be the minimum and

copy of the mathematical model of the system with an addi- the maximum eigenvalues of the positive de nite symmet-

tional output injection term (see, for example, [2], [13], [14] ric matrixP 2 R" ", respectively], 2 R" " denotes the
identity matrix; diagzi;z»;:::;zm) denotes the diagonal

Corresponding author. Tel. +33-359577800 matrix with diagonal elementg;i = 1;2;::;; m; rown(W)

Email addresses: and coln(W) are the_ number of rows an(_d the number of
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de ning the orthonormal basis of the subspaer(W); 3.2 Implicit Lyapunov Function Method

R, denotes the set of nonnegative real numbggstepre-

sents a vector of ones such tHag = (1;1;:::;1)T 2 RP; The Implicit Lyapunov Function (ILF) method allows to
L (RP) denotes the set of essentially bounded measurabledetermine the stability of a system without presenting the
functionsf ' R, ! RP and the notatiom.(la.b) is used for Lyapunov function in an explicit form. Indeed, the Lyapunov
similar functions de ned or{a: b): j | denotes the absolute function can remain in an implicit form, for example, as a

value inR andjj jj denotes the Euclidean norm &?%. _solution of some algeb_raic_ equatioemgﬁ.Q_(V;x) = 0) and
in order to analyze nite-time or xed-time stability of a

given system it is not necessary to solve this equation; it
2 Problem statement suf ces to study some conditions involving the right-hand

Let us consider the perturbed linear control system: side of the system, as stated by the next theorem.

( Theorem 3 ([24]) If there exists a continuous functi@p :
x(t) = Ax(t) + Bu(t) + dy(t); 1) R. R"! Rsuch that:
y(t) = Cx(t) + dy(t); C1 Q is continuously differentiable oR:  R"nf0g;
h 5 RN is the stat e 2 R is th q C2 for anyx 2 R"nf0Ogthere existy/ 2 R: : Q(V;x)=0;
wherex is the state variabley is the measure _ i . SN
output,u : R! RS is the control inputA 2 R" " is the C3 for. B (_V')f)_z Rn ) Q(_V')_() 'Q we r_1ave _
system matrixB 2 R" S is the matrix of input gains and Jim -V =0"; Vly'”(l kxk=0; lim V=+1;
the matrixC 2 R* " is the output matrix which links the (Vix)2 (Vix)2 (Vix)2
measured outputs to the state variables. The (@giC) is @QVix) n .
assumed to be observable aaak(C) = k. C4 1 < =gy <0forV 2R, andforx 2 R"nf0g;
C5 @UVx)f (; vl @AVX) gt2 R, 8(V;x)2
The goal of this work is twofold: o | (6X) c oV (Vi)
wherec > 0 and 0 < 1 are some constants. Then

Design two dynamic observers that estimate the state of L . ; o ;
the non-perturbed system (1) in a nite time or in a xed the origin of systen(2) is uniformly nite-time stable with

. . . V,
(de ned a priori) time, under the assumption that the the settling time estimaté(xo) -, whereVp 2 R,

domain of initial conditions is unknown. Q(Vo;X0)=0.
Both observers must be robust (iniaput-to-statesense)  The proof of this theorem is based on the classical Implicit
with respect toL; -bounded measurement noissgt) Function Theorem [25] and recent results in the ILF method
andL; -bounded disturbancek (t). [26], [27], [24].
3 Preliminaries The next extension of the previous theorem allows to deter-
o . - mine xed-time stability using the ILF method.
3.1 Finite-time and xed-time stability Theorem 4 ([24]) Let two function®1 (V: x) andQ,(V; x)
. satisfy the condition€1-C4 of Theorem 3 and
Let us consider the system of the form C6 Q1(L:x) = Qu(1:x):8x 2 R"nf0g;
()= f(tx(®); t>to x(t)=xo (2  C7 &GEHI(x) vl €GN 8t 2 R
_ ) 8V 2 (0;18x 2 fz2 R”nf%g:Ql(V;z)=Og,
wherex 2 R" is the state vector anfd : R+ R"! R"is Wherecl > 0and0O< < 1aresome constants

a nonlinear continuous vector eld. Let us assume that the

@Q(V5X) £ (4. 1+ @Q(Vix)
origin is an equilibrium point of (2). C8 =axf(tx) oV * av 8t 2 R, 8V

1,8x 2fz2 R"nfOg: Q2(V;2) =0g, wherec, > 0

De nition 1 ([20], [21], [22]) The origin of systen{2) is and > 0 are some constants.

said to be globally uniformlynite-time stable if it is uni- Thenthe origin 0{2)is xed-time stableT (xo) -+ 2.
formly Lyapunov stable and nite-time attractive, i.e. there P

exists a locally bounded functioh : R" | R, [f Og The presented theorems are used below for analysis and de-

such thatx(t;to;xo) = 0 forall t  to + T(Xo), where sign of nite-time and xed-time observers. The correspond-
x(t; to: Xo) is a solution of(2) with xo 2 R". The function ing implicit Lyapunov function candidate is selected as

T is called the settling time function of the systéh Q(V:2) := Z'D,(VYPD,(VY)z 1 @)
De nition 2 ([23]) The origin of systenf2) is said to be whereV 2 R,,z2 R",P = PT 2 R" " is a positive
globally xed-time stableif it is globally uniformly nite- de nite matrix andD, () is the dilation matrix of the form
time stable and the settling time functidn is globally ) . ) )
bounded by some positive numb&g.x > 0, i.e. T(Xo) D, ()=diag( "ln;; Zlnyiiisy "My ); o (4)
Tmax, 8Xo 2 R". with r = (rq;:5rm)T 2 R™;ri > 0, Fmin = Ming j nf;j
o ) . andn; are natural numbers such thaf + 2+ ny = n.
A characterization of the xed-time stability property by Note that ifr, = 1 = r, = 0:5thenQ(V;2) = 0 implies

means of a Lyapunov function can be found in [10], [23]. thatV = zTPz.



3.3 Weighted Homogeneity and Input-to-State Stability

The observers to be presented derive many of its propertie
from the fact that they exhibit a regular multiplicative scaling
behavior, namely homogeneity. In this subsection we de ne
this property and present some relevant theorems regardin
robustness of homogeneous systems.

Consider the system in the form

x(t) = F(x(t); d(1));

t>t0; (5)

X(to) = Xo;

wherex 2 R", d 2 L; (RP) is a disturbance ané 2
R"™ P I R" is a continuous or discontinuous vector eld
that satis es Filippov conditions [28].

De nition 5 ([29]) A vector eldf : R" ! R" isr-
homogeneousvith homogeneous weights2 R" and de-
gree 2 R, with -r'min if for all x 2 R" we have

T D )M )x) = ()
The system (5) fod(t) = 0 is r-homogeneous of degree
if the vector eld f{x(t); 0) is r-homogeneous of degree
De nition 6 ([29]) Anr-homogeneous norrs a mapx 7!
iiXiir. , where forany 0, jjXjjr. .

8x 2 R". The setS; = fx : jjxjj. = 1gis the corre-

spondingr -homogeneous unit sphere

If a vector eld fails to exhibit a global degree of homogene-
ity but behaves as an homogeneous vector eld near in nity
and/or near the origin, we say that itézally homogeneous

De nition 7 ([10], [30]) A vector eldf : R" ! R" is
(ro; o:;fo)-homogeneouswith degree ¢ -romin (fo is
anro-homogeneous vector eld an@dmin = mMiny j nron)

and o2 R, [f +1g if lim , ([ ~°D2( )f (D,( )X)
fo(X)] = 0; for all x 2 S;,, uniformly on S, with
02f0;1g .

In the context of control and observation of nonlinear sys-
tems, the concept of input-to-state stability has won ground

in characterizing the robustness of a system with respect to.
disturbances, noises and unmodeled dynamics since it allows
to guarantee that for a given essentlally bounded and mea-,

surable input, the system's state remains bounded [31],[32].

De nition 8 ([32]) The systen(5) is called

Input-to-state stablgISS), if there exist functions2 KL
and#2K such that foranygl2L ; (RP) and anyxo 2 R"
jix(ttosd)j  (ixoli;t) + #(jidijjo;r)); 8t O
Integral intput-to-state stable(ilSS), if there are some
functions#i;#, 2 K; and 2 KL such that for any
Xo 2 R" andd 2 L ; (RP) the f&llowing estimate holds:

# (X (X0; )K)  (kxok;t)+ o #a(kd(s)K)ds; 8t O:

As the following theorem shows, homogeneity and homo-
geneous approximations allow to easily verify robustness
properties, in an ISS sense, of a given system.

%0 and with degree

Theorem 9 ([30]) Let the vector eldf~” be homogeneous
with weightsr = (rq;:r))T > 0,1 = (rl;:::;rp)T
“Tmin, 1.€. F(Dr ()X D ( )d)=
D,( )f(x;d) forall x 2 R",d2 RP and all > 0.
ssume that the systgl) is globally asymptotically stable
or d = 0, then the systertd) is
ISSifrmin>0 or iISSifry,=0 and 0.

In the case of locally homogeneous systems, ISS stability
can be asserted through their homogeneous approximations
atOand atl .

Theorem 10 ([10], Corollary 2.21) Let the vector eldf™
be continuous an(r* ;r' );+1 ;f1 )-homogeneous with
the weights* = (r1 ;:iry ) > 0, rt =(ri;unry ) >

0 and ((rO r0);0;fo)- homogeneous with the weight® =
(r%;:5r2) > 0, F0 = (r?;:::5r8) > 0. If the origins of the
systemsx = fp(x; 0);x = f(x;0) andx = 3 (x; 0) are
globally asymptotically stable then the systhis ISS.

4 Observer Design Using the ILF Method
4.1 Observer Canonical Decomposition
The observers' design starts with a decomposition of the

considered system into an appropriate block canonical form.

Lemma 11 Consider the systerll) with the pair (A;C)
being observable andank(C) = k. Then there exists a
nonsingular transformation such that

A 1l=FC+AC '1:(000::: 0);C=[Ix0]2 RK "
OAlz 0 0
Aoz
A= E.p X:Co2 RK K:E 2 R K.
f) :::Am 1m
0 0 0 0

where m is an integer, A; 15 2 R" * M, n;
ﬁmk(AJ 11) j =2;:;m, sothatn; =rank(C) = kand

i=1 ni =
We omit the proof of this lemma since it is a trivial con-
sequence of well known results on block observability and
controllability forms (see [33], [34], [35], [36]). However,
in order to make the article self-contained we provide a suit-
able algorithm to calculate the transformation matrixn
the Appendix. Ifk =1 thenm = n,n; =1 and trans-
forms the matrixA into the canonical Brunovsky form. It is
also worth stressing that canonical forms and related trans-
formations also exist for nonlinear systems (see for instance
[37], [14]). Therefore, the observer design algorithms given
below can be adapted to the nonlinear case.

4.2 Finite-Time Observer

Let us consider the following nonlinear observer

22 = AR+ BUM g, (O CRW) (O



where®(t) 2 R" is the observer state vector and the function initial estimation errore(0) 2 R". The main idea of the

:R¥1 R"isdened as
h i

1 De kPCt kT L., F Cg;

O+
O, ()= (7)

where 2 RX, the matrices 2 R" ", Co 2 RK % and
F 2 R" K are de ned in Lemma 11D () is the dilation
matrix given by (4) with

_ S22 : 1T
M oasm s we s wmy o 2 (01 (8)
andL., 2 R" X and P 2 RX X are matrices of ob-

server gains, to be determined. The error equation in theX 2 Rk ¥ and suf ciently large

disturbance-free casg.e.dy =0, dy = 0) has the form

9)

wheree= ( x %),A2R" "andC 2 Rk " are de ned
in Lemma 11. Obviously, if ! 0thenD. kPCek?® !

e= A+ D, kPCek! L., C e;

I, and the presented observer becomes the classical Luenand ; ;

berger one.

Remark 12 If the term kPCit k in (7) is replaced
with  @+(m 1) )= where > 0 is a small con-
stant, then the syster{6)-(7) becomes a high-gain ob-
server [38], [14] with the error dynamics given by

e = A+diag( In,; 2lh,; 5 M)l C € In
our algorithms the gain factor depends on the available
part of the observation error, namely,on=y C% = Ce.

This allows the nite-time and xed-time observers to be
less sensitive with respect to noises (see Section 6).

Let ys de neH, :idiag(rllnl;rzlnz;:::;rmlnm)2 RN N,

r= I+grmop Im Fand ()= De( ) In.
Theorem 13 Let for some 2 (0;1], > 0, > Oand
1 the system of matrix inequalities
PA+ATP+CTYT+YC+ P+ (PH;+HP)P 0. (10a)
P -
!
Xy T
P>0;Z>0;X> 0; (10b) v P 0; (10c)
PH, + HP >0; (10e) P CTXC; (10d)
()Z( ) *P; 8 2[01] (10f)

be feasible for some?;Z 2 R” ", Y 2 R " and
X 2 R k. Then the error equatiof9) with L_, = P 1Y
and P = X172 js globally nite-time stable with settling
timeT Y. - w1 WhereV : R I Ris
de ned implicitly by the equatio®@(V; ) = 0 with Q given
by (3).

In other words, this theorem claims that any solution of
the observer system (6) converges to a solution of the real

system (1) in a nite timeT, which is dependent on the

proof is to show that the functio (de ned in the statement
of Theorem 13) satis es all conditions of Theorem 3. Proofs
of all theorems and propositions are given in the Appendix.

Corollary 14 The system of matrix inequalitié¢$0) is fea-
sible for suf ciently small > 0.

Indeed, observability of the pajA; C) implies that the pair
(A+0:5(H ,+ 1,);C)isalso observable. Hence, it can be
easily shown that the inequality (10a) is feasible with some
positive de nite matrice$®;Z 2 R" " andY 2 R ". The
matrix inequalities (10d) and (10c) are also feasible for some
1. Sincek ( )k! 0
uniformly on 2 [0;1] as ! O, then the inequalities
(10e), (10f) will hold for suf ciently small > 0.

In order to apply Theorem 13 we need to solve the
parametrized system of nonlinear matrix inequalities (10)
with respect to variableB, X, Z, Y for a given 2 (0;1]
> 0. By xing the value 2 [0;1], the system
(10) becomes a system of LMIs, which can be solved using
any appropriate mathematical software.of MATLAB).
However, the mentioned LMIs must be checked for any
2 [0; 1]. Due to the smoothness df ) with respect to
2 (0;1], this can be done on a proper grid constructed
over this interval. The next corollary provides suf cient
feasibility conditions for the parametrized matrix inequality
(20f).

Proposition 15 The parametric inequality10f) holds if

(@)Z (g)+ 3@ ¢ IM< LP;i=1;:5N; (11a)
P>0 Z>0, M>0 (11b)

In HO)Z+Z(ln He) -ZH - .
( )—H+FZ( ) y > 0; (11c)

where0 = g < g <::<qn =1, He = diag(*1ln,;
Foln,: i Finln, )i PsM;Z 2 RY M,

The provided result allows the implementation of a simple
algorithm to solve the parametrized system of matrix in-
equalities (10) with xed , , and .

Algorithm 1
Initialization: N =1;q,=0;q, =1; = fo;q,0.
Loop: While the system of LI\/(IlOa 10d) (11) is not feasi-

ble, do [ S 1tG L andN  2N.

|=
Since the matrix inequalityl, He)Z+Z (1, He) > Ois
obviously feasible for suf ciently small> 0, then, in the
view of Corollary 14, the presented algorithm always nds
the required solution if is suf ciently small.

4.3 Fixed-Time Observer

Let us consider now the following observer

Cr(t); (12

%k(t) = AR+ Bu(t) g, (y(t)



wherex 2 R" and the functiorg, : R*! R" is de ned
as follows:

1l -1
g, ()= 1 foe(kPicyt k )+2|3P(krrgcO K)OLex Fcl;

where 2 RX, the matrices 2 R" ", Cq 2 Rk % and
F 2 R" KaredenedinLemma 11P; 2 Rk % j=1;2
andL., 2 R" X are gain matrices to be determined.
The error equation between (1) and (12) with= d, =0
is given by

n 0
e= A+} D. kPiCek! +D. kP,Cek L, C e; (13)

e= ( x %),whereA2 R" "andC 2 Rk " are de ned
in Lemma 11.

h .
Let us de ner; = (-1) 'r+ 1+% ()
n
2 Dr 2 #De 44 20, = (4 2),
(1; 2) andH; =diagf(ri)iln,;:5 (F)mln, 92 R"
fori=1;2:

1m1

i1

=

Theorem 16 Let for some 2 (0;1], > 0, > O, 1 and
=( 1; 2); i>0;i=1;2; the system of mat{ix inequalities

PA+ATP+CTYT+YC+ P+ (PHi+H;P) P

0.
o 7, ; (14a)
0 1
Xy T
@Y PA 0; (14b) P>0:X>0Z,>0; (14c)
PH;+H;P > 0; (14d) P CTXC; (14e)
i()Zi () *P; 8 2[0;1] [0;1]; (14f)

be feasible witiP;Z1;Z, 2 R" ", Y 2 R"™ "andX 2
Rk k. Thenthe error equatioft3)withL., = P1Y,P; =

iX =2 is globally xed-time stable Witnay L0 2_
Under the following additional restrictions, the parametric
LMI (14f) can be simpli ed:

Proposition 17 Let0 = ¢y < q; < ::<gn, =1 and
O<po<pi<:i:<pn, =1forsomeNi;N, 1 Ifthe
positive de nite matrice€;; Sj; Mi; Rj; Ui 2 R" " satisfy
the following sys|tem of LMIs

ZiHe+HZi ZiH
iHet HeZi ZiHe 0; (15a) MiHe+HM;>0; (15b)

HeZi Uj
|
2Zi ZiHy HZi ZiHe -ZiHe
HeZi M 0 0. (15¢)
-HeZ; 0 S
i (G5Ps)Zi (G ;ps)t
In B (q:0)U i (q;0)+ (15d)
2 g2
& 91D )MiD( )+ S) LP;
i (G ;Po) i (6;0ZiDr py° i
Dv Py Zi (g 0) R 0, (15e)

where i(g;po) = *P  D(q)(Dr(po)ZiDr(po) +
De(po IRIDH(Pg ND(G)  (4:0)Zi (q:0)
L7=2(Mi+S) and Di(q) = 4Dr (3ig)™H
i=1;2,j =1;:5Ng,s=1;::; Ny, then(14f) holds.

Based on this proposition, an algorithm for solving the

parametrized system of LMIs (14) can be presented, analo-
gously with the nite-time case.

Algorithm 2

Initialization: > O,N; =1,N>=1,p>0,p, =1,
%=0,q,=1, = fa;n,9 = fpoipn.9

Loop: While the system of LM(d4a-14e)(15)withg 2

ps 2 is not feasible, do
[f 05(q 1+q)gs withg 2 ; Ni 2Ny
[ pre& withpi2 ; N, Ny+1:

Remark that the grid is a logarithmic grid such that the
termin pfsl in (15d) equals for anyps 2 nfpg; p1g.

5 Robustness Analysis

We consider now (1) with nonzemy : R+ 'L ; (R"),

and nonzerad, : R+ 'L 1 (R¥). Since the observers'
robustness follows from their homogeneity properties, we
will establish, for each observer, the type of homogeneity
that it exhibits and next that they are robust against bounded
disturbances and bounded measurement noise. Again, the
error variable isdened as= ( x R).

Corollary 18 Consider the perturbed error equation be-
tween(1) and (6)

e= Ae+ D (kPCe+ dyk™)L,, (Ce+ dy)+ ; (16)
where =-FCd,+ dy, dy2L; (R");dy 2L (R¥) and
assume that all conditions of Theorem 13 are satis ed. Then
the systenfl16)is ISSfor 2 (0;1) andilSSfor =1.

A similar result can be provided for the xed-time observer:

Corollary 19 Consider the following perturbed error equa-
tion betweer(1) and (12)

e=Ae+ LD )+ Do 2oL, (Ce+ d)+ ;  (17)

where = dy FCdy, i=kPjCerdyk;i=1;2,dy;dy 2L

and assume that all conditions of Theorem 16 are satis ed.
Then the error dynamicfl?) is ISS stable with respect to
additive disturbanced, and measurement noisdsg.

Only qualitative analysis of robustnes®(ISS) is presented

in this section. The quantitative one needs further research
developments using ideas introduced in [39], [38], [40]. The
LMIs presented in the previous section are expected to be
useful for obtaining of rather precise ellipsoidal estimates of
the observation error in the perturbed case.

6 Examples

The following two numerical simulations aim to show the
main properties of the nite-time (FT) and the xed-time



(FX) observers. In both examples, an inverted-cart pendu-
lum model will be used. In the rst example, the robust-
ness of the FT observer will be studied by applying it to
the nonlinear plant and a comparison with a high-gain (HG)
observer will be included. The second example will focus
on the uniformity w.r.t to initial conditions (IC) of the FX
observer. A linearized model will be used such that we can
compare the performance of the observers with IC far away
from the linearizing equilibrium point.

The state vector is given by=[x; x; ; J", where as usual

(x; x) represents the position and the velocity of the cart
and( ; J the angle (from the vertical down position) and
the angular velocity of the pendulum. The model parameters
areM = 0:5 Kg - mass of the cartn; = 0:2 Kg - mass

of the pendulump = 0:1 N/m/s - cart friction coef cient,

| = 0:3 m - length to pendulum center of massz= 0:006

Kg - moment of inertia of the pendulum.

High-Gain Observer Finite-Time Observer
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Fig. 1. Simulation plots o0&, ande_for the HG and FT observers

applied to the nonlinear plant with 1€(0) = (0;-2; 4;1) and
p =

0.5 15

It is assumed that only position and angle can be measuredCi€ntly large since the HG observer becomes more sensi-

directly. The nonlinear equations describing the system mo-
tion are given by

(M + me)x+ bx+me 1°cos mel2sin

(I + mcl?)* + meglsin + mclx cos

Fin
0,

whereF;, represents the input force. A simple proportional
control lawFj, = Kpé’—t’\(t) is used to stabilize the pendu-
lum around the downward positio@;'\(t) is an estimate of

tive with respect to measurement noises decreases. The
estimation error of the FT observer turned out to be 10 times
lesst (ke(t)k 0:01) fort 0:5s.

Figure 1 depicts the evolution of the observation errors of FT
and HG observers fahe noise-free casélthough the ob-
servers were designed using a linearized model, the system
remains stable for the complete nonlinear model. It is also
worth noting that the FT observer demonstrates a smaller

the angular velocity to be obtained using the observers. ThePeaking during transients.

linearization of the model around the downward equilibrium
pointxg=0 2 R* gives the following parameters for (1):

0 1 0 1
0 1 0 0 0
_B o -0:1818 2672 o%_ _%1:818%_ _ 1000
A‘%o 0 o 1ABZ@ 0 AC% o010
0 0:4545 -31:181 0 -4:545

The rst step of the observer design is to transform the

linearized model into the observable canonical form, given
0 10

in Lemma 11, by obtaining the matrix= 2 9§
b 0

wherea = -0:1818andb = -0:4545
Example 1(Comparison between FT and HG observers). In

0
0
-1
0

ROO

To compare the observers for the case of noisy measure-
ments, a band-limited white noise of powkd® has been
added to the output signal during the simulation. The cor-
responding results are presented at Figure 2. They show al-
most twice better precision (in bottf, 5,5 andL g5 4.5
norms of the error) of the FT observer with respect to the
HG one. This fact has a simple explanation in the context of
high-gain observer theorgince the gain factor of the FT
observer depends on the available part of the observation
error (see Remark 12), namely,

= ()= kPCgt k=M D)=y CR= Ce;

order to make a fair comparison we adjusted the parameters

of both observers to have similar time response for the initial
conditionxp = (0;-2; =4, 1); that is to say, the norm of the
estimation errors is admitted to be less tRatbfort  0:5

s. Using Algorithm 1 with(; ; ; ) = (0:25;2:5;100 4)

we design the FT observer (6), (7) with

Ler =( 9980 o 950 a6 3usz 40§4%2) " ; P=0:0969 01 ;
and we compare it with the HG observer, designed according

to Remark 12. Namely, the terkiPCg' k in (7) is replaced
with @+(m 1))="

Note that, the gain factor= 0:3 (and correspondingly the
admissible estimation errge(0:5)k  0:15) is selected suf-

then its value is automatically adapted to the noises of differ-
ent magnitude (the larger the noise magnitude, the smaller
the gain) In the noisy case the convergence time of the FT
observer slightly increases, allowing a better estimation pre-
cision.

Example 2(Uniformity w.r.t. to initial conditions). Here we
compare the FT and the FX observers assuming that the FT
observer is derived as the homogeneous approximation of the

FX observer atzera.e.Lgt = 0:5Lgx andP = Py, where

-3:8624 -6:7081 T. p- 0:0233 0 .
0 0 ) 1 0 0:0233

0 0
FX -3:8624 -6 :7081

! The numerical simulations have been done using the explicit

Euler method with sampling periah0™.
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Fig. 2. Simulation plots o0&, ande_for the HG and FT observers  Fig. 4. Simulation plot okek for the FT and FX observers with

with a band-limited white noise in the measurements. measurement band limited noise to the linearized plant with IC
x(0) =103(0; 1; 4;0) andK, = 5.

( nite-time or xed-time) convergence while the latter sim-

pli es tuning of the observers' gains using LMI-based algo-
rithms. The design is based on a transformation to a canon-
ical observability form so that similar observers can be eas-
ily applied to nonlinear systems that admit this canonical
form. The observers' robustness against bounded measure-
ment noises and disturbances was also studied. It was shown
that while both observers are ISS stable. Quantitative ro-
bustness analysi® @. construction of a sharp estimate of
the observation error in the perturbed case) is considered as
an important problem for further research.

. . . Acknowledgements
Fig. 3. Simulation plot of kek for the FT and FX ob-

servers applied to the linearized plant for three different IC ) . . .
x(0) = (0 ;1; ;0);x(0) = 10 %(0; 1; 4 0);x(0) = 10 7(0; 1; 4; 0) This work was partially supported by the project Finite4SoS
andK, =5. (ANR-15-CE23-0007).

P, = 02589 9. are the gain matrices of the FX ob- )
server obtained applying Algorithm 2 with the parameters 8 Appendix

(i 1, 20 )=(0:120:006 15; 1;0:3; 10=3; 0:3). 8.1 Block Decomposition

The comparison results between the FT and FX observersLet the matricedT; be de ned by the following algorithm:
in the noise-free casare depicted in Figure 3. They con- Initialization: A; = A,C; = C, Ty = Iy, m=1.

rm low convergence time sensitivity with respect to initial  Loop: While rank(Cm) < rown(Am) do Tm+1 =( &y C2);
conditions for the FX algorithm; for the FT one it is pos- _ A2 T 2 _ 2. _
sible to see that the convergence time increases drastically*m+1 = Cm AmCn Cm+1 = ChAmCH ’Tm =m+1;
as the norm of the initial conditions increases. The result of whereC? := null( Cp,), € :=null  C2,
simulations are depicted using the Iogarithmic scale in order This simple algorithm can be easily realized in MAT-
to demonstrate fast (hyper-exponential) convergence rate of_ AB and it helps to construct an orthogonal coordi-
the observers. Since locally (close to the origin of the error nate transformation that decomposes the original sys-
system) the FX algorithm almost coincides with the FT one, tem (1) into a block upper diagonal canonical form. If
it has almost the same sensitivity with respect to measure-the pair (A;C) is observable, then the algorithm given
ment noises (see Fig. 4). above stops aftem steps, wherem < n, and the ma-

H —_— I\N2 O IW3 O |w O
tix O = T '§ T 0T, e T, where

. . o . . w; = n rown(T;), is an orthogonal matrix such that
This article presents nite-time and xed-time nonlinearob- 15 - oOT = I, and

servers for MIMO linear systems. Their key features are ho- O AL Ap O . o 1
mogeneity properties and the use of the implicit Lyapunov Az Az A 0
oAoT _% : :

7 Conclusion

function method for stability analysis of the error equation. : S :
The former allows the observers to attain non-asymptotic Ama1 Amaz = AmamaAmam

mi Amz2 I Ampm 1 mm

7 €CO= Cop 0::0



whereCo = CCy, Aj 2 R™ ™, n; :=rank(Ci), i;j =
1;:::;;m andrank(Aji+1) = nj+ . This can be proven, for
example, using ideas of duality and Lemma 3 from [23].

Sincerank(Aij+1) = nix; =rown(Al ;) thenAl .,
Aii+1 is invertible andA’ ,; = (AT L A1) AT, is
the left inverse matrix toA;;+; . Consider now the next
recursive algorithm in the matrix A.
Initialization: Ai[']-"] = A, j=1;2mm
Loop: forq= m;m 1;::;2

forp=0;1;::59 2

forj =1;2,:5q9 p 1

[a-p-1] — A la-pl [g-p] + [a-p]
Aqi - qu Agap Aq-p-l a-p Aq-p-lj
en[d 1] [a] [a] [g-p]
a- — ald q a-p +
Aq-l g-p-17 Aq-l ap1t Aq-l q Agap Aq-p-l a-p
end
end

where the superscrifin] represents thin iteration over the
matrix A. Then it can be shown that the transformation

0y, 0 i 0 o1
_A[Z]A+ | 0 0
22A12 na
- : : : . £o  (18)
[2] + [3] +
Am 12812 Am 13Az3 Fnm 1 0
[21 + [3] + [m] L+
Am2A12 AmaAzz H Amm An g lnm

reduces the original matriX to the block form: A * =

_ _ T
FC+ A, whereny; = K,F = ( All; allsa ™ oAl ) and

0A, 0 0

0 0 Ay 0
C=[ln, O2R™ " A= : : . : K:

00 0 CAm o1m

00 0 0

8.2 Proof of Theorem 13

I. Show that the functio® de ned by (3) satis es the condi-
tions C1-C3 of Theorem 3. It is continuously differentiable
onR: R"nf0g. SinceP > 0 then the inequalities

min (P)kzk? max (P )kzk?
maxf V 2min r,;VZmax rig minf\V2min r‘;VZmax rig
imply that for anyz 2 R"nfOg there existV 2 R.
andV* 2 Ry : Q(V ;2) < 0 < Q(V*;2). More-
over, if Q(V;z) = 0 then, obviously, the conditio€3 of
Theorem 3 holds. Sinc&? = -V12"D, (V1)(HP +
PH,)D,(V?1)z thenH,P + PH, > 0 implies ¢ < 0
for 8V 2 R: andz 2 R"nfOg. So the conditionC4 of
Theorem 3 also holds. Therefore, the equat@{v;z) =0
implicitly de nes a positive de nite Lyapunov function
candidatevV : R" ! R.

Il. Let us denote = kP'Cek=V and show tha 1
if (10d) holds. Let us denote = D,(V71)e Hence,

= kPCek=V = kPCek and ¢ Pe = 1 (due to
Q(V; e = 0). Given (10d) and thaP = X 2, we have
2=e'C"XCe e€'Pe=1.
[ll. Denote by@ Q@ the partial derivative o) along (9):
@0=2€e"D,(V1)PD, (V1) A+D. kPCek! L. C e:

Q(v;2)+1

Taking into account the identitieB(V)V™* = D (V™)
Vv =0@+Hm 1 ), Dr(V'l)AD;l(V'l):V“( m n A and
De(VY)L,, C=V = 7 DYVL)L,, CD, (V1) we de-
rive

= Jr(mi
@Q Vi R ( Iler kwcéek

T .
where = PAE+Lgr O A+l C) P '; . Using the ma-

P
trix inequality (10a) withY = PL.. and the identity
e'D,(V1)PD,(V1)e=1 we estimate

Di (Ve D, (Ve

Ce
( )LFT kP Ce k

@O V=™m o -eTD,(V1)(PH,+H,P)D,(V1)et+
(PCe) 1y T -1 _PCe
kP Cek P LFT ( )Z ( )LFT P kP Cek

Since (10c) is equivalent 8 *LT PL_ Pt | with

P = X 172 and taking into account (10d) and (10f) we derive
@q 2 Dr(VH(PH+HPID (Ve . 1
+(

Finally, applyingVTlhemortla)m 3 we nish the proof.

W m 10 @Q.
@V’

8.3 Proof of Proposition 15

DenoteW ( )=2z" ( )Z ( )z.Since { )=1( ),
He) He thenW)=2T( A)Z ( )+ ( )Z A )z=
T 1 1

T HF)_ZHTZZ(IH He)-2ie () 2 2TMz
and due to (11c) and the Schur complement we have
WY) -z™MzandW() W(g) 3(2 ¢)z'Mz
forany 2 [g 1;g], i = 1;::;N. Hence, the set of
inequalities (11) imply (10f).

8.4 Proof of Theorem 16

[. The functionQ; de ned by (3) withr = rj;i =1;2
satis es the condition€1-C4 of Theorem 3 (see proof of
Theorem 13). Note th&;(1;z) = Q2(1;z) forallz2 R".

In order to complete the proof we need to show that the
conditionsC7-C8 of Theorem 4 hold.

II. LetP; = ;P with P = X172, In Subsection 8.2, it was
shownthaD ;= XEEek 1 \with Q(V: € = 0 if (14e)
holds. The same result remains true @rV;e =0.

lll. Let @Q be the derivative 0Q; along the equation,(13)

1
2 +Dr( 2 lv)l

z

D
@G = 2e'Dy,(VYHYPD, (VD) A+ 1 3 Ly C &
kPCek Qi ST R D'
1= . SinceDy, ( )= G{m '1> Dr , > otlhen
) | Dy, (V1e Dr; (Ve

(1
@F=VvImm O

. Ce . Ce
i (O )bex kP Ce k i ()bex kP Ce k

- ( 1 2)' where - P(A+ LF>< C)+( A+ LF>< C)TP P :

P 0
> =V22 (0;1]if i =1 and , = 1=V? 2 (0;1]
if i = 2. Repeating the considerations of the proof
of Theorem 13 we derive that (14) impl@Q®

€D, (Y)(PHi+HP)D,,(d)e: Taking into

_V T+(m 1)

account®UY®) =_v-1eT D, (VI)(H;P+PH;)D, (Ve
and LMI (?4d) we derive that all conditions of Theorem

4 hold, so the error equation (13) is xed-time stable and
T 1+(m 1)
max T g5



8.5 Proof of Proposition 17

l. Consider the functionW;( ) = z' ;()Zi ( )z;
wherez 2 R" is an arbitrary non-trivial vector. Sincg%1 =

%i()"'% Dr 2 1= 5 2 D.,g Ll=(1 1) Hes=
L ()(In HO+De(2 1= 5 ®)He+ He then
QW — ,T@ T @, _

O @711— Z@Z iZ+ Z iZ@Z— 1
i) Tzz» HeZ, ZiH i)
22i Hefi 2ife 7iH, -ZiHe
'@, 25 A HoZ; o o @ 23Az
|2 -HeZ; 0 0 IZ
Using the inequality (15c) we derivé™ -1 ()

12" Sz, where () = Z'De(+4)MiDr 4+ z
On the other hand, the inequalitylziHF + H.;Mi2 > 0
implies the estimate @‘(1) > 0;@@‘7(2) 0. Hence
we conclude@—"f - 1Z"De( 2)MiD( )z 1Z27Siz
for 2 [0;1] [0;1] and Wi()  Wi(g; 2) +
2 2
22T (De( 2)MDe( 2) + S)zforall 12[q 1:g].

i+l

I Since ()= (D+4De Y De( ) with ~=
( 1;0), then we derive the identityV;( ) = z"Bi( 1)T
T

Fi( 2)Bi( 1)z, where Fi( ) = P2z Prl2)
SADr (13 ) "

\(_-)

has the derivativef— =
: DFE) 2) IOn Bi(g)z ;

and Bi( 1) =

(2) =In( 2W). Since
_1 W+ZTBi(q)T DFE) 2) 0

2W In

= HeZi+ZiHe HeZ; i . 00
where ; = 7 H, o' . Since ; + gy 0
due to (15a) theng— L+ ce (2 with ¢ =

z' (DU (Mz.HenceW ()  W( 1;ps)*+cin(ps )
W( 1;ps) + cln(p:’—sl) forall > 2 [ps 1;ps]. There-

fore, LMIs (15a-15d) implyW ( ) 1zTPz for all

2 [0;1] [po;1]- Finally, it is easy to check that;( )
W() = 27B( 1T Pr(2ZPrl 2 Dl Z)Z‘+ZiDO,.( .

Bi( 1)z. Since ZiH.+ H.Z; 0 then % 0 and

W() W( 1;p0) for all , 2 [0;po]. Therefore,

the inequality (15e) impliesw ( ) 1z2TPz for all
2[0;1] [0; po]:

8.6 Proof of Corollary 18

Denote f{e;d) the right-hand side of (16), wherd =
(dy;dy). Ford =

with degree Tm T

D:( )AD,( )= "=m 5 AandCD,( )e=

derive ™m0 D, 1( )(A+ Dﬁ(m

"*Cewe

ics (9) isr-homogeneous of degree= - . Select-

9, we conclude ISS for system (16) for2 (0;1). If =1
thenrmin =0 and only iISS can be asserted for (16).

1+(m 1)

8.7 Proof of Corollary 19

Denote f{e; d) the right-hand side of (17), wherd =

(dx;dy). Ford = 0 it de nes a vector eldf () = f{;0)
that is locally homogeneous & and at+1 , namely,

Let us denote

0 it coincides with the right-hand
side of (9) and de nes arr-homogeneous vector eld
< 0. Taking into account that

)LFT C)DI‘ ( )e
= (A+ De(kPCek L., C)e, therefore the error dynam-

1,) 2 R**" and using Theorem

(r1;0;fp)-homogeneous with negative degregy =
T D and(rp;+1 ;f; )-homogeneous with positive

degree ;

= meg- fo=(A+ LD.(kP1Cek )L, C)e

andf; =(A+ iD.(kP,Cek)L,, C)e.

-1

Indeed]imo B D;Ji( )[DF(kP1CDr1( ek );D,.(kF’ZCD,l( Yek)
0:

L., CDr,()e+ ADr()e]  (Ae + ;Dr(kPiCek?)

L, Ce) =0 for = -5~ < 0 so ther-

homogeneous approximation of degrearoundO of (13)

is fo. Analogously it can be shown thdt

is thero-

homogeneous approximation of (13) with degree =

1+(m 1)

> Qat+ 1 . Itis worth stressing that if all the con-

ditions of Theorem 16 hold, then the origins®& fy(€),
e= f(e) ande = f; (e) are globally asymptotically stable.

Hence, selecting® = (1y;r1

rl

e 4n) 2 R*M and

= (1 ra+ 1,) 2 R¥*" ‘and using Theorem

1+(m 1)

10 we derive that the system (17) is ISS.
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