Learning Embeddings to lexicalise RDF Properties - Archive ouverte HAL Access content directly
Conference Papers Year : 2016

Learning Embeddings to lexicalise RDF Properties


A difficult task when generating text from knowledge bases (KB) consists in finding appropriate lexicalisations for KB symbols. We present an approach for lexicalis-ing knowledge base relations and apply it to DBPedia data. Our model learns low-dimensional embeddings of words and RDF resources and uses these representations to score RDF properties against candidate lexicalisations. Training our model using (i) pairs of RDF triples and automatically generated verbalisations of these triples and (ii) pairs of paraphrases extracted from various resources, yields competitive results on DBPedia data.
Fichier principal
Vignette du fichier
starsem2016.pdf (122.63 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-01623812 , version 1 (25-10-2017)



Laura Perez-Beltrachini, Claire Gardent. Learning Embeddings to lexicalise RDF Properties. *SEM 2016,. The Fifth Joint Conference on Lexical and Computational Semantics., Aug 2016, Berlin, Germany. pp.219 - 228, ⟨10.18653/v1/S16-2027⟩. ⟨hal-01623812⟩
115 View
103 Download



Gmail Facebook Twitter LinkedIn More