Magnetic moment estimation and bounded extremal problems

Abstract : We consider the inverse problem in magnetostatics for recovering the moment of a planar magnetization from measurements of the normal component of the magnetic field at a distance from the support. Such issues arise in studies of magnetic material in general and in paleomagnetism in particular. Assuming the magnetization is a measure with L^2-density, we construct linear forms to be applied on the data in order to estimate the moment. These forms are obtained as solutions to certain extremal problems in Sobolev classes of functions, and their computation reduces to solving an elliptic differential-integral equation, for which synthetic numerical experiments are presented.
Type de document :
Article dans une revue
Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2019, 13 (1), pp.29
Liste complète des métadonnées

https://hal.inria.fr/hal-01623991
Contributeur : Sylvain Chevillard <>
Soumis le : lundi 10 décembre 2018 - 14:19:12
Dernière modification le : mercredi 12 décembre 2018 - 01:15:04

Fichier

BEP-moments.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01623991, version 2

Citation

Laurent Baratchart, Sylvain Chevillard, Douglas Hardin, Juliette Leblond, Eduardo Lima, et al.. Magnetic moment estimation and bounded extremal problems. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2019, 13 (1), pp.29. 〈hal-01623991v2〉

Partager

Métriques

Consultations de la notice

44

Téléchargements de fichiers

41