Magnetic moment estimation and bounded extremal problems

Abstract : We consider the inverse problem in magnetostatics for recovering the moment of a planar magnetization from measurements of the normal component of the magnetic field at a distance from the support. Such issues arise in studies of magnetic material in general and in paleomagnetism in particular. Assuming the magnetization is a measure with L 2-density, we construct linear forms to be applied on the data in order to estimate the moment. These forms are obtained as solutions to certain extremal problems in Sobolev classes of functions, and their computation reduces to solving an elliptic differential-integral equation, for which synthetic numerical experiments are presented.
Type de document :
Pré-publication, Document de travail
Soumis pour publication dans "Inverse problems and imaging". 2017
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger
Contributeur : Laurent Baratchart <>
Soumis le : jeudi 26 octobre 2017 - 01:00:36
Dernière modification le : jeudi 26 avril 2018 - 20:38:11
Document(s) archivé(s) le : samedi 27 janvier 2018 - 12:32:41


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01623991, version 1


Laurent Baratchart, Sylvain Chevillard, Douglas Hardin, Juliette Leblond, Eduardo Andrade Lima, et al.. Magnetic moment estimation and bounded extremal problems. Soumis pour publication dans "Inverse problems and imaging". 2017. 〈hal-01623991〉



Consultations de la notice


Téléchargements de fichiers