Introducing Dynamic Adaptation in High Performance Real-Time Computing Platforms for Sensors

Abstract : In high-end, data-intensive embedded sensor applications (radar, optronics), the evolution of algorithms is limited by the computation platform capabilities. These platforms impose Size, Weight and Power (SWaP) restrictions on top of reliability, cost, security and (potentially hard) real-time constraints. Thus mostly static mapping methods are used, negating the system's adaptation capabilities. Through the study of several industrial use-cases, our work aims at mitigating the aforementioned limitations by introducing a low-latency dynamic resource management system derived from techniques used in large-scale systems such as cloud and grid environments. We expect that this approach will be able to guarantee non-functional properties of applications and provide Quality of Service (QoS) negotiation on heterogeneous platforms.
Type de document :
Poster
ANDARE 2017 - 1st Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems, Sep 2017, Portland, OR, United States
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01624262
Contributeur : Baptiste Goupille--Lescar <>
Soumis le : jeudi 26 octobre 2017 - 10:27:59
Dernière modification le : mercredi 16 mai 2018 - 11:24:13
Document(s) archivé(s) le : samedi 27 janvier 2018 - 12:52:18

Fichier

ANDARE-2017_GoupilleLescar.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01624262, version 1

Citation

Baptiste Goupille-Lescar, Eric Lenormand, Christine Morin, Nikos Parlavantzas. Introducing Dynamic Adaptation in High Performance Real-Time Computing Platforms for Sensors. ANDARE 2017 - 1st Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems, Sep 2017, Portland, OR, United States. 〈hal-01624262〉

Partager

Métriques

Consultations de la notice

379

Téléchargements de fichiers

108