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Abstract—We provide the first machine-checked proof of
privacy-related properties (including ballot privacy) for an
electronic voting protocol in the computational model. We
target the popular Helios family of voting protocols, for which
we identify appropriate levels of abstractions to allow the
simplification and convenient reuse of proof steps across many
variations of the voting scheme. The resulting framework
enables machine-checked security proofs for several hundred
variants of Helios and should serve as a stepping stone for the
analysis of further variations of the scheme.

In addition, we highlight some of the lessons learned re-
garding the gap between pen-and-paper and machine-checked
proofs, and report on the experience with formalizing the
security of protocols at this scale.

1. Introduction

Ensuring accuracy and security of electronic elections
is a challenge that goes far beyond the scope of safety
and security as traditionally considered in computer science.
Nevertheless, previous audits of voting systems [40], [42]
suggest that many of the most mundane issues could be
prevented by using open source and formally verified im-
plementations. However, the formal verification of voting
systems down to deployed software is particularly challeng-
ing, for several reasons. First, defining security properties
for voting systems remains an active topic of investigation
[13], [22]; moreover, many definitions are expressed in
a simulation-based style whereas most efforts to formally
verify cryptographic constructions (with a few notable ex-
ceptions such as [4]) focus on the game-based style. Second,
“real-world” adversary models for electronic voting would
need to consider adversarial models that go beyond the usual
view of provable security, and account for the possibility
that the voting system might be backdoored or run in cor-
rupted environments. Third, protocols often have multiple
variants, with subtle but theoretically significant differences
in their security analysis. Last, electronic voting systems are
∗Now at Google Inc.

distributed, with multiple implementations of voting clients,
introducing additional complexity for reasoning about their
implementations. Taken together, these challenges make
end-to-end formal verification of voting systems out of reach
of current technology.

Scope of work. We provide the first machine-checked
computational proofs of privacy properties for Helios [2],
[26], an emblematic voting protocol that has received sig-
nificant analysis and has also been used in several elections.
Our proofs establish ballot privacy and related properties
introduced in [13] on algorithmic descriptions of a broad
family of Helios variants. The proofs1 are built using Easy-
Crypt [8], [9], an interactive proof assistant focused on con-
structing proofs of computational security for cryptographic
constructions.

Technical contributions. Using EasyCrypt, we develop a
machine-checked framework for proving ballot privacy for
a broad class of voting protocols from the Helios family.
In order to manage the complexity of the proof and to
accommodate the large number of instances of the protocol
we consider (a few hundred), we factor out the proof in
several steps:

We first introduce Labelled-MiniVoting, a core voting
protocol that enhances the MiniVoting protocol defined
in [14] with labels. The construction relies on an arbitrary
labelled public-key encryption scheme (used to encrypt the
votes) and an abstract proof system used by the tallying
authorities to show the validity of the election result. The
addition of labels is essential to instantiate our scheme
more broadly. We formalize Labelled-MiniVoting and build
a machine-checked proof that it achieves ballot privacy, as
well as strong consistency and strong correctness, as defined
in [13]. Informally, these properties respectively capture
the idea that voting is anonymous, that tallying does not
leak any information, and that honestly created ballots are
always considered valid. The proofs are carried out un-
der the assumptions that the underlying encryption scheme

1. https://github.com/catalindragan/minivoting-privacy.
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achieves (an adaptation to the case of labelled schemes of)
IND-1-CCA security, and that the underlying proof system
satisfies zero-knowledge and voting friendliness (a property
that we introduce and which captures simple requirement
for an abstract proof system to be compatible with ballot
privacy).

We then carry out the proofs of these three properties
(ballot privacy, strong correctness and strong consistency)
through to a partial instantiation of Labelled-MiniVoting,
called PreHelios, in which the labelled public-key encryp-
tion scheme is specified as the composition of a public-key
encryption scheme and of a proof system (as in Helios). The
machine-checked proofs of privacy for PreHelios simply
follow from the generic theorems on Labelled-MiniVoting.
We introduce two broad families of Helios variants:
Helios-mix, a mixnet-based variant that refines PreHelios by

instantiating the counting function to reveal the multiset
of votes and tallying using a secure mixnet, and

Helios-hom, a homomorphic variant that refines PreHelios
by instantiating the counting function to be the sum of
all votes, and tallying by homomorphically computing
the sum before decrypting the final result.

In both cases, carrying the results obtained on PreHelios
down to the relevant variant is not done using a direct
instantiation, but requires in-depth changes to the tallying
algorithm. This refactoring is supported by machine-checked
proofs of black-box equivalence between the tallying algo-
rithms of PreHelios and its variants (under suitable assump-
tions). One main advantage of our proof framework is its
modularity, which allows us to easily replace one compo-
nent of the scheme (here, the tallying algorithm) with an
equivalent one, without having to reprove the entire scheme.
We use the same proof technique to derive the security
of Helios-hom-IDweed, a variant of Helios-hom where the
weeding of invalid ballots performed before tallying–an im-
portant process, often overlooked, that may lead to privacy
breaches [24]–is made lighter without loss of security. This
yields a machine-checked proof of ballot privacy, strong
consistency and strong correctness for Helios-mix, Helios-
hom, and Helios-hom-IDweed.

Finally, we derive specifications and machine-checked
proofs of privacy for large families of secure variants of He-
lios from Helios-mix, Helios-hom, and Helios-hom-IDweed.
The proofs are obtained by further instantiating our earlier
results and discharging all additional hypotheses introduced
by our abstractions. More precisely, we provide a simple
design interface, that allows the user to select various pa-
rameters (for example, the counting function, or the function
that selects information about the ballot to be published on
the bulletin board). The resulting voting scheme can then be
automatically generated and proved secure in EasyCrypt.
In total, we prove the security of more than 500 variants
of Helios. In particular, we retrieve existing implemented
variants of Helios such as Helios-v3-mix, Helios-v3-hom,
and Helios-v4.

Related work. Automatic proofs of privacy for voting
protocols have been provided for some protocols of the

literature such as FOO [27], Helios [24], or the Norwegian e-
voting protocol [25]. However, these proofs are conducted in
symbolic models, which are considerably more abstract than
cryptographic models. Moreover, the use of automatic tools
(such as ProVerif [17]) often requires significant simplifica-
tions of both the protocol and the underlying cryptographic
primitives (for example, the ballot box may only accept bal-
lots in a certain order). Helios has also been proved private
in rF∗ [20], still assuming perfect cryptographic primitives
(the adversary may only call the primitives through an
abstract, ideal library). We are not aware of any machine-
checked proof of voting schemes in cryptographic models,
assuming standard cryptographic primitives. While pen-and-
paper proofs for Helios exist [13], [14], we emphasize
that our work is not a simple translation of those proofs
into the EasyCrypt language. First, many crucial details
that are typically omitted in hand proofs (for example, a
careful treatment of the random oracles) had to be filled-
in. More importantly, our formalization considerably gen-
eralizes existing proofs, providing machine-checked proofs
for hundreds of variants of Helios. This would have been
impossible to achieve with pen-and-paper, and with the same
degree of confidence.

A note on concrete vs asymptotic security. EasyCrypt
adheres to the principles of practice-oriented provable se-
curity, and our formal proofs always state concrete bounds
on adversarial advantages. For simplicity, we place most
of the discussion below in an asymptotic context. For pre-
cision, we give concrete statements for our main security
theorems. These are backed up by the formal EasyCrypt de-
velopment, available from https://github.com/catalindragan/
minivoting-privacy.

2. Voting

We first introduce some basic cryptographic primitives,
used in the voting schemes we consider. We then recall
useful security notions for voting systems (ballot privacy,
strong consistency and strong correctness) [13], and state
our main result.

2.1. Building blocks

We present the cryptographic building blocks used in
voting systems. Our presentation is based on two primitives
and their associated security notions: labelled public-key
encryption schemes and non-interactive proof systems. All
of our models and proofs are set in the random oracle model,
which we recall first.
RANDOM ORACLE MODEL. The random oracle model is a
model for hash functions: to compute the value of the hash
function on a point, any party can invoke an oracle O that
implements a truly random function from some domain D
to some range C. One way to think about this oracle is
that O maintains a table T , initially empty. Whenever an
algorithm calls O(d) for some d ∈ D, O checks if there

https://github.com/catalindragan/minivoting-privacy
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Exppoly-ind1cca,β
B,E,n (λ)

1 : encL← [ ]

2 : (pk, sk)← KGen(1λ)

3 : β′ ← BOc,Od(1λ, pk)

4 : return β′

Oracle Oc(p0, p1, `)

1 : c← ⊥
2 : if |encL| < n then

3 : c← Enc(pk, `, pβ)

4 : encL← encL + [(c, `)]

5 : return c

Oracle Od(cL)

1 : mL← [ ]

2 : for (c, `) in cL do

3 : if (c, `) /∈ encL then

4 : mL← mL+ [Dec(sk, `, c)]

5 : else mL← mL+ [⊥]

6 : return mL

Figure 1. In Exppoly-ind1cca,β
B,E,n , the adversary B has access to the set of oracles {Oc,Od}. The adversary is allowed to call the Od oracle at most once.

exists an entry (d, c) in T and, if so, it returns c; otherwise
O randomly generates a value c′ ∈ C, adds (d, c′) to T , and
outputs c′.

Strictly speaking, in the random oracle model all al-
gorithms are given oracle access to O; to avoid cluttered
notations, we choose to not explicitly show this dependency,
but we emphasize it whenever appropriate.

In particular, the presence of random oracles has a
significant impact on the difficulty of the EasyCrypt formal-
ization. We discuss this and associated insights in Section 5.
LABELLED PUBLIC-KEY ENCRYPTION SCHEME. The no-
tion of labelled public-key encryption scheme extends the
classical definition of a public-key encryption scheme by
including a tag, called a label [35], [38], [39]. Essentially,
the tag is data that is non-malleably attached to the cipher-
text and can be used, for example, by whoever encrypts to
specify the context in which the ciphertext is to be used.
In particular, decryption using the incorrect label should
not reveal any information about the original plaintext.
Formally, a labelled public-key encryption scheme is defined
as follows.

Definition 1. A labelled public-key encryption scheme with
public keys in PK, secret keys in SK, plaintexts in M,
ciphertexts in C, and labels in L, is a triple of algorithms
E = (KGen,Enc,Dec) where:
KGen is a randomized algorithm which on input a security

parameter λ, produces a key pair in PK× SK;
Enc is a randomized algorithm which on input a public key

in PK, a label in L and a plaintext in M outputs a
ciphertext in C;

Dec is a deterministic algorithm which on input a secret
key in SK, a label in L and a ciphertext in C outputs
an element in M⊥, that is either a plaintext in M or a
special error symbol ⊥.

We demand that for any (pk, sk) output by KGen, any label
` ∈ L and any message m ∈ M⊥, if C ← Enc(pk, `,m)
then Dec(sk, `, C) = m.

We note that if the label is fixed or is empty, labelled
public-key encryption scheme reduces to the standard notion
of public-key encryption.

Encryption schemes used in electronic voting proto-
cols are often required to be homomorphic, allowing some
limited forms of computation on encrypted data without
decrypting it (for example, homomorphic tallying).

Definition 2. A homomorphic public-key encryption scheme
is a public-key encryption scheme E together with a deter-
ministic algorithm Add where the space of plaintexts can
be equipped with a commutative monoid structure (M, 0,+)
such that

Dec(sk,Add(cL)) =

|cL|∑
i=1

Dec(sk, cL[i]),

for any list of ciphertext cL, and any secret key sk.

That is, addition of ciphertexts has as effect addition
on the underlying plaintexts. There are multiple security
definitions for encryption schemes. The security of the pro-
tocols we consider in this paper relies on indistinguishability
under chosen-ciphertext attack with one parallel decryption
query (IND-1-CCA) [12] of the underlying labelled public-
key encryption scheme. Intuitively, IND-1-CCA requires that
no adversary can distinguish between encryptions of two
messages of the same length with probability significantly
greater than 1/2, even if provided with a one-time access
to a batch decryption oracle.

A related, apparently stronger notion considers a multi-
challenge version (where the adversary sees polynomially
many challenge queries). We write poly-IND-1-CCA for this
latter security notion.

These notions are formalized by the experiment
Exppoly-ind1cca,β
B,E,n defined in Figure 1. The experiment consid-

ers an adversary B with at most n access to the challenge
oracle Oc (that encrypts the left message if β = 0 and
the right message if β = 1) and one-time access to the
decryption oracle Od defined using the encryption scheme E .

The advantage of the poly-IND-1-CCA adversary B over
the scheme E is defined as:

Advpoly-ind1cca
B,E,n (λ) =∣∣∣Pr

[
Exppoly-ind1cca,0
B,E,n (λ) = 1

]
− Pr

[
Exppoly-ind1cca,1
B,E,n (λ) = 1

]∣∣∣ .
We say that a labelled public-key encryption scheme E is
n-challenge poly-IND-1-CCA-secure if Advpoly-ind1cca

B,E,1 (λ) is
negligible (as a function of λ) for all p.p.t. B. Note that
Advpoly-ind1cca

B,E,1 (λ) is essentially the advantage for the single-
challenge IND-1-CCA notion. The following lemma estab-
lishes, by a standard hybrid argument, that multi-challenge
security is asymptotically the same as single challenge se-
curity.



Lemma 1. A labelled public-key encryption scheme E
is IND-1-CCA-secure if and only if it is n-challenge
poly-IND-1-CCA-secure for some polynomially bounded n.
Specifically, for any polynomially bounded adversary A
there exists a polynomially bounded adversary B such that
for any n and any λ the following statement holds:

Advpoly-ind1cca
B,E,1 (λ) =

1

n
· Advpoly-ind1cca

A,E,n (λ).

For example, El Gamal is a homomorphic encryption
scheme, which, together with a proof of knowledge of the
randomness used for the encryption, has been shown to be
IND-1-CCA-secure [15]. Interestingly, in Helios which uses
this scheme, the proof of knowledge is primarily used to
ensure that the voter encrypts a valid vote, yet this proof
also protects the ciphertext from being modified. Notice that
ciphertexts still have an El Gamal component, which can be
used to homomorphically calculate over plaintexts.
PROOF SYSTEMS. Proof systems are a useful tool to ensure
that certain operations have been performed correctly. The
formalization starts with a relation R ⊆ X ×W where the
elements of X are called statements and those of W are
called witnesses.2 For example, in Helios, a typical relation
is that the ciphertext (the statement) corresponds to the en-
cryption of 0 or 1. One can use as a witness the randomness
used to form the ciphertext. A proof system consists of a
prover and a verifier algorithm which work on a common
input x ∈ X; the prover has an additional input w ∈ W. In
a non-interactive proof systems (as those considered in this
paper) the prover uses its inputs to compute a proof π ∈ PR
and sends it to the verifier who then takes a binary decision.
More formally:

Definition 3. A non-interactive proof system for relation R
is a pair of efficient algorithms Σ = (P,V). P has as input
a statement in X and a witness in W, and produces a proof
π ∈ PR; V takes as input a statement in X and a proof in
PR, and produces an output in {0, 1}. For clarity, we write
ΣR for a proof system for relation R.

Useful proof systems need to satisfy three properties,
soundness, completeness, and zero-knowledge. Here we
only recall the latter two, as soundness has no bearing on
vote privacy.

A proof system is said to be complete, if the prover
can produce a valid proof whenever the statement holds.
Formally, if for any (x,w) ∈ R, if π is a proof output by
P(x,w) then V(x, π) returns true with probability 1.

A proof system ΣR is zero-knowledge, if the proof
does not leak any information besides the fact that the
relation is valid. This is usually formalized by demanding
the existence of a p.p.t. simulator S that produces valid-
looking proofs for any statement x ∈ X without access to
a corresponding witness. More formally, consider the zero-
knowledge adversary B in the following experiments:

2. In typical instantiations R is an NP-relation.

Expzk,0
B,P,R(λ)

1 : (x,w, state)← B(1λ)

2 : π ← ⊥
3 : if (R(x,w)) then

4 : π ← P(x,w)

5 : β′ ← B(state, π)

6 : return β′

Expzk,1
B,S,R(λ)

1 : (x,w, state)← B(1λ)

2 : π ← ⊥
3 : if (R(x,w)) then

4 : π ← S(x)

5 : β′ ← B(state, π)

6 : return β′

The advantage of a zero-knowledge adversary B over
the proof system ΣR = (P,V), and simulator S is defined
as:

AdvzkB,P,S,R(λ) =∣∣∣Pr
[
Expzk,0B,P,R(λ) = 1

]
− Pr

[
Expzk,1B,S,R(λ) = 1

]∣∣∣ .
Recall that we work in the random oracle model. Here,

the simulator has the additional capability (or responsibility)
of answering any calls the adversary makes to random
oracles used in the proof system. To keep notation simple
we do not show this dependence in the above formalization
but, of course, we account for it in our proofs.

2.2. Vote privacy in single-pass voting schemes

In this section we recall the syntax and security prop-
erties of single-pass voting schemes, the class of schemes
that we treat in this paper. First we recall their syntax and
then give an overview of their desired properties related to
vote privacy. A single-pass voting system [13] is a tuple of
algorithms

V =
(
Setup, Vote, Valid, Publish, Tally, Verify

)
.

Setup(1λ,m): Returns a pair of keys (pk, sk), and creates
a map uL that assigns m voter identities to their asso-
ciated labels.

Vote(id, `, v, pk): Constructs a ballot b that voter id uses to
cast their vote v, with label `.

Valid(BB, uL, b, pk): Checks the validity of ballot b with
respect to the ballot box BB and the label mapping uL.

Publish(BB): Returns the public view pbb of BB called the
public bulletin board; for example, the public bulletin
board can contain the whole content of the ballot box,
only the labels involved in ballots, or no information
at all.

Tally(BB, sk): Computes the result r of the election and a
proof Π of correct computation from BB.

Verify((pk, pbb, r),Π): Checks that Π is a valid proof of
correct computation for result r and public ballot
box pbb.

In this section we recall several properties of single-pass
voting schemes. We start with ballot privacy, the key security
guarantee that these schemes need to satisfy.
BALLOT PRIVACY PROPERTY. A voting scheme V ensures
ballot privacy [13] (BPRIV, for short) if the ballots them-
selves do not reveal any information about the votes that
were cast. This holds even for adversaries that can cast



Expbpriv,βA,V,Sim(λ,m)

1 : BB0,BB1 ← [ ]

2 : (pk, sk, uL)← Setup(1λ,m)

3 : β′ ← AO(1λ, pk, uL)

4 : return β′

Oracle Ocast(b)

1 : if
(
Valid(BBβ , uL, b, pk)

)
then

2 : BB0 ← BB0 + [b]; BB1 ← BB1 + [b]

Oracle Oboard()

1 : return Publish(BBβ)

Oracle Otally() for β = 0

1 : (r,Π)← Tally(BB0, sk)

2 :

3 : return (r,Π)

Oracle Otally() for β = 1

1 : (r,Π)← Tally(BB0, sk)

2 : Π′ ← Sim(pk,Publish(BB1), r)

3 : return (r,Π′)

Oracle Ovote(id, v0, v1)

1 : `← uL[id]

2 : if
(
` 6= ⊥

)
then

3 : b0 ← Vote(id, v0, `, pk); b1 ← Vote(id, v1, `, pk)

4 : if
(
Valid(BBβ , uL, bβ , pk)

)
then

5 : BB0 ← BB0 + [b0]; BB1 ← BB1 + [b1]

Figure 2. In the experiments Expbpriv,βA,V , the adversary A has access to the set of oracles O = {Ocast,Ovote,Otally, Oboard}. The adversary is
allowed to call the Otally oracle at most once.

arbitrary ballots in the voting process. This idea is formal-
ized via a game-based definition, that uses the experiment
in Figure 2. The goal of the adversary is to distinguish
between two worlds. In the process, the adversary chooses
votes to be submitted by honest voters, and may submit
ballots on behalf of the corrupt users. The adversary gets
access to the bulletin board corresponding to the real world
(β = 0) or the ideal world (β = 1), where fake votes are
submitted by honest parties. The adversary always learns
the real result, that is, the tally is always performed on BB0.
The result comes with the real proof of validity if β = 0
or a fake proofs when β = 1. This fake proof is created by
an efficient simulator (who only has access to the visible
part of the board). The adversary is expected to determine
if it was playing with β = 0 or β = 1. Security demands
that no adversary can tell the difference between the two
world: so the board leaks no information about the content
of the ballots, and neither does the proof that accompanies
the result.

We capture the adversarial abilities using the formal def-
initions of oracles in Figure 2. We provide below informal
descriptions of what these abilities represent.

Ovote : Receives two potential votes (v0, v1) for voter id.
Then, using the label ` assigned to id (if such a label
exists) it creates ballots b0 from v0 and b1 from v1. If
ballot bβ is valid with respect to board BBβ , then b0 is
added to BB0 and b1 is added to BB1;

Ocast : Lets the adversary cast a ballot on behalf of a
corrupted voter;

Oboard : Limits the adversary’s view of the bulletin board
to its public version, given by the Publish algorithm.
This public version of the board can vary very broadly,
with the following variants–among others–being used
in practice: the exact board, publish only the ciphertexts
from the ballots, or the empty set.

Otally : Computes the result on board BB0, and produces
the proof of correct computation using the output of

the tally algorithm for β = 0 or the proving simulator
Sim for β = 1.

Definition 4 (Ballot Privacy [13]). A voting scheme V has
ballot privacy if there exists a simulator Sim such that no
efficient adversary A can distinguish between the games
Expbpriv,0A,V,Sim(λ,m) and Expbpriv,1A,V,Sim(λ,m) defined in Figure 2.
That is, the expression

AdvbprivA,V,S(λ,m) =∣∣∣Pr
[
Expbpriv,0A,V,Sim(λ,m) = 1

]
− Pr

[
Expbpriv,1A,V,Sim(λ,m) = 1

]∣∣∣
is negligible in λ, for any m ∈ N.

Intuitively, ballot privacy captures potential privacy
breaches that may occur during the voting process. The
notion does not account however for breaches that may
occur during the tally procedure. It turns out that privacy
of the tally phase can be enforced by demanding two ad-
ditional security properties: strong correctness and strong
consistency, as introduced in [13]. Together with ballot
privacy, these two additional properties imply simulation-
based notions of vote privacy [13].
STRONG CONSISTENCY. A voting scheme V is called
strongly consistent [13], if the scheme ensures that its Tally
algorithm behaves "as expected", i.e. it returns the result
of applying the result function ρ to the votes underlying
the (valid) ballots that are stored on a bulletin board. The
following definition adapts the one of Bernhard et al. [13] to
the slightly more general syntax that we adopt in this paper.

Definition 5 (Strong Consistency [13]). A voting scheme V
is strongly consistent if there exists:
• An extraction algorithm Extract((id, `, c), sk) that

takes as input a secret key sk and a ballot (id, `, c), and
outputs the id with either a vote in Vo or the special error
symbol ⊥; and
• A ballot validation algorithm ValidInd((id, `, c), pk)

that returns true iff the ballot (id, `, c) is “well-formed” with



respect to some notion of well-formedness determined in
advance by the election.
These algorithms must satisfy the following conditions:

1) For any (pk, sk, uL) obtained from Setup(λ,m), and
any (id, `, v) if b ← Vote(id, v, `, pk) then Extract(b, sk)
returns (id, v) with overwhelming probability.

2) For any adversarially produced (BB, b), if
Valid(BB, uL, b, pk) returns true, then ValidInd(b, pk)
returns true as well.

3) For any adversary B that returns a ballot box with
ballots that satisfy ValidInd, the experiment Expconsis

B,V (λ,m)
specified in Figure 3 returns true with a probability negligi-
ble in the security parameter.

Expconsis
B,V (λ,m)

1 : (pk, sk, uL)← Setup(1λ,m)

2 : BB← B(1λ, pk, uL)

3 : (r,Π)← Tally(BB, sk)

4 : for i in 1..|BB| do
5 : dbb[i]← Extract(BB[i], sk)

6 : r′ ← ρ(dbb)

7 : return (r 6= r′)

Figure 3. The Strong Consistency experiment

STRONG CORRECTNESS. This property requires that hon-
estly created ballots will not be rejected by the validation
algorithm; we demand that this property holds even with
respect to an arbitrary ballot box chosen adversarially.

Definition 6 (Strong Correctness [13]). A voting scheme V
is strongly correct if the advantage of any efficient adversary
B, defined by Acorr

B,V(λ,m) = Pr[ExpcorrB,V(λ,m) = 1] (where
ExpcorrB,V(λ,m) is defined in Figure 5) is negligible as a
function of λ.

Expcorr
B,V(λ,m)

1 : (pk, sk, uL)← Setup(1λ,m)

2 : (id, v,BB)← B(1λ, uL, pk)

3 : ` = uL.[id]

4 : ev ← true

5 : if
(
` 6= ⊥) then

6 : b← Vote(id, v, `, pk)

7 : ev ← Valid(BB, uL, b, pk)

8 : return ¬ev

Figure 5. The Strong Correctness experiment

3. Labelled-MiniVoting

The MiniVoting scheme was introduced by Bernhard et
al. [14] as an abstraction that captures several constructions

in the literature. The key feature of this scheme is that
it can be used to reason about the privacy properties of
schemes in this class only from minimal assumptions on
the cryptographic primitives.

In this paper we refine the scheme in two different ways.
First, we enlarge the class of schemes that the scheme covers
by introducing labels – public information associated to
users, yielding the Labelled-MiniVoting scheme. Labels can
be used to represent arbitrary information such as user’s
pseudonyms or their public verification keys. Second, since
we attempt to carry out most of the proofs at the highest
possible level of abstraction, we introduce some additional
conditions on the algorithms in the definition of single-pass
voting schemes. In particular, we demand that the algorithms
that comprise the voting scheme are defined in terms of the
following (abstract) algorithms, functions, and relations:
ValidInd(b, pk): Evaluates ballot b with respect to public

key pk, and determines if the ballot is valid in isolation.
Flabel(id): Returns the label associated to an identity id.
ρ((idi, vi)i): Computes the election’s result from a list of

identities and votes.
R
(
(pk, pbb, r), (sk,BB)

)
: The relation enforced by the

proof system. Instantiating the relation in different
ways allows us to deal both with verifiable or non-
verifiable voting schemes.

Usually, ρ is defined as ρ(L) = Count ◦ Policy(L) for two
algorithms Count and Policy. Policy(L) filters the list L and
selects which vote is counted for each voter in case multiple
votes appear on the bulletin board. Count(L) computes the
result from the filtered list of votes and may be probabilistic.

The following definition presents our generalization of
the MiniVoting scheme, as a particular case of a single-pass
voting scheme.

Definition 7. Let E be a labelled public-key encryption
scheme, and ΣR = (P,V) be a proof system. Given
algorithms ValidInd,Publish,Flabel and ρ we define the
Labelled-MiniVoting scheme

MV(E ,ΣR,ValidInd,Publish,Flabel, ρ),

as the single-pass voting scheme defined by the algorithms
in Figure 4, which we informally describe below.

Setup(1λ,m): Generates a pair of keys (pk, sk) using the
key generation algorithm of the encryption scheme E ,
and creates a map uL where exactly m ids are assigned
to labels.

Vote(id, `, v, pk): Constructs a ballot that contains the iden-
tity id of the voter, the label ` assigned to that voter,
and a ciphertext obtained by the encryption algorithm
E using the public key pk over the vote v and label `.

Valid(BB, uL, (id, `, c), pk): Performs three checks to en-
sure that the ballot is well-formed with respect to the
board. First, it checks that the ciphertext and label (`, c)
are unique with respect to the existing ballots in the
ballot box BB. Then, it verifies the use of the correct
label ` for user id using the map uL. Finally, it calls the
ValidInd algorithm. Remark that this last step depends



Setup(1λ,m)

1 : (pk, sk)← KGen(1λ)

2 : for i in 1..m do

3 : id←$ ID

4 : uL[id]← Flabel(id)

5 : return (pk, sk, uL)

Vote(id, `, v, pk)

1 : c← Enc(pk, `, v)

2 : return (id, `, c)

Valid(BB, uL, b, pk)

1 : (id, `, c)← b

2 : e1 ← ∀id′. (id′, `, c) /∈ BB

3 : e2 ←
(
` = uL[id]

)
4 : e3 ← ValidInd(b, pk)

5 : return (e1 ∧ e2 ∧ e3)

Tally(BB, sk)

1 : dbb = [ ]

2 : for i in 1..|BB| do
3 : (id, `, c) = BB[i]

4 : dbb[i]← (id,Dec(sk, `, c))

5 : r ← ρ(dbb)

6 : pbb← Publish(BB)

7 : Π← P((pk, pbb, r), (sk,BB))

8 : return (r,Π)

Figure 4. Algorithms defining the Labelled-MiniVoting scheme

on an abstract algorithm that might be instantiated to
not perform any additional checks.

Publish(BB): Publishes (arbitrary) information about the
content of the ballot box.

Tally(BB, sk): Computes the result of the voting process in
two steps: first it decrypts the entire board, and then
it applies a result function ρ (that might or might not
filter some of the votes based on a predefined voting
policy, for example: keep the last valid vote for any
id). Additionally, it provides a proof that the tally was
done correctly by calling the prover P.

Verify((pk, pbb, r),Π): Calls the verify algorithm of the
verifier V, to show that the tally was done correctly.

VOTING FRIENDLY RELATION. Since we keep the relation
R that is used to certify the tally procedure abstract, we need
to ensure that the relation R is compatible with the result of
the election (computed with ρ). That is, we require that if
the result r corresponds to the votes obtained by decrypting
the ballot box BB using the key sk, if pbb corresponds to
the public board of BB and pk is the public key associated
to sk then r can be proved to be the correct result, that
is, R((pk, pbb, r), (sk,BB)) holds.3 Note that this notion is
unrelated to voting friendly encryption as defined in [14],
which designates a class of IND-1-CCA encryption schemes
that have embedded a homomorphic part.

The formal definition of a voting-friendly relation, uses
the following convenient notation. Given a bulletin board
BB = [(id1, `1, c1), . . . , (idn, `n, cn)] (seen as an ordered
list of bulletin board entries), we write Dec∗ for the algo-
rithm that decrypts each line and returns the ordered list of
plaintexts:

Dec∗(sk,BB) =(
(id1,Dec(sk, `1, c1)), . . . , (idn,Dec(sk, `n, cn))

)
Definition 8. Let E be a labelled public-key encryption
scheme, and ΣR be a proof system for some relation R.
Given the abstract algorithms ρ and Publish, we say that R
is a voting-friendly relation with respect to ρ and Publish,
if for any efficient adversary B, the following experiment
returns 1 with negligible probability.

3. We do not put any restrictions on the relation R; in particular R may
depend on some random oracle.

Expvfr
B,E,ΣR,ρ,Publish(λ)

1 : (pk, sk)← KGen(1λ)

2 : BB← B(1λ, pk)

3 : dbb← Dec∗(sk,BB)

4 : r ← ρ(dbb)

5 : pbb← Publish(BB)

6 : return ¬ R
(
(pk, pbb, r), (sk,BB)

)
We provide machine-checked proofs [1] that the

Labelled-MiniVoting scheme is ballot private, strongly con-
sistent and strongly correct.

Strong correctness is implied by the IND-1-CCA security
assumption of the encryption scheme: any p.p.t. adversary
can only obtain a collision with already-produced cipher-
texts when making an encryption query with negligible
probability.

Theorem 1 (strong correctness). 4 Let V = MV(E ,ΣR,
ValidInd, Publish,Flabel, ρ) with ValidInd((id, `, c), pk)
true for c ← Enc(pk, `, v), and any pk, `, v, id. For any
p.p.t. adversary A, there exists an adversary B such that:

Acorr
A,V(λ,m) ≤ Advpoly-ind1cca

B,E,1 (λ),

for any m voters.

The next theorem establishes that the Labelled-
MiniVoting scheme satisfies ballot privacy, under standard
assumptions on its components. One quirk that is worth
remarking is that we actually prove a slightly stronger
statement which requires the weaker hypothesis that the
underlying encryption scheme is strongly correct. For sim-
plicity, we use the above theorem and rely on the non-
malleability of the underlying encryption scheme which, in
turn, implies strong correctness.

Theorem 2 (ballot privacy). 5 Let V = MV(E ,ΣR,
ValidInd, Publish,Flabel, ρ) with ValidInd((id, `, c), pk)
true for c ← Enc(pk, `, v), and any pk, `, v, id. For any
m voters, and any adversary A that makes at most n voting

4. Lemma scorr in ../MiniVotingSecurity.ec
5. Lemma bpriv in ../MiniVotingSecurity.ec

https://github.com/catalindragan/minivoting-privacy/tree/master/proof/MiniVoting/MiniVotingSecurity.ec
https://github.com/catalindragan/minivoting-privacy/tree/master/proof/MiniVoting/MiniVotingSecurity.ec


queries, there exists a simulator S and three adversaries B,
C and D such that:

AdvbprivA,V,S(λ,m) ≤ 2× Pr[ExpvfrD,E,ΣR,ρ,Publish(λ) = 1] +

AdvzkB,P,S,R(λ) + 3n× Advpoly-ind1cca
C,E,1 (λ).

The intuition for the ballot privacy component of the
above theorem is based on two key points. First, one can
replace with negligible loss of security a proof from a zero-
knowledge proof system with a simulated one, provided that
the relation is (with overwhelming probability) satisfied by
a ballot privacy adversary. At this stage of the proof the
relation is left unspecified, thus bounded by a voting friendly
constraint. Secondly, one uses the IND-1-CCA security as-
sumption for the encryption scheme to replace the view of
the adversary on the ballot box.

Theorem 3. (strong consistency) 6 Let V = MV(E ,ΣR,
ValidInd,Publish,Flabel, ρ). Then, V is strongly consistent.

The proof for strong consistency easily follows from
the definition of the Labelled-MiniVoting scheme, using the
extractor defined by

∀ id , `, c. Extract((id, `, c), sk) = (id,Dec(sk, `, c)).

4. Applications

We now show how to apply the general results discussed
in Section 3 to the security of several hundred variants of
Helios, including most of its existing versions–either imple-
mented, or mentioned in publications. We first instantiate
Labelled-MiniVoting to a scheme we call PreHelios, instan-
tiating the labelled public-key encryption scheme with a
construction that combines a public-key encryption scheme
with a proof of knowledge. PreHelios then serves as a basis
for further instantiations and refinements.

In particular, we show that PreHelios corresponds, as-
suming secure mixnets, to the variant Helios-mix of Helios
with mixnets. We further prove that the security of PreHelios
is equivalent, assuming a secure homomorphic encryption
scheme, to that of a variant Helios-hom, which uses ho-
momorphic tally. In both cases, we show that remaining
parameters of Helios-mix and Helios-hom (for example,
validity check or result functions . . . ) can be instantiated
in many ways, yielding about 540 secure variants each, all
equipped with a machine-checked proof automatically based
on our framework theorem. Labelled-MiniVoting requires–
quite strictly–that the ballot box carefully discards duplicate
ciphertexts. We also explain how to (securely) relax this
condition, yielding another variant Helios-hom-IDweed that
only discards duplicate ciphertexts when they correspond to
the same ID. This check is more practical since it can easily
done while deadling with revoting. Finally, we point to sev-
eral implemented voting schemes, whose privacy properties

6. Lemmas consis1, consis2, consis3 in ../MiniVotingSecurity.ec

are directly captured as machine-checked instantiations of
one of our Theorems.

Our results are summarized in Figure 6. We equip all
the schemes we discuss with machine-checked proofs of
privacy. Rectangular nodes are not fully instantiated, and
represent families of schemes whose privacy may rely on
some non-standard hypotheses. All leaves represent fully-
instantiated schemes: their security relies only on that of
their cryptographic primitives (encryption scheme and proof
systems).

4.1. PreHelios

Helios constructs its labelled public-key encryption
scheme by composing El Gamal encryption with a proof
of knowledge.7 Let us consider a labelled public-key en-
cryption scheme LPKE(E ′,Σ′R′), built from a public-key
encryption scheme E ′ and a proof system Σ′R′ . The proof
system typically proves validity of the vote v (for example,
that at most one candidate is selected by the ballot), and may
use a label (such as the voter’s identity) inside the statement.
The encryption algorithm returns a ciphertext produced by
E ′ on v, together with a proof of validity π that links
the ciphertext, public key and label to the underlying vote
and randomness used during encryption. The decryption
algorithm checks the validity of the proof before decrypting
the ballot. A more formal description of the construction is
given in Figure 7.

KGen(1λ)

1 : return KGen′(1λ)

Enc(m, `, pk)

1 : r ← Zq
2 : c← Enc′(pk,m; r)

3 : π ← P′((c, pk, `), (m, r))

4 : return (c, π)

Dec(sk, `, (c, π))

1 : if V′((c, pk, `), π) then

2 : return Dec′(sk, c)

3 : return ⊥

Figure 7. Algorithms of LPKE(E ′,Σ′R′ ), with Σ′R′ = (P′,V′).

We define PreHelios as Labelled-MiniVoting instantiated
with an LPKE construction as its labelled public-key encryp-
tion scheme.

Definition 9. Let E ′ be an encryption scheme, and ΣR, Σ′R′

be two proof systems. Given Γ = LPKE(E ′,Σ′R′), and some
algorithms ValidInd, Publish, Flabel and ρ, the PreHelios
scheme constructed from these primitives is defined as

PH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel, ρ) =

MV (Γ,ΣR,ValidInd,Publish,Flabel, ρ) .

The following corollary of Theorems 1, 2, 3, states that
PreHelios inherits the security of Labelled-MiniVoting.

7. Even for the mixnet variant of Helios, El Gamal is used in conjunction
with a proof of knowledge – of the randomness used in mixing rather than
the plaintext – in order to obtain an IND-1-CCA scheme.

https://github.com/catalindragan/minivoting-privacy/tree/master/proof/MiniVoting/MiniVotingSecurity.ec


Labelled-MiniVoting

PreHelios

Helios-mix

Basic v3-mix 323 var.

Helios-hom

v3-hom v4 160 var.

Helios-hom-IDweed

Helios-light-weed 53 var.

Thm 2

'
Thm 3

Figure 6. Relations between our schemes. Arrows represent direct instantiations, o-arrows represent instantiations (where some equivalence property is
used); ' is observational equivalence. The leafs contain either concrete instances (e.g. Basic, (Helios) v3-mix), or the number of variants that have been
obtained. All constructions satisfy ballot privacy, strong consistency, strong correctness (under some assumptions).

Corollary 1. Let E ′ be an encryption scheme, and ΣR,
Σ′R′ be two proof systems. Let Γ = LPKE(E ′,Σ′R′), and
ValidInd that returns true for valid ciphertexts. The scheme
PH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel, ρ) is
• ballot private, provided that R is voting friendly, Γ is

IND-1-CCA, the proof system ΣR is zero-knowledge.
• strongly consistent.
• strongly correct if Γ is IND-1-CCA

This follows directly from Theorems 1, 2, 3. A typical
example of an IND-1-CCA encryption scheme is El Gamal
encryption with Chaum-Pedersen proofs [15].

4.2. Security by Refinement

However, it should be clear from the definition of
Labelled-MiniVoting that only the most basic voting sys-
tems can be produced purely by instantiating PreHelios
further. Indeed, Labelled-MiniVoting specifies an ideal Tally
algorithm that decrypts the ballot box line-by-line before
computing the election result using ρ, whereas any voting
system that means to provide resilience against corrupted
tallying servers cannot follow this course of action.

To support the application of our Theorem 2 to such
schemes–capturing in particular most published Helios vari-
ants, we show that privacy properties are preserved when
substituting a functionally equivalent algorithm for Tally.
We now define the necessary notions of functional equiva-
lence and algorithm substitution.

Definition 10 (Functional Equivalence). Let f be a (stateful)
algorithm. We write

Pr[f(e),m (r,mr)]

for the probability that the execution of f(e) leads to the
final memory mr with result r when executed in the initial
memory m. Given a predicate φ over inputs and memories,
two procedures f1 and f2 are functionally equivalent under
φ, written f1 'φ f2, iff

Pr[f1(e),m (r,mr)] = Pr[f2(e),m (r,mr)]

for any input value e, output value r and memories m, mr

such that φ(e,m). For the constantly true predicate T, 'T

expresses unconditional functional equivalence, which we
simply denote with '.

We note that this notion of equivalence captures algo-
rithms that are both probabilistic and stateful, intuitively
requiring that equivalent algorithms produce the same joint
distributions on outputs and final state given the same inputs
and initial state.

Given a voting scheme V = (S,Vo,Va,P,T,Ve) and an
alternative tallying algorithm Tally′, we define the variant
of scheme V that uses algorithm Tally′ for tallying as
V[T ← Tally′] = (S,Vo,Va,P,Tally′,Ve). Similarly, given
an alternative validation algorithm Valid′, we define the
variant of scheme V that uses algorithm Valid′ for ballot
validation as V[Va ← Valid′] = (S,Vo,Valid′,P,T,Ve).
When the nature of the alternative algorithm is clear from
context, we simply write V[Tally′] or V[Valid′] for the
relevant algorithm substitution.

Lemma 2 (Tally-Equivalence preserves Privacy). Given a
voting scheme V with tallying algorithm Tally, and some
alternative tallying algorithm Tally′ such that Tally ' Tally′.
If V is ballot private (resp. strongly correct; strongly consis-
tent) then V[Tally′] is ballot private (resp. strongly correct;
strongly consistent).

Proof. The theorem is a simple consequence of the defini-
tions for the three properties. We note in particular, that,
for β ∈ {0, 1}, Expbpriv,βA,V and Expbpriv,βA,V[Tally′] are strictly
equivalent until the adversary queries its Otally oracle, so
the corresponding queries to Tally and Tally′ necessarily
occur in a pair of contexts where inputs and states are equal.
A similar observation applies for strong consistency. Finally,
tallying is not used for strong correctness.

4.3. Helios-mix

Mixnets were introduced by Chaum [19] as a method to
implement anonymous communications in the absence of a
trusted authority. A mixnet takes as input a set of encrypted
messages and outputs the underlying plaintexts in a way
that hides the relation between the input ciphertexts and the
output plaintexts. Interest in their applications (which go



significantly beyond electronic voting) resulted in a large
body of literature that covers different constructions [30],
[32], [36], [37], [41], and security models and proofs for
some of the constructions [32], [33], [41].

Concrete implementations typically “chain” several mix-
ers so that the output of one is passed as input to the next.
Each intermediate shuffle comes with a proof that mixing
was implemented correctly. Since we are not concerned here
with dishonest tally authorities, we simply view mixnets
as an abstract algorithm TallyMix which, given a list of
ballots and the secret key, returns their decryptions in some
order together with a proof that the list of decrypted votes
corresponds to the initial list of ballots. Existing mixnet con-
structions return the plaintexts either in random order [36]
or in lexicographic order [32].

The following definition fixes the class of protocols
obtained by replacing the tally algorithm with a mixnet,
whose operations are modelled as a probabilistic algorithm
TallyMix. In our definition, we make use of the Count
function multiset that can be instantiated with functions
that return the sequence of votes in lexicographic or random
order.

Definition 11. Let E ′ be an encryption scheme, Σ′R′ and
ΣR be two proof systems, ValidInd, Publish, Flabel, and
Policy be abstract algorithms as specified, and TallyMix be a
mixnet functionality. Given ρ = multiset◦Policy, we define
the Helios-mix scheme constructed from these primitives as

HM (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel,Policy) =

PH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel, ρ) [TallyMix].

Based on this definition, if one can find an instance PH
of PreHelios whose Tally algorithm is such that TallyMix '
Tally, the following corollary identifies sufficient conditions
for the privacy of the Helios-mix variants constructed from
the same primitives.

Corollary 2. Let E ′ be an encryption scheme, ΣR, Σ′R′

be two proof systems, Γ = LPKE(E ′,Σ′R′), and ValidInd,
Publish, Flabel, and Policy be abstract algorithms as spec-
ified. The scheme

HM (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel,Policy)

is ballot private, strongly consistent, and strongly correct
provided that i. TallyMix ' Tally (with the specified
primitives); ii. ValidInd returns true for valid ciphertexts;
iii. R is voting-friendly; iv. Γ is IND-1-CCA; and v. ΣR is
zero-knowledge.

Our EasyCrypt formalization of the result supports
two separate instantiations for multiset, using either lexi-
cographic ordering (as Helios-mix-ord), or random ordering
(as Helios-mix-perm). In particular, we formally prove the
required functional equivalences for Tally and TallyMix.

4.4. Helios-hom

Similarly, PreHelios can be refined in a similar way
to prove privacy properties for homomorphic variants of

Helios.
The Helios-hom scheme is defined as an instantiation

of a PreHelios scheme with some homomorphic public
key encryption scheme E ′, and whose Tally algorithm is
modified to be as shown in Figure 8.

TallyHom(BB, sk)

1 : sbb← valid ballots based on proof check from BB

2 : fbb← Policy(sbb)

3 : c← Add(fbb)

4 : r ← Dec(c, sk)

5 : pbb← Publish(BB)

6 : Π← P((pk, pbb, r), (sk,BB))

7 : return (r,Π)

Figure 8. Helios-hom TallyHom algorithm

Definition 12. Let E ′ be a public-key encryption scheme,
Add be a candidate homomorphic operation, ΣR and Σ′R′ be
two proof systems, and ValidInd, Publish, Flabel, and Policy
be abstract algorithms as specified. Given ρ = addition ◦
Policy, we define the Helios-hom scheme constructed from
these primitives as:

HH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel, ρ) =

PH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel, ρ) [TallyHom].

Theorem 4. Let E ′ be a homomorphic encryption
scheme, Σ′R′ ,Σ′R′ be two proof systems, and ValidInd,
Publish,Flabel,Policy be abstract algorithms as specified
such that:

∀ b,BB. b ∈ Policy(BB) =⇒ b ∈ BB; and
∀ sk,BB. Dec∗(sk,Policy(BB)) = Policy(Dec∗(sk,BB)).

Let TallyHom be the tallying algorithm of the scheme
HH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel,Policy),
and Tally be the tallying algorithm defined by the
scheme PH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel, ρ) with
ρ = addition ◦ Policy. We have TallyHom ' Tally.

Theorem 4 is proved in EasyCrypt. The equivalence
follows from the homomorphic property of the encryption
scheme and the commutativity and membership properties
of the Policy algorithm. We then easily deduce privacy
properties of Helios-hom, via Lemma 2.

Corollary 3. Let E ′ be an encryption scheme, with Add
a candidate homomorphic operation for E ′, let ΣR, Σ′R′

be two proof systems, Γ = LPKE(E ′,Σ′R′), and ValidInd,
Publish, Flabel, and Policy be abstract algorithms as spec-
ified. The scheme

HH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel,Policy) ,

is ballot private, strongly consistent, and strongly correct
provided that i. R is voting friendly; ii. Γ is IND-1-CCA;
iii. ΣR is zero-knowledge; iv. E ′ and Add form a homo-
morphic public-key encryption scheme; v. ValidInd returns



true for valid ciphertexts; vi. Policy commutes with Dec∗;
vii. ∀ b,BB. b ∈ Policy(BB) =⇒ b ∈ BB.

4.5. Various realizations of Helios

We recall that Labelled-MiniVoting is parameterized by
a labelled public-key encryption scheme, a proof system,
and six abstract algorithms.

ValidInd : ((ID, L,C),PK)→ {0, 1},
Publish : (ID, L,C)∗ → PBB,
Flabel : ID→ L,
Count : (ID,Vo⊥)∗ → R,
Policy : (ID,Vo⊥)∗ → (ID,Vo⊥)∗,
R :

(
(PK,PBB,R), (SK, (ID, L,C)∗)

)
→ {0, 1}

To illustrate the versatility of our framework, we list
some interesting instances of these algorithms.

Typical choices for ValidInd include the constantly true
function, which lets the ballot box accept all non-duplicated
ballots, and algorithm V′ itself, which checks that the ballot
is equipped with a valid proof before accepting it.

Many choices for Publish have been considered, from
trivial publication policies that reveal no information about
the ballot box (empty), or publish the ballot box itself
(identity) to more involved publication algorithms that re-
veal the last cast ballot for each voter, with (last view)
or without the id (anonymous-view), or reveal a hash of
each entry along with the entry itself (hash-view). Further,
entries could be reordered, or dummy entries inserted before
publication of the bulleting board.

Algorithm Flabel, which produces the label from the
voter id, is usually instantiated trivially, either as a constant
function (constant), or as the identity function (identity).
Other interesting choices would include pseudo-random la-
bels (where, for example, the label is produced during setup
using a PRP whose key is discarded afterwards) that could
serve as pseudonyms.

The revote policy Policy can either enforce a single vote
per id or take multiple votes into account, for example where
votes can be bought or are linked to some form of stake.
Single vote policies can be as simple as choosing the last
(last vote) or first vote cast by each voter, and as complex
as those used in Estonia (where priority is given to ballots
cast in person, over electronic ballots). Multiple vote policies
could sum all votes, or average all votes cast by each voter
before computing the final result.

The relation R proved by the tallying authorities is
usually instantiated either as the trivial true relation, or as
the relation that relates plaintexts and associated datas to all
valid ciphertexts that encrypt them (corr-dec).

Lastly, choices for the counting algorithm Count are as
numerous as there are types of democracy and elections. We
list the most common ones.
• addition. Tells how many votes each candidate received.
• multiset. Returns the sequence of all votes. Two main

categories are considered:
– order. All votes are given in lexicographic order.

– permutation. Votes are returned in a random order.
• majority. Discloses only the winner.
• weighted. Some voters may have a more important role

in making the decision.
• condorcet. Voters rank candidates in order of preference.

A single winner is selected by conducting a series of
fictitious one-on-one elections between every possible
pairing of two candidates.

• STV (Single Transferable Vote). Voters rank the candi-
dates in order of preference. Votes for candidates above
some threshold are transfered to other candidates based
on the order of preference indicated on the ballots.

Hundreds of secure variants of Labelled-MiniVoting.
These options can be combined arbitrarily, subject to a
few constraints, that are imposed in particular by voting-
friendliness and other non-cryptographic premises.
• If Publish : (ID, L,C)∗ → PBB returns an empty

bulletin board then R must be true.
• For Helios-hom, the counting function has to be
addition and the policy cannot be average.

• For Helios-hom-IDweed, Flabel must yield an injective
mapping from identities to labels, the counting function
has to be addition, and the policy cannot be average.

• For Helios-mix, the counting function has to be
multiset, and the policy cannot be average.

This yields 162 variants for Helios-hom, 54 variants for
Helios-hom-IDweed and 324 variants for Helios-mix. All
these variants were automatically generated and equipped
with (checked) EasyCrypt proofs of ballot privacy, strong
consistency, and strong correctness in less than 31 minutes
overall. An overview is provided in Table 2. To avoid
generating all the variants anytime a single instance is
desired, we also provide a simple design interface where
the user selects the options of her choice for each parameter.
The resulting voting scheme is then automatically generated
along with a proof of its security, checked with EasyCrypt.
We note in particular that, once all algorithms are fully
instantiated, the non-cryptographic premises of our security
theorems and corollaries are automatically discharged. This
includes the voting-friendliness properties of R w.r.t. the
other algorithms for all instances, the commutativity and
regularity properties of Policy for homomorphic instances,
and the injectivity property of Flabel for instances with
reduced-weeding.

Insecure variants of Labelled-MiniVoting. Labelled-
MiniVoting has been designed to ensure that ballot privacy,
together with strong consistency and strong correctness, are
satisfied with only (minimal) assumptions on the crypto-
graphic primitives. Many features and restrictions have been
hard-coded (in the algorithms or the cryptographic primi-
tives) such that it should be difficult to find instantiations of
Labelled-MiniVoting that are not ballot private.

One such feature is the weeding process modeled by the
Valid algorithm. It has been well documented [15], [23], [24]
that not weeding ballots carefully leads to insecure schemes.
In particular, this is also why Helios as implemented in



versions 3 and 4 do not satisfy ballot privacy. For the Helios
variants that we analyze weeding is encapsulated in the Valid
algorithm.

4.6. Existing Variants

Combining the results obtained in the previous sections
yields the security of several hundred variants of electronic
voting schemes. In this section, we point to some variants
that correspond to existing published schemes.

We consider more specific cryptographic primitives. Let
E ′ be the exponential El Gamal encryption scheme [16],
[29], and Σ′R′ = (P′,V′) the disjunctive Chaum-Pedersen
proof system [18]8 over the relation R′ that ensures that a
vote satisfies the requirements of the election. Additionally,
let Σcorr-dec be the Chaum-Pedersen proof system for correct
decryption. We assume the El Gamal encryption scheme
with Chaum-Pedersen proofs of knowledge (formally de-
fined as Γ = LPKE(E ′,ΣR′)) to be IND-1-CCA (a pen-and-
paper proof is given in [15]). We further assume that the
correct decryption proof system Σcorr-dec is zero-knowledge.
We can then deduce the following results on the practical
schemes listed in Table 1.
HELIOS VERSION 3 WITH HOMOMORPHIC TALLY. Helios
version 3 with homomorphic tally [2] (Helios-v3-hom, for
short) corresponds to Helios-hom instantiated with expo-
nential El Gamal encryption, last vote policy, no label, and
addition as counting mode. Formally, Helios version 3 with
homomorphic tally is defined as

Helios-v3-hom = HH (E ′,Σ′R′ ,Σcorr-dec,ValidIndV′ ,

Publishlast view,Flabelempty,Policylast vote) .

By setting the identity of the voters to be either true
names or aliases, we can cover here two sub-variants of
Helios version 3:
Helios-v3-hom with true identities. This version has been

used since the introduction of Helios in version 1 [2].
Helios-v3-hom with aliases. Version that was initially intro-

duced for the 2009 election at Louvain in Helios ver-
sion 2 [3], and was later made more broadly available
in Helios version 3.

HELIOS VERSION 3 WITH MIXNETS. Helios version 3 with
mixnets [2] (called Helios-v3-mix, for short) corresponds to
Helios-mix instantiated with last vote policy, no labels, and
the multiset counting mode. Formally, Helios version 3 with
mixnets is defined as

Helios-v3-mix = HM (E ′,Σ′R′ ,Σcorr-dec,ValidIndV′ ,

Publishlast view,Flabelempty,Policylast vote) .

Like homomorphic Helios-v3, this variant supports both
elections where the name of voters is in the clear, or election
with aliases.
HELIOS VERSION 4. This version of Helios is closely related
to Helios version 3 with homomorphic tally. We point out
some small but important differences.

8. We use the strong Fiat-Shamir transformation.

First, Helios version 4 uses more robust proofs of knowl-
edge, that contain additional information such as election
hash, or question number (that must therefore appear in the
label). Furthermore, to ease the readability of the ballot by
voters, Helios version 4 applies a hash over the ballot and
publishes it along with the ballot. Lastly, Helios v4 does not
support any mixnet-based variants, and is solely based on
homomorphic encryption. Therefore, algorithms ValidInd, ρ
and R are identical to Helios version 3 with homomorphic
tally, Publish produces a hash for each bulletin board entry
that is published alongside it, and Flabel is the constant func-
tion returning election hash, question numbers and choice
numbers.

The Helios version 4 [2] can formally be defined as

Helios-v4 = HH (E ′,Σ′R′ ,Σcorr-dec),ValidIndV′ ,

Publishhash-view,Flabelconstant,Policylast vote) .

Note that our proofs do not cover Helios version 1 or
version 2, since their underlying encryption scheme, based
on the weak Fiat-Shamir transformation, is not IND-1-CCA.
Replacing the weak Fiat-Shamir transformation with the
strong Fiat-Shamir transformation in their protocol descrip-
tions would yield Helios-v3-mix and Helios-v3, respectively,
although particulars of the primitives differ.
BASIC ELECTION SCHEME. One of the most basic election
schemes consists in sending votes encrypted with a public
key to a (trusted) voting server. No revote is allowed. During
tally, the server simply shuffles the ballots and decrypts them
line by line. Of course, this does not offer any verifiability.
Such a basic election scheme is at the core of several simple
commercial voting systems currently in use.

Let E be a labelled public-key encryption scheme with
an empty label, and Σtrue = (P,Vtrue) a proof system where
both the verifier Vtrue and relation are constantly true.

This basic voting scheme is formally defined as

MV (E ,Σtrue,ValidIndtrue,Publishno-revote,Flabelempty,

ρaddition◦no-revote) .

4.7. Weeding

Cortier et al [23], [24] and Bernhard et al. [15] have
shown the need for weeding in the context of ballot privacy.
For example, if an adversary may copy the ballot of an
honest voter (typically available on the bulletin board) and
re-cast it on his own behalf, he obtains some information
on the vote once the result is published, hence breaking pri-
vacy. In particular, the ballot privacy of Labelled-MiniVoting
is based on a strong weeding policy, preventing pairs of
ciphertexts and labels being replayed even with different
voter identifiers, being enforced by the Valid algorithm.

We show that it is possible to weaken the weeding policy
by weeding only exact ballot duplicates. More precisely,
we show that instead of rejecting a ballot (id, `, c) as soon
as (id′, `, c) occurs in BB for some id′, we only reject it
if exactly (id, `, c) occurs in BB. This may speed up the
weeding algorithm since this latter check remains local to



TABLE 1. SOME PRACTICAL VARIANTS THAT CAN BE OBTAINED FROM THE Labelled-MiniVoting SCHEME.

Voting Base ValidInd Publish Flabel ρ R
Helios-v3-hom Helios-hom verify ballot proof last view empty addition ◦ last vote corr-dec
Helios-v3-mix Helios-mix verify ballot proof last view empty multiset ◦ last vote corr-dec
Helios-v4 Helios-hom verify ballot proof last view constant addition ◦ last vote corr-dec
Helios-light-weeding Helios-hom-IDweed verify ballot proof last view identity addition ◦ last vote corr-dec
Basic Scheme Labelled-MiniVoting return true empty empty addition ◦ no-revote return true

a particular voter’s ballots, perhaps avoiding an expensive
scan over the entire bulletin board. Formally, we consider a
variant ValidLight of the Valid algorithm, displayed in Fig-
ure 9. If Flabel is injective, then ValidLight is functionally
equivalent to Valid. This includes some interesting choices
for Flabel, such as the identity function (or the function
x 7→ (x, f(x)) for any function f ), or a PRP whose key is
discarded immediately after setup.

Theorem 5. Let φ be the predicate defined by

φ(m) = uL is injective
∧ ∀ i ∈ dom(BB).

∃ idi, ci. BB[i] = (idi, uL[idi], ci),

where uL, BB are the values of these variables in memory
m. The following holds:

Valid 'φ ValidLight.

Theorem 5 is proved in EasyCrypt and relies on the
fact that each voter is assigned a unique label, and that all
ballots from the ballot box have a matching label for a voter
w.r.t to some pre-existing map that contains all voters and
their assigned label.

Valid(BB, uL, b, pk)

1 : (id, `, c)← b

2 : e1 ← ∀id′. (id′, `, c) /∈ BB

3 : e2 ←
(
` = uL[id]

)
4 : e3 ← ValidInd(b, pk)

5 : return (e1 ∧ e2 ∧ e3)

ValidLight(BB, uL, b, pk)

1 : (id, `, c)← b

2 : e1 ←
(
b /∈ BB

)
3 : e2 ←

(
` = uL[id]

)
4 : e3 ← ValidInd(b, pk)

5 : return (e1 ∧ e2 ∧ e3)

Figure 9. Valid algorithm of Labelled-MiniVoting (left) and ValidLight,
variant with light weeding (right).

Definition 13. Given a homomorphic encryption scheme
E ′, two proof systems Σ′R′ , ΣR, and abstract algorithms
ValidInd, Publish, Flabel and Policy as specified, we de-
fine the Helios-hom-IDweed scheme constructed from these
primitives as the scheme

HW (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel,Policy) =

HH (E ′,Σ′R′ ,ΣR,ValidInd,Publish,Flabel,Policy)

[ValidLight].

The following result follows from Theorem 5 and Corol-
lary 3. The proof, verified in EasyCrypt, involves carefully
checking that φ holds at all points where the validation
algorithm is (or may be) called.

Corollary 4. Let E ′ be an encryption scheme and ΣR,
Σ′R′ be two proof systems, let Γ = LPKE(E ′,Σ′R′), and
ValidInd, Publish, Flabel, and Policy be abstract algorithms
as specifed. The Helios-hom-IDweed scheme constructed
from these is ballot private, strongly consistent, and strongly
correct whenever all of the following hold: i. R is voting
friendly; ii. Γ is IND-1-CCA; iii. ΣR is zero-knowledge;
iv. E ′ is homomorphic; v. ValidInd that returns true for valid
ciphertexts; vi. Policy commutes with Dec∗; vii. Policy is
such that b ∈ Policy(BB) =⇒ b ∈ BB; and viii. Flabel is
injective.

HELIOS WITH LIGHT WEEDING. We define Helios with light
weeding as

Helios-light-weed = HW (E ′,Σ′R′ ,Σcorr-dec,

ValidIndV′ ,Publishlast view,Flabelidentity,Policylast vote) .

Helios-light-weed is a variant for Helios v3 that uses labels
that uniquely identify voters and performs lighter weeding
checks. Following Theorem 5, this is done without loss of
privacy. Additionally, this method for weeding yields an-
other defense mechanism against ballot privacy attacks [23]
that has not yet been implemented in Helios. We give an
overview of the practical variants of Helios our EasyCrypt
proofs cover in Table 1.

5. Formalization

We now discuss the formalization, and highlight some
of the key points it unveiled.

5.1. EasyCrypt

EasyCrypt [8], [9] is an interactive proof assistant for
reasoning about concrete security of cryptographic construc-
tions; to date, EasyCrypt has been used primarily for prov-
ing security of cryptographic primitives rather than more
complex systems, with the notable exceptions of [4], [7].

EasyCrypt features a module system which combines
facilities from module systems in programming languages,
with a capability mechanism for restricting adversarial ac-
cess to oracles or memories. The module system allows
proving general principles once and for all, and later instan-
tiating these principles in a particular setting. In addition,
EasyCrypt features a theory mechanism that supports in-
stantiation of types and operators used in a formalization.
Our formalization heavily relies on these mechanisms to
achieve modularity and make verification of several hun-
dreds of variants tractable.



The EasyCrypt formalization of ballot privacy closely
follows the development outlined in the previous section,
but with two important differences. First, security statements
in EasyCrypt are concrete, i.e. the advantage of a (con-
structed) adversary is given as an arithemetic expression
of its capacities and of the advantage of sub-adversaries—
whereas for readability, our presentation in the previous
sections follows the usual style of asymptotic security. More
importantly, EasyCrypt uses a relational program logic to
formalize code-based game-based reductionist arguments.
The latter uses a series of probabilistic programs with
adversarial code, called games, and of probabilistic claims
relating the probability of one or more events in one or more
games, to establish its main claim. In EasyCrypt, prob-
abilistic claims are derived using probabilistic Relational
Hoare Logic (PRHL), which generalizes Relational Hoare
Logic [11] to a probabilistic setting. PRHL is a program
logic whose judgments are of the form {Φ} c1 ∼ c2 {Ψ},
where c1 and c2 are games, and Φ and Ψ are relations
on program states. The rules of PRHL allow the user to
derive valid judgments. When Ψ is of an appropriate form
(concretely, E1〈1〉 ⇒ E2〈2〉, where 〈i〉 is used to denote
the memory in which the event is interpreted), validity of
the above judgment implies the probabilistic claim:

Pr[c1,m1 : E1] ≤ Pr[c2,m2 : E2]

stating that the probability of event E1 after executing c1 in
initial memory m1 is upper-bounded by the probability of
event E2 after executing c2 in m2.

Interestingly, our formalization highlighted one limi-
tation of EasyCrypt. In order to achieve maximal gen-
erality, our proof of ballot privacy is modular and as-
sumes IND-1-CCA security of the underlying encryption
scheme. An important goal for future work is to prove
in EasyCrypt that encryption schemes commonly used in
Helios, including El Gamal with zero-knowledge proofs,
achieve IND-1-CCA security. This component does not re-
quire changes for the Labelled-MiniVoting scheme, and can
be viewed as a stand-alone component. However, it involves
extending EasyCrypt to reason about rewinding arguments
since existing IND-1-CCA proofs use Bellare and Neven’s
General Forking Lemma [10].

5.2. Issues with Pen-and-Paper Proofs

The formalization effort presented here highlighted two
shortcomings in existing pen-and-paper proofs for Labelled-
MiniVoting and its applications.
SIMULATION PROOFS WITH RANDOM ORACLES. Starting
from existing pen-and-paper proofs of BPRIV for Labelled-
MiniVoting, and attempting to formalize them led us to
deeper considerations on the interactions of simulation-
based security notions and proofs with random (or stateful)
oracles, in a way similar to Fiore and Nitulescu [28]. Indeed,
in the proof of Labelled-MiniVoting, it is highly important
to split random oracles between those that are taken over
by the simulator and those that need to remain independent

(in particular, so they can be taken over in lower-level
simulations for the primitives). Formally, this highlighted the
need to strike a careful balance between abstraction–which
supports proof reuse and enforces that the realization of a
component be irrelevant to the current security proof, and
the need to have a full specification of the system on which
the proof operates. In particular, the need for formality in the
treatment of random oracles caused some false starts in the
development, as core definitions and theorem statements had
to be adapted, first to make room for random oracles, then to
clearly distinguish those random oracles that are protocol-
relevant (those used in the proof of correct decryption) and
need to be simulated from those that are only relevant to
lower-level primitives and can thus be kept abstract (those
used in the labelled public-key encryption scheme), and
finally to support zero-knowledge relations with access to
the abstract random oracles.9 However, we note that this
formal issue does not imply the existence of attacks if
the same hash function is used for computing the proof
of decryption and for other purposes. Still, in the spirit
of recent standardisation efforts, we do recommend that
domain separation be used in this case.
A MISSING ASSUMPTION. Existing proofs of ballot privacy
for abstract systems similar to Labelled-MiniVoting [14] do
not make use of the strong correctness, whereas it is in
fact a necessary assumption. In practice, the game transition
where strong correctness is used implies an additional term
(corresponding exactly to the upper-bound on the strong
correctness advantage) in the final security bound for ballot-
privacy, which does not appear in asymptotic security treat-
ments, but may be critical when evaluating security margins
to determine concrete security parameters.

5.3. Discussion

The final qed took about one person-year to complete.
The statement and proof of Theorem 2 took about 75% of
the effort, while the specialization component made up the
rest (including some changes to the statement of Theorem 2
and related definitions to support zero-knowledge relations
with random oracles). Table 2 shows the development size
and verification times; the figures were obtained running
EasyCrypt on an HP ZBook with i7-4800MQ CPU and
32GB RAM, running Ubuntu 14.01.
EXTENSIONS, REFINEMENTS AND GENERALISATIONS. It
is clear that much of the effort could have been spared if
we had chosen to forgo generality and consider a specific
instance of Helios. However, the benefits of a general proof
is that it should now be easy to adapt our framework (and
the corresponding proofs) to: formalizing privacy of other
voting systems, formalizing other security properties, and
carrying our formal guarantees down to implementations,
also considering security under weaker trust assumptions.
For example, a refinement of our framework would ex-
plicitly distinguish between the public and the secret part

9. A theorem that does not consider the latter two issues, although much
easier to state and prove, would not be instantiatable as broadly as ours.



TABLE 2. STATISTICS ON THE EASYCRYPT PROOF DEVELOPMENT FOR E-VOTING.

Voting Stages Definition
(no. lines)

Proof
(no. lines)

Verif. Time
(seconds)

General
Framework

General Concepts 961 2891 158
Labelled-MiniVoting 231 4466 447.8

Specialization
PreHelios 145 918 10.8
Helios-hom 164 662 51.3
Helios-hom-IDweed 22 842 67.3
Helios-mix 95 788 5.7

Examples Helios v.* + Basic 658 2493 28.7
540 variants 540 * 132 540 * 492 540 * 3.4

of a user’s credential. Schemes where such distinction is
crucial e.g. Belenios [21] or Civitas [31], could then be
instantiated in the resulting framework. Of course, any
extensions would require re-working the formal results to
deal with the changes. However in this case the new proofs
would mirror closely the development that we present in this
paper and may need to only locally account for the changes.
Other security properties of interest include in particular
verifiability [22], accountability [34], receipt-freeness, and
coercion-resistance [31]. Extending our work to these prop-
erties would first require to fully formalize them but then
we believe we could again rely on the genericity of our
approach to consider classes of protocols.
TOWARDS VERIFIED IMPLEMENTATIONS. We conclude this
discussion section by observing that the family of machine-
checked specifications we produce gets us one step closer
to the production of machine-checked implementations for
voting protocols. Indeed, EasyCrypt itself provides several
ways of producing machine-checked implementations from
machine-checked specifications. The first is to extract, from
the EasyCrypt specification, a specification in the WhyML
language, a specification language suitable for use with
many program verifiers. This technique, which then carries
the final result over to implementations by manual and
verified refinement, was used in the past to obtain proofs of
security, even in the presence of side-channel adversaries,
for RSA-OAEP [5] and MEE-CBC [6]. Although the use
of random oracles are an obstacle to the verification of
the whole system, hash functions are in fact a very small
part of the system–and not much can usually be established
about their security. For example, Almeida et al. [6] simply
exclude symmetric primitives from the refinement proof,
but include them in the side-channel-freeness check. At
present, these techniques would not scale to the needs of
systems of the size and complexity of Helios. The second
is to directly extract, from the EasyCrypt specification,
a working OCaml implementation of the protocol. This
mechanism was previously used to produce relatively effi-
cient implementations of secure and verifiable computation
protocols [4]. In the present case, because we leave a number
of components unspecified or abstract (in particular, we only
consider functional abstractions of the tally process and bul-
letin board), our specification is not sufficient to produce a
full working implementation of the voting scheme. However,
it would be sufficient to produce a working implementation
of a voting client, be it device-based or direct-recording

electronic (DRE) based. We do not here make any claims
on the practical security of this extracted code.

6. Conclusion and future work

We have developed a machine-checked framework for
proving ballot privacy of electronic voting systems. Our
framework is sufficiently general to cover hundreds of vari-
ants of Helios, including most existing implemented ones.

We reduced ballot privacy to security of the underlying
primitives, relying for example on an IND-1-CCA-secure
encryption scheme and on secure mixnets. ElGamal together
with proofs of knowledge has been proved secure in [15].
However, formalizing this proof in EasyCrypt would be
challenging since it requires support for rewinding adver-
saries. Similarly, proving security of mixnets is hard and
developing an EasyCrypt framework for mixnets would
form an interesting research project.

As future work, we plan to extend our framework to
other voting systems as discussed in the previous section.
We also plan to consider other properties such as verifiabil-
ity, accountability, receipt-freeness, or coercion-resistance.
Verifiability seems of easy reach: it requires to formalise
this property, for example along the lines of [21] and
identify under which conditions Labelled-MiniVoting pre-
serves verifiability (e.g. depending on what is published).
This should allow us to prove verifiability of many of the
variants of Helios. Accountability would require more work.
Indeed, while Helios is close to being accountable, it is
necessary to first specify exactly who is responsible e.g.
for the data displayed on the ballot box and the distribu-
tion of the credentials and how this is cryptographically
enforced. We would first need to enrich Labelled-MiniVoting
to account for these extra procedures. Then receipt-freeness
and coercion-resistance would require even more extensions
to Labelled-MiniVoting since Helios and its variants, and
therefore the current Labelled-MiniVoting scheme, are not
coercion-resistant. Considering these various properties un-
der varying trust assumptions on each of the parties would
also be interesting.
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