G. Adj, I. Canales-martínez, N. Cruz-cortés, A. Menezes, T. Oliveira et al., Computing discrete logarithms in cryptographically-interesting characteristic-three finite fields, 2016.

R. Barbulescu and C. Pierrot, Abstract, LMS Journal of Computation and Mathematics, vol.17, issue.A, pp.230-246, 2014.
DOI : 10.1017/CBO9781139856065

R. Barbulescu and S. Duquesne, Updating key size estimations for pairings, p.334, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01534101

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improvements to the number field sieve for non-prime finite fields, working paper, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01052449

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improving NFS for the Discrete Logarithm Problem in Non-prime Finite Fields, EUROCRYPT 2015, Part I. LNCS, pp.129-155, 2015.
DOI : 10.1007/978-3-662-46800-5_6

URL : https://hal.archives-ouvertes.fr/hal-01112879

R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic, EUROCRYPT 2014, pp.1-16, 2014.
DOI : 10.1007/978-3-642-55220-5_1

URL : https://hal.archives-ouvertes.fr/hal-00835446

R. Barbulescu, P. Gaudry, and T. Kleinjung, The Tower Number Field Sieve, ASIACRYPT 2015, Part II, pp.31-55, 2015.
DOI : 10.1007/978-3-662-48800-3_2

URL : https://hal.archives-ouvertes.fr/hal-01155635

Y. Bistritz and A. Lifshitz, Bounds for resultants of univariate and bivariate polynomials, Linear Algebra and its Applications, vol.432, issue.8, pp.1995-2005, 2010.
DOI : 10.1016/j.laa.2009.08.012

D. Boneh and M. K. Franklin, Identity-based encryption from the Weil pairing, CRYPTO 2001, pp.213-229, 2001.

D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, ASIACRYPT 2001, pp.514-532, 2001.

C. Bouvier, P. Gaudry, L. Imbert, H. Jeljeli, and E. Thomé, Discrete logarithms in GF(p) ? 180 digits, NMBRTHRY archives, item 004703, 2014.

B. Chen and C. A. Zhao, Self-pairings on supersingular elliptic curves with embedding degree three. Finite Fields and Their Applications 28, pp.79-93, 2014.

H. Cohen, A course in algorithmic algebraic number theory, Graduate Texts in Mathematics, vol.138, 2000.

D. Coppersmith, Modifications to the Number Field Sieve, Journal of Cryptology, vol.6, issue.3, pp.169-180, 1993.
DOI : 10.1007/BF00198464

R. M. Elkenbracht-huizing, An Implementation of the Number Field Sieve, Experimental Mathematics, vol.5, issue.3, pp.231-253, 1996.
DOI : 10.1007/978-1-4757-1089-2

D. Freeman, M. Scott, and E. Teske, A Taxonomy of Pairing-Friendly Elliptic Curves, Journal of Cryptology, vol.2, issue.5, pp.224-280, 2010.
DOI : 10.1007/s00145-004-0313-x

J. Fried, P. Gaudry, N. Heninger, and E. Thomé, A Kilobit Hidden SNFS Discrete Logarithm Computation, EUROCRYPT 2017, Part I. LNCS, pp.202-231, 2017.
DOI : 10.1007/3-540-68697-5_8

URL : https://hal.archives-ouvertes.fr/hal-01376934

P. Gaudry, L. Grémy, and M. Videau, Collecting relations for the number field sieve in, LMS Journal of Computation and Mathematics, vol.6, issue.A, pp.332-350, 2016.
DOI : 10.1007/BFb0091538

URL : https://hal.archives-ouvertes.fr/hal-01273045

D. M. Gordon, Discrete Logarithms in $GF ( P )$ Using the Number Field Sieve, SIAM Journal on Discrete Mathematics, vol.6, issue.1, pp.124-138, 1993.
DOI : 10.1137/0406010

R. Granger, T. Kleinjung, and J. Zumbrägel, Breaking '128-bit secure' supersingular binary curves -(or how to solve discrete logarithms in F 2 4·1223 and F 2 12·367 ), CRYPTO 2014, Part II, pp.126-145, 2014.

R. Granger and F. Vercauteren, On the Discrete Logarithm Problem on Algebraic Tori, CRYPTO 2005, pp.66-85, 2005.
DOI : 10.1007/11535218_5

M. N. Gras, Special units in real cyclic sextic fields, Mathematics of Computation, vol.48, issue.177, pp.179-182, 1987.
DOI : 10.1090/S0025-5718-1987-0866107-1

L. Grémy, Sieve algorithms for the discrete logarithm in medium characteristic finite fields, 2017.

A. Guillevic, Computing Individual Discrete Logarithms Faster in $${{\mathrm{GF}}}(p^n)$$ with the NFS-DL Algorithm, ASIACRYPT 2015, Part I. LNCS, pp.149-173, 2015.
DOI : 10.1007/978-3-662-48797-6_7

A. Guillevic, Faster individual discrete logarithms with the QPA and NFS variants. HAL archive, 2nd version, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01341849

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, An Experiment of Number Field Sieve for Discrete Logarithm Problem over GF(p 12), Number Theory and Cryptography, pp.108-120, 2013.
DOI : 10.1007/978-3-642-42001-6_8

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, A construction of 3-dimensional lattice sieve for number field sieve over Fpn, Cryptology ePrint Archive Report, vol.20151179, 1179.

A. Joux, A One Round Protocol for Tripartite Diffie???Hellman, Lecture Notes in Comput. Sci, vol.1838, pp.385-394, 2000.
DOI : 10.1007/10722028_23

A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method, Mathematics of Computation, vol.72, issue.242, pp.953-967, 2003.
DOI : 10.1090/S0025-5718-02-01482-5

URL : https://hal.archives-ouvertes.fr/hal-01102016

A. Joux, R. Lercier, N. Smart, and F. Vercauteren, The Number Field Sieve in the Medium Prime Case, CRYPTO 2006, pp.326-344, 2006.
DOI : 10.1007/11818175_19

URL : https://hal.archives-ouvertes.fr/hal-01102034

M. Kasahara, K. Ohgishi, and R. Sakai, Cryptosystems based on pairing, The 2000 Symposium on Cryptography and Information Security, pp.2000-2020, 2000.

T. Kim and R. Barbulescu, Extended Tower Number Field Sieve: A New Complexity for the Medium Prime Case, CRYPTO 2016, Part I. LNCS, pp.543-571, 2016.
DOI : 10.1109/TIT.1986.1057137

URL : https://hal.archives-ouvertes.fr/hal-01281966

T. Kim and J. Jeong, Extended Tower Number Field Sieve with Application to Finite Fields of Arbitrary Composite Extension Degree, PKC 2017, Part I. LNCS, pp.388-408, 2017.
DOI : 10.1007/978-3-642-34931-7_24

A. K. Lenstra and E. R. Verheul, The XTR Public Key System, CRYPTO 2000, pp.1-19, 2000.
DOI : 10.1007/3-540-44598-6_1

A. B. Lewko, Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting, EUROCRYPT 2012, pp.318-335, 2012.
DOI : 10.1007/978-3-642-29011-4_20

D. Matyukhin, Effective version of the number field sieve for discrete logarithms in the field GF(p k ) (in Russian), Trudy po Discretnoi Matematike, vol.9, pp.121-151, 2006.

D. V. Matyukhin, On asymptotic complexity of computing discrete logarithms over GF(p), Discrete Mathematics and Applications, vol.58, issue.2, pp.27-50, 2003.
DOI : 10.1007/BF01457454

A. Menezes, P. Sarkar, and S. Singh, Challenges with Assessing the Impact of NFS Advances on the Security of Pairing-Based Cryptography, Mycrypt 2016, pp.83-108, 2017.
DOI : 10.1090/S0025-5718-99-01137-0

A. Miyaji, M. Nakabayashi, and S. Takano, Characterization of Elliptic Curve Traces Under FR-Reduction, ICISC 00, pp.90-108, 2001.
DOI : 10.1007/3-540-45247-8_8

B. A. Murphy, Polynomial selection for the number field sieve integer factorisation algorithm, Australian National Univers, 1999.

C. Pierrot, The Multiple Number Field Sieve with Conjugation and Generalized Joux-Lercier Methods, EUROCRYPT 2015, Part I. LNCS, pp.156-170, 2015.
DOI : 10.1007/978-3-662-46800-5_7

URL : https://hal.archives-ouvertes.fr/hal-01056205

J. Pollard, A. K. Lenstra, J. Lenstra, and H. W. , The lattice sieve, The development of the number field sieve, LNM, pp.43-49, 1993.
DOI : 10.1090/psapm/042/1095550

K. Rubin and A. Silverberg, Torus-Based Cryptography, CRYPTO 2003, pp.349-365, 2003.
DOI : 10.1007/978-3-540-45146-4_21

P. Sarkar and S. Singh, A General Polynomial Selection Method and New Asymptotic Complexities for the Tower Number Field Sieve Algorithm, ASIACRYPT 2016, Part I. LNCS, pp.37-62, 2016.
DOI : 10.1090/S0025-5718-99-01137-0

P. Sarkar and S. Singh, New Complexity Trade-Offs for the (Multiple) Number Field Sieve Algorithm in Non-Prime Fields, EURO- CRYPT 2016, Part I. LNCS, pp.429-458, 2016.
DOI : 10.1007/978-3-662-49890-3_17

O. Schirokauer, Discrete Logarithms and Local Units, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.345, issue.1676, pp.409-423, 1676.
DOI : 10.1098/rsta.1993.0139

O. Schirokauer, Using number fields to compute logarithms in finite fields, Mathematics of Computation, vol.69, issue.231, pp.1267-1283, 2000.
DOI : 10.1090/S0025-5718-99-01137-0

C. The and . Development, CADO-NFS, an implementation of the number field sieve algorithm, 2017.

P. Zajac, Discrete Logarithm Problem in Degree Six Finite Fields, 2008.