Realizability Interpretation and Normalization of Typed Call-by-Need λ-calculus With Control - Archive ouverte HAL Access content directly
Conference Papers Year :

Realizability Interpretation and Normalization of Typed Call-by-Need λ-calculus With Control

(1, 2) , (2)
1
2

Abstract

We define a variant of realizability where realizers are pairs of a term and a substitution. This variant allows us to prove the normalization of a simply-typed call-by-need λ-calculus with control due to Ariola et al. Indeed, in such call-by-need calculus, substitutions have to be delayed until knowing if an argument is really needed. In a second step, we extend the proof to a call-by-need λ-calculus equipped with a type system equivalent to classical second-order predicate logic, representing one step towards proving the normalization of the call-by-need classical second-order arithmetic introduced by the second author to provide a proof-as-program interpretation of the axiom of dependent choice.
Fichier principal
Vignette du fichier
cbncps.pdf (257.27 Ko) Télécharger le fichier
Vignette du fichier
cbncps.aux (5.94 Ko) Télécharger le fichier
Vignette du fichier
cbncps.blg (1001 B) Télécharger le fichier
Vignette du fichier
cbncps.dvi (115.99 Ko) Télécharger le fichier
Vignette du fichier
figures/typing_rules_lbvtstar.log (39.17 Ko) Télécharger le fichier
Loading...

Dates and versions

hal-01624839 , version 1 (26-10-2017)
hal-01624839 , version 2 (02-03-2018)

Identifiers

Cite

Étienne Miquey, Hugo Herbelin. Realizability Interpretation and Normalization of Typed Call-by-Need λ-calculus With Control. FOSSACS 18 - 21st International Conference on Foundations of Software Science and Computation Structures, Apr 2018, Thessalonique, Greece. pp.276-292, ⟨10.1007/978-3-319-89366-2_15⟩. ⟨hal-01624839v2⟩
369 View
238 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More