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ABSTRACT

Advances in motion tracking technology, especially for commod-
ity hardware, still require robust 3D gesture recognition in order to
fully exploit the benefits of natural user interfaces. In this paper,
we introduce a novel 3D gesture recognition algorithm based on
the sparse representation of 3D human motion. The sparse repre-
sentation of human motion provides a set of features that can be
used to efficiently classify gestures in real-time. Compared to ex-
isting gesture recognition systems, sparse representation, the pro-
posed approach enables full spatial and rotation invariance and pro-
vides high tolerance to noise. Moreover, the proposed classification
scheme takes into account the inter-user variability which increases
gesture classification accuracy in user-independent scenarios. We
validated our approach with existing motion databases for gestu-
ral interaction and performed a user evaluation with naive subjects
to show its robustness to arbitrarily defined gestures. The results
showed that our classification scheme has high classification accu-
racy for user-independent scenarios even with users who have dif-
ferent handedness. We believe that sparse representation of human
motion will pave the way for a new generation of 3D gesture recog-
nition systems in order to fully open the potential of natural user
interfaces.

Index Terms: 1.5.2 [Pattern Recognition]: Design Methodology—
Classifier design and evaluation; 1.6.3 [Computing Methodologies]:
Methodologies and Techniques—Interaction Techniques

1 INTRODUCTION

In recent years, the number of tracking technologies has been con-
tinuously rising, from commodity hardware devices such as the Mi-
crosoft’s Kinect, the Leap Motion or the HTC Vive to high-end
commercial solutions relying on optical or magnetic tracking [21].
Yet, the majority of virtual reality applications still rely on basic
interaction capabilities such as pick rays or virtual hand metaphors,
limiting the interaction capabilities of the user. In contrast, natural
user interfaces (NUI) exploiting multi-modal input [20] could en-
able the creation of a new generation of user interfaces that increase
the expressiveness of the user interaction. Gestural interfaces are a
good candidate for NUIs as they enable the use of the whole body
as an input device and have a wide range of potential application
scenarios such as medical [36, 1], interaction with robots [16, 9] or
entertainment [13, 39].

A gesture can be considered as a meaningful and intentional
movement performed by the user. It can have a meaning by it-
self (e.g. push to move an object), or it can represent a predefined
command by the system (e.g. performing a cross to close the ap-
plication). Gestures can be used to enable natural interactions with
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virtual environments, by exploiting the affordances and the previ-
ous experience of users. However, there are a number of other fac-
tors that interface designers have to take into account in order to
ensure that interfaces based on gestural interaction are usable. For
example, how to make the user aware of the available interactions,
the gestures different users prefer [17], and the number of gestures
a user can remember [15].

Nevertheless, the enabling component of gestural interfaces is
efficient and robust gesture recognition algorithms. These algo-
rithms have to deal with two major challenges: gesture variability
and gesture dimensionality. The same gesture performed by dif-
ferent users, or even the same user performing it twice, will not
generate the exact same gestural information (e.g. trajectory, ac-
celeration profile). Biomechanical limitations of the body (neuro-
muscular noise) will introduce variability on the user motion, gener-
ating slightly different versions of the same gesture. Moreover, the
motion information contained in a gesture is temporal and lies in a
high-dimensional space. The analysis and classification of gestures
can be computationally expensive and can discourage its usage in
interactive applications with low end-to-end latency requirements.
In order to address both challenges, existing methods rely on sub-
sampling [33] and on machine learning algorithms such as Hidden
Markov Models [14, 31], linear classifiers [13] or template match-
ing algorithms [18]. Although existing methods are able to achieve
high classification accuracies (up to 90%), they also have a trade-
off between complexity, performance and recognition accuracy. For
example, they typically consider a small amount of gestures and
one-handed interactions [24].

In this work, we propose a novel 3D gesture recognition algo-
rithm based on the sparse representation of 3D human motion. The
proposed algorithm is able to extract the most representative mo-
tion patterns from a given set of gestures and uses this information
to enable the real-time classification of 3D gestures. Our approach,
inspired by state of the art 3D sparse representation algorithms [4],
provides a robust gesture classifier, that is tolerant to the speed, the
scale and the rotation of the gesture. Furthermore, the sparse repre-
sentation of human motion is robust to noise (only salient features
are kept) and generates a compact representation. To summarize,
the main contributions of our work are:

e A novel approach for 3D gestures recognition based on sparse
representation. Enclosing: (1) a gesture pre-processing step to
ensure that the input data is well suited for the sparse repre-
sentation and (2) a 3D sparse coding optimization enabling
real-time gesture classification of 3D human motion data.

e The evaluation of the proposed gesture recognition algorithm
in two stages: (1) an off-line comparison with existing tech-
niques and motion databases, and (2) a real-time evaluation
with naive users in a virtual reality system.

The paper is structured as follows: Section 2 discusses related
works on gesture recognition and sparse representation. Section 3
details our novel approach for gesture recognition. Then, Section 4
presents the evaluation results. Finally, Section 5 provides the con-
cluding remarks and future perspectives.



2 RELATED WORK
2.1 Gesture Recognition

Gestural interaction is gaining more and more relevance in com-
mon user interfaces from 2D (e.g. tactile based) to 3D (e.g. kinect-
based) interfaces [13], yet gesture recognition is a missing feature
in existing 3DUI frameworks [32]. Mitra et al. [27] characterized
the information contained in a gesture in four different dimensions:
spatial, pathic, symbolic and affective. Traditionally, gesture recog-
nition algorithms for 3DUIs have been mainly focused in the spa-
tial (where it occurs) and in the pathic information (the trajectory).
Symbolic information can be extracted once the gesture has been
recognized using the context and the pathic information. Regard-
ing the affective information, existing works have mainly focused
on vision-based face and body gestures recognition [27]. In this
work we only focus on gesture recognition from 3D motion track-
ing data, which is the most common for 3DUIs.

Current gesture recognition algorithms take advantage of exist-
ing machine learning algorithms to build knowledge about the dif-
ferent gestures that can be used in the system. In this paper, we
will just review the most salient gesture recognition algorithms, fo-
cusing on feature-based and template matching classifiers. For a
complete survey on 3D gesture recognition we refer the reader to
the survey from LaViola [21].

Feature-based classifiers transform the input data into a fea-
ture vector which is used to classify the input gesture. The first
problem is how to express the characterization of different ges-
tures in a set of distinctive features. Chen et al. [7] defined a set of
45 features which can be used for classification (e.g. mean speed,
mean curvature or the bounding volume of the gesture). Depend-
ing on the target set of gestures, just a subset of features can be
used. These features provide mainly spatial and pathic informa-
tion. However, such features “simplify” the input data potentially
loosing the gestural information and the notion of distance between
two gestures. Once the set of features is decided, a classification
algorithm should be chosen. The most common approaches are
based on Hidden Markov Models (HMM), used for the recognition
of sign gestures [14], interaction with mobile devices [30] or video
games [31, 13, 7]. Additional works have used other machine learn-
ing approaches such as linear classifiers [13], nearest-neighbors
classifiers [19], support-vector machines [17] or bayesian and Ad-
aBoost classifiers [5]. In average, although the previous cited so-
lutions provide average recognition rates around 90%, they are de-
pendent on the quality of the gesture database and are sensible to
changes in rotation, position and noise.

Template matching classifiers consider the information from
the pathic information of the gesture and search for a gesture in the
training data set which minimizes a given distance function. The
most common approach is to compute the mean square error (eu-
clidean distance) between the gesture to recognize against the dif-
ferent gestures in the vocabulary [37, 18]. Additionally, other dis-
tance metrics can be employed such as the angular inverse cosine
distance [22] or dynamic time warping [28, 24]. Most of them use
a nearest-neighbors classifier in order to determine the class of the
performed gesture, although there are no strong differences in clas-
sification performance between the different distance metrics [35].
Such approaches enable a fast gesture recognition at the expense of
lower classification rates than feature-based classifiers. Still, tem-
plate matching is mostly used for 2D gesture recognition, although
it has been explored for 3D gesture recognition [18, 34].

2.2 Normalization and Resampling

Gesture variability and gesture dimensionality are two of the main
challenges when designing real-time gesture classifiers. Gesture
variability arises due to differences in the equipment (accuracy, cal-
ibration) and in the nature of the gesture on itself. The same user

will not be able to perform exactly the same gesture twice and the
differences are even more noticeable among gestures performed
by different users. Although the gesture classification algorithms
tolerate a certain variability, most of them include a normaliza-
tion [14, 7] and/or a filtering step [31] during the preprocessing
step. Existing approaches are simple in nature, they are based on
the normalization of the input signal considering the range of the
input data and the physical limits. Other solutions rely on remov-
ing the noise of the input signal by applying linear filters [31] or a
uniform resampling of the trajectory [37].

Orthogonally, subsampling methods can also be employed to
speed up the recognition process (decrease the dimensionality).
Vatavu [34] presented an exhaustive evaluation on how different
gesture recognition systems behave when considering subsampled
version of the input gestural data. In his analysis, Vatavu consid-
ered the subsampling both in terms of dimensionality (samples per
gesture) and cardinality (bits per sample). The results showed that
the sampling rate and bit cardinality could be decreased (up to 16
sample points and 3 bits per gesture).

2.3 Sparse Representation

Sparse representation allows to express an input signal (y) through
a linear combination of an overcomplete basis (the dictionary, ®).
The reconstruction (x) (see Equation 1) should minimize the error
€ with the original signal (y). A sparsity constraint (C) ensures that
the vector of sparse coefficients x has few elements different from
zero. We will refer to the elements of the dictionary as atoms (¢).
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Assuming that the dictionary is known, the sparse representation
(®x) of the input signal (y) can be computed using greedy algo-
rithms such as matching pursuit (MP) [26] or orthogonal matching
pursuit (OMP) [8, 10]. Both algorithms, in an iterative process, will
select the atoms which minimize the residual error (€). In addition
to the reconstruction algorithms, a dictionary learning algorithm
(DLA) is required to compute the dictionary () which minimizes
the representation error of a set of representative signals (training
dataset). One example is the K-SVD algorithm [2], which initial-
izes the dictionary randomly and updates it with a sequence of a
two step iteration: for each signal in the training dataset, it builds
its sparse representation and given that representation updates the
atoms based on a gradient descent to minimize €. Sparse represen-
tation has been successfully applied to a wide variety of research
fields such as face recognition [38] of action recognition of video
streams [12].

2.3.1 Sparse Representation of Human Motion

Sparse representation is convenient to handle the sparsity inherent
to human motion which can be spatially invariant (different actions
can share a similar movement) and temporally invariant (the same
action can be performed at different times) [4]. Human motion can
be recorded as time series of position, orientation, speed or acceler-
ation data [13] from one or multiple joints of the human body. The
majority of previous works focus on “lossy” motion compression,
which is one of the major applications of sparse representation. In
such context, the motion database is encoded in a dictionary while
each motion sample is associated with a small list of atoms and
their corresponding parameters. The compression is achieved with
matching pursuit algorithms by minimizing €.

Several representations have been proposed towards this aim.
Zhu et al. [41] proposed a quaternion dictionary in which actions
are divided into different segments during a preprocessing step and
each segment is then represented by a quaternion time series. In
contrast, instead of dividing an action during preprocessing, Li et



al. [23] proposed a convolutional dictionary. Atoms in the dictio-
nary are times series whose duration is much shorter than the du-
ration of any action so they can be shifted along time using a con-
volution operator. Other solutions can also consider wavelets [40].
Finally, in order to account for rotational variations, Barthelemy et
al. [4] introduced a discrete time and 3D Rotation Invariant (3DRI)
sparse representation, which allows the encoding of multivariate
signals, mainly for 3D human motion data. The 3DRO model (see
Equation 2) includes a rotation component (R) which accounts for
variations in rotation for each atom. The rotation invariance is
achieved by an optimization using the single value decomposition
(SVD) algorithm. We refer to [4] for further details.

M
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2.3.2 Sparse Representation for 3D gesture recognition

As sparse representation is tolerant to the noise from the initial time
series, a number of the works regarding human motion compres-
sion have been extended to use sparse representation for classifica-
tion purposes. Nevertheless, sparse representation for classification
has been mainly studied for 2D gesture recognition such as hand
gestures in a video stream [29, 11, 23]. However, according to
the representation used (huge number of atoms in the dictionary)
such approaches require an enormous amount of training data to
ensure a good representation accuracy. To sum up, sparse repre-
sentation [4] seems a good candidate for the recognition of human
gestures, however there is lack of works focusing on the recogni-
tion of 3D gestures. In this work we want to fill this gap proposing
a gesture classification algorithm based on 3D sparse representation
of human motion.

3 GESTURE RECOGNITION FRAMEWORK

In this work we propose the characterization and classification of
3D gestures using sparse representation. The proposed method en-
ables the use of the sparse components as features and provides
an error measure through the computation of the representation er-
ror (€). Our approach takes advantage of the invariances from the
3D rotation invariant sparse representation [4] in order to provide
a gesture recognition which tolerates changes in the scale and the
rotation of the input gesture.

The recognition algorithm has two phases: (1) an oft-line train-
ing phase and (2) an on-line classification phase (see Figure 1). In
the training phase (see Section 3.3), the dictionary (®) which min-
imizes € of a training dataset is computed and an additional kNN
classifier is trained based on the sparse representation of the training
dataset. The on-line classification phase (see Section 3.4) computes
the sparse representation of an input gesture using (®) and uses its
sparse representation to determine its gesture class.

3.1 Requirements

The main purpose of gesture recognizers is to discriminate between
classes of gestures. Typically, gesture recognition applications con-
sider a finite (reduced) number of classes. However, gesture recog-
nizers must define a set of invariances to determine when two ges-
tures are considered equivalent. In our representation, we consider
that two gestures are equivalent if they share a common trajectory (a
straight line or a circle) with no regards of the following properties
of the gesture:

1. Position. The location in space. Two users executing the
same gesture (e.g. straight line) at different locations perform
equivalent gestures.

Training Input
DE £] Gesture

Pre-Process Pre-Process

Training

»M‘» Clssiication

\

Figure 1: Gesture recognition pipeline. First, gestures are normal-
ized in a pre-processing step. During the off-line training phase,
sparse dictionaries are built and the classification algorithms are
trained. The real-time classification uses the sparse dictionaries and
the trained classifiers in order to classify the input gesture.

2. Scale. The dimension of the gesture. The same gesture (e.g.
drawing a circle in the air) performed by two users with dif-
ferent arm lengths (e.g. child, adult) are equivalent gestures.

3. Rotation. The orientation of the gesture. The same gesture
with different orientations in space (e.g. circle in the XY plane
and a circle in the YZ plane) are equivalent gestures.

4. Speed. The speed over time. Two gestures performed at dif-
ferent speeds are equivalent gestures.

5. Time. The interval of time in which the gesture is performed.
Two gestures performed at different moments are equivalent
gestures.

Depending on the recognition algorithm, differences in these pa-
rameters might alter the classification result. In our algorithm, scale
and rotation are directly handled by the 3DRI representation (see
Section 3.3) while position and speed invariances are handled with
the pre-processing step (see Section 3.2).

Finally, gesture recognizers must be tolerant to noise. The noise
can be due to the bad quality of the motion data (tracking system) or
the intra and inter-user differences. On the one hand, the same user
will not be able to execute two times the exact same movement, a
non-negligible variability will be introduced for each repetition. On
the other hand, different users might perform gestures with slightly
different features (see Figure 2). Such variability introduces uncer-
tainty during the classification process which might lead to wrong
classifications. In our algorithm, the sparse representation will not
be affected by the noise, as the noise will just contribute to the rep-
resentation error €. Regarding the user variability, it can be handled
by increasing the redundancy of the dictionary, the same gesture
can be described by multiple atoms (¢).



Figure 2: Two examples of gestures for an X-shape gesture. Different
users might perform the same gesture with slight variations. The
color of the path determines the time for each sample (from colder to
warmer).

3.2 Gesture Representation and Pre-processing

For each tracked joint implied in the movement (e.g. the hand tra-
jectory), we consider its trajectory in a fixed orthonormal basis. The
trajectory for each joint is discretized and stored as a matrix R3N,
being N the number of points. In order to decrease gesture variabil-
ity and just focus on the pathic information, before computing the
sparse representation of a given gesture, it is pre-processed in order
to ensure speed and position invariances: (Speed) The trajectory is
converted into a speed invariant domain by expressing the tempo-
ral abscissa as a curvi-linear abscissa. First the instantaneous speed
for each sampling point is computed. Then, the accumulated speed
is divided by the number of points (n) used for resampling, so to
obtain the speed increment (I) between two successive points. The
gesture trajectory is then stepped through linear interpolation. (Po-
sition). The gesture is centered by substrating its centroid in order
to decrease the gesture misalignment (position invariance).

We apply the preprocessing operators sequentially: first the
speed, then the position. The pre-processing did not include any
noise removal step as the sparse coding algorithm used is not af-
fected by high-frequency noise. As the noise is not representa-
tive, it will be smoothed during the optimization process (see Sec-
tion 3.3.1).

3.3 Sparse Model of 3D Gestures

The main criteria for choosing the sparse model is driven by the
need to ensure the invariances that are not satisfied in the pre-
processing step (rotation, delay and scale) and to avoid noise in the
sparse representation. The chosen sparse model considered is the
3DRI model [4] in which rotation and scale variations are accounted
by the scale (x € R*) and the rotation (R € SO3(R)) parameters (see
Equation 2). Moreover, as the atom can have a different number of
samples than the input gesture, a shift operator (7) is required to
determine the temporal position of the atom (¢; ). In other words,
whereas the atom is associated to the action, the shifted atom (pat-
tern) takes in account its position along the gesture. So, if we take
a look at the physical meaning of a sparse component {x;,R;, §i r. },
it represents a sub-gesture which fits well with a part of the original
gesture and the addition of all sub-gestures will result in the original
one. The number of atoms in the decomposition (M) is constrained
so not to represent the noise inherent to the motion capture system
and to ensure real-time recognition. Thus, the problem to solve is
the computation of a set of representative atoms (P) which mini-
mizes the reconstruction error given a training dataset. In our case
we consider the L2-norm to compute the error. We will first detail
the algorithm (see Algorithm 1) used to compute the sparse repre-
sentation of a given gesture when the dictionary is known. Then, the
dictionary learning algorithm, which is described in section 3.3.2,
will use the same algorithm during the learning phase.

Algorithm 1 3DRI Matching Pursuit. Computes M optimal sparse
coefficients which minimize the representation error of the sparse
decomposition of the gesture y using the dictionary (P).

1: procedure (¢M x¥ RM &) < 3DRT_MP(y,®, M)
2: E=Yy

3 for m« 1,M do

4 fork < 1,K do

5: for 7, < 1, Ty do

6: (X, Ry) —SVD_Adjust(€, Pk g, )
7 end for

8: end for

9: (Xm, R, Om.z,,) < argmaxyer (xi)
10: (x™,R™) <~ 3DRI_OPT(g,y,x",R", 7 )
11: € Fy_znmzl-’Can(l)n,‘L',l
12: end for

13: end procedure

: ' N 01
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Figure 3: lllustration of the preprocessing procedure. Left, raw ges-
tures. Right, preprocessed samples after applying the curvi-linear
abscissa transformation and the centering.

3.3.1 Sparse representation of 3D Gestures

The 3DRI matching pursuit algorithm (see Algorithm 1) computes
the M patterns (q)éw ) which minimize the representation error (&)
of the input gesture (y) given a dictionary (®). For each pattern,
the algorithm also computes the associated scale factors (x) and
the rotation matrices (RM) which minimize the reconstruction er-
ror (see Equation 2). The algorithm at each iteration chooses, in
a greedy way, the pattern which minimizes the representation er-
ror (line 9) after computing the better fit for each atom (line 6).
Finally, it optimizes the sparse components that have been previ-
ously computed (line 10) and computes the current representation
error (line 11). The SVD optimization algorithm is used to fit each
atom (see Algorithm 3). The reconstruction algorithm is inspired
by the work of Barthelemy et al.[4]. Note that the optimization cri-
terion when selecting the atoms to improve the convergence speed
has been modified: we apply iteratively the Procruste methods (see
Algorithm 2) to update the parameters of one shifted atom given
the other. When it comes to the optimization criterion as we are
rotating the atoms, the orthogonal projection is no longer possible,
so our method is denoted with the matching pursuit (MP) appella-
tion rather than orthogonal matching pursuit (OMP). Furthermore,
the number of sparse components are constraint to ensure that all
sparse representations share the same amount of components.

3.3.2 Dictionary Learning of 3D Gestures

The Dictionary Learning Algorithm (DLA) consists in a two-step
iteration (see Algorithm 4). First, a gesture from the training
database is selected stochastically and then the gesture sparse rep-
resentation is computed using the 3DRI matching pursuit algorithm
(line 6). Second, the atoms involved in the sparse representation of
the gesture are updated by applying a gradient descent on the L2
norm of the reconstruction error (line 7). We refer the reader to [4]
for further details on the gradient descent step.



Algorithm 2 3DRI Optimization. The current M’ components
{xM ".RM /} are been already optimized (1 < M’ < M). € is the cur-
rent reconstruction error and C determines the number of optimiza-
tion steps.

1: procedure (x RM") < 3DRI_OPT(e,y,x"' . RM  ¢M)
2 & —=¢&

3 for c< 1,C do

4 for m < 1,M’ do

5: En = €. ‘l’mem(Pme

6: (Xm,Rp) <—SVD_Adjust (&, Pm.1,)

7 end for

8 E —y— Z%: 1 XmBRin Oz,

9 end for

10: end procedure

Algorithm 3 SVD adjustment. It computes the rotation matrix (R)
and the correlation coefficient (x) through a SVD decomposition
which minimizes the distance between the signal (€) and the given
pattern (7).

1: procedure (x,R) +—SVD_ADpJusT(€E,Pr)

2 Correlation Matrix : M, < 8¢TT

3 SVD: (U,Y.1,V) < SVD(Mcorr)
4:  Matrix ¥ : Y < diag(1,1,det(UVT))
5
6
7:

Optimal rotation matrix : R <~ U Y, VT
Correlation : x < trace(Y, Y1)
end procedure

Algorithm 4 Dictionary Learning Algorithm. Computes the dictio-
nary @ which minimizes the error of the sparse reconstruction of
the training dataset (Y). The final dictionary will have K atoms. M
sparse components are used to represent each gesture.

1: procedure (®) < DLA MP(Y,K,M)

2: £ =00

3: & =CreateDictionary(¥,2 xK)

4: while € > g,,;, do

5: for Vy|y € Y do

6: (M RM oM &) < 3DRI_MP(y, P, M)
7: ® « 3DRI_LMS(y,xM , RM M)

8: end for v

9: €< ﬁzly:“ &2

10: ® +Prune(®)

11: end while
12: end procedure

In order to improve convergence and to ensure that the resulting
atoms in the dictionary are all representative of the input data, the
two main changes are introduced in the DLA algorithm. The initial
dictionary contains twice the number of atoms that the final dictio-
nary and each atom is initialized by averaging a random number of
gestures for each atom (ten gestures per atom). In addition, to en-
sure that the final dictionary has the desired number of atoms and
only the most relevant ones are selected, after each iteration, the
less relevant atom in the dictionary is pruned (line 10). The prun-
ing criteria considers the number of times that the atom is used and
the correlation between atoms. The atom removed will be the least
used, or one of the two more similar ones. Finally, the stop crite-
ria (line 4) considers the mean reconstruction error (&,,;;, = 0.001),
which is updated at each outer iteration (line 9).

3.4 Gesture Recognition Algorithm

The main goal is to take advantage of the 3DRI sparse model to
provide an efficient and reliable gesture classification. For practical
reasons we consider that the training data is labeled which allows
to group the training gestures into different gesture classes. In sum-
mary three main decisions have to be taken:

e The number of sparse components used in the decomposition.
This choice has two main implications, the computational cost
and the quality of the sparse representation.

e The dictionary learning strategy. Whether to train a single
dictionary using all the training dataset or train multiple dic-
tionaries (one for each gesture class). How many dictionaries
are needed?

e The classification strategy. How to classify the gesture using
its sparse representation?

3.4.1 Sparse Components

The number of components in the sparse representation provides
a trade-off between the computational cost and the representation
quality. However, for gesture recognition, the main constraint is the
computational cost. First, the recognition system should be real-
time, thus a reduced number of sparse components has to be used
if this choice does not negatively impact on recognition accuracy.
The cost of building the dictionary is not considered as it is com-
puted in a pre-processing step. Second, we assume that gestures
are differentiable through the raw shape of their trajectory. Thus
the model can be restricted to one sparse component, assuming that
it will unambiguously represent a gesture. If we analyze the cost of
Algorithm 1, using only one component it will minimize the com-
putational cost. The SVD decomposition (line 6) is a quadratic op-
eration in terms of the number of points in the trajectory. Further-
more, when considering multiple sparse components, the matching
pursuit optimization is required. This optimization step increases
the latency while not being relevant in terms of accuracy as shown
in our experiments (see Section 4).

In addition, informal testing showed that using one component
was enough to achieve high classification rates in the tested applica-
tion scenarios. Nevertheless, for other situations additional sparse
components could be considered in order to capture more details of
the gestures. For example, it would be relevant if multiple tracked
elements are considered (e.g. bimanual interaction), in particular
with uncorrelated movements. However this is not explored in the
current work and it is left as a future perspective.

3.4.2 Dictionary Learning Strategy

When building the dictionary, two different strategies were consid-
ered named hereinafter supervised and semi-supervised. The main
difference among both strategies is the training gesture set (Y) used
for the DLA (see Algorithm 4).

The supervised approach splits the training data set considering
the different gesture classes (Y D {Y{,Y2,...,Y}) and for each Y;
a dictionary is built ({®1, P, ..., P.}). Gestures in the same group
will have similar pathic information. Each dictionary can have a
variable number of atoms according to the gesture variability, which
is determined by the pruning strategy. For relatively simple gestures
the number of atoms range between one and four. This approach
allows the creation of dictionaries that better represent each ges-
ture class as there is no interference between gesture classes while
building the dictionary.

The semi-supervised approach trains one single dictionary using
the entire training dataset, without any a priori information about
the different gesture classes. At this step, there is no need of labeled
data, as all gestures are processed in the same way. Regarding the



optimal number of atoms for each gesture class, the DLA algorithm
will determine the number of needed atoms for each gesture class
as more variable gestures will be more represented in the dictionary
(additional atoms). Once the dictionary is built, the labeled data is
used to split the dictionary into ¢ dictionaries (one for each class)
by just selecting the atoms characterizing each class. This step is
done in order to enable a common classification scheme for the
supervised and the semi-supervised approaches.

3.4.3 Gesture Classification

The proposed classification method is based on the computation of
the representation error € for each dictionary (®; ) using the 3DRI
matching pursuit algorithm (see Algorithm 1). The representation
error provides the measure of the fit between the input gesture and
the atoms for each dictionary. The dictionary which minimizes the
representation error (provides a better fit) will determine the class
of the input gesture.

However, as the 3DRI model is invariant to rotations, ges-
tures with different orientations (but same pathic information) will
share the same atoms. Existing 3D classification methods con-
sider the same gesture with different orientations as different ges-
ture classes [6] (i.e. swiping your arm to the left or to the right).
When there is a need of rotation discrimination, the information
encoded in the rotation matrix (R) can be considered in a second
classification step. Due to simplicity, in our implementation, a k-
nearest-neighbors (kNN) was chosen, considering the quaternion-
based representation of R. During the training step, a kKNN classi-
fier is trained for each gesture class (dictionary) having more than
one potential orientation, the distance function considers the angle
between quaternions. Note that the choice of the second classifi-
cation step can be highly dependent on the application. However,
as the gesture class is already known at this step, the classification
scheme can be highly optimized. Finally, another interesting fea-
ture of our approach is that gestures with orientations which have
not been trained can be still be recognized during the first classifi-
cation step. In these situations the rotation information R could be
used to infer the gesture orientation.

4 [EVALUATION

In this section we explore the suitability of our gesture recognizer
based on the sparse representation of human motion. First, we
analyze the performance when testing our algorithms (supervised,
semi-supervised) against an existing motion gesture database.
There are rather few 3D gesture databases focusing on 3DUISs, such
as: the 6DMG database [6], the IsueLLab database [5] or the uWave
database [24]. We focused on the 6DMG database as it is the only
one which provides trajectory data, whereas other databases pro-
vide mostly acceleration data. Furthermore, in order to evaluate
our gesture classification algorithm in a real use-case scenario, an
additional user evaluation was conducted in which participants had
to train and interact with an interactive system using self-defined
gestures.

4.1 6DMG Gesture Database

The 6DMG dataset! consists of 5600 samples obtained from 28
users (7 left-handed). When observing the gestures included in the
6DMG database we can observe that although it has 20 different
gestures, it contains only 6 different gesture classes. The 20 ges-
tures can be defined by the 6 gestures classes and a rotation (e.g.
a left swipe and a right swipe). In our test, we only considered 5
gesture classes (see Figure 4) being 18 gestures in total. The 6th
gesture was not considered as it only has a rotational component
(wrist twist) and thus does not present any distinctive path.

Mttp://www.ece.gatech.edu/6DMG/6DMG. html

Figure 4: Reconstructed patterns for the 6DMG database (super-
vised). From left to right and top to bottom: Swipe, Poke, V-shape,
X-shape and Circle gesture.

4.1.1 Dictionary Parametrization

In order to build the dictionaries which will be used during the
classification step, we have to determine first the number of sparse
components (M), the size of the training dataset (Y), the number
of atoms in the dictionary (K) and the resampling size for each
gesture (see Algorithm 4). Considering the lack of high-frequency
motions of gestures in the 6DMG database, one sparse component
is enough to capture the gesture variability (M = 1). Altough ad-
ditional sparse components can be used, our preliminary tests did
not show an increased recognition rate and had a rather negative
impact on performance. In general, we believe that for fast hand
trajectories M = 1 will be enough in most situations. Regarding
the training dataset (Y), two situations are considered, the user
dependent (UD) and the user independent condition (UI). For the
UD condition, training datasets and test datasets were built without
mixing the data from different users. In contrast, for the UI con-
dition a subset of users is used to train the system and the remain-
ing ones are used for testing. The choice of the number of atoms
(K) is dependent on (Y) and the learning method considered (super-
vised vs semi-supervised). While large training datasets can benefit
from additional atoms (higher variability in the data), small train-
ing datasets might generate noisy or non-representative patterns.
The supervised approach only requires a small number of atoms.
For the current experiment we considered K = 1 for the user depen-
dent scenario and K = 2 for the user independent scenario. Smaller
values of K also result in lower computation times. In contrast,
the semi-supervised approach requires a variable number of atoms
which is determined by the algorithm on itself. While the starting
value is K = 10, during the learning process it is pruned into 5 to 7
atoms depending on the variability of the data. Finally, all gestures
were resampled into 60 samples which provided a good trade-off
between performance and discretization.

4.1.2 Experimental Conditions

In order to explore the behavior of our approach we considered
two independent variables, (1) the algorithm (supervised vs semi-
supervised (S vs SS)) and (2) the training dataset (UD vs UI). When
building the training and test datasets, we used the same approach
as [7] to enable a fair comparison. For the UI condition, five users
were used to train the classifier, and the remaining ones used to
test it. To avoid potential bias, we considered 100 permutations
while building the training and test data sets without differentiating
among left and right-handed users. For the UD condition, for each



Table 1: Mean classification rates for different tested configurations.
The results from Chen et al. [7] are provided for comparison.

3D Sparse Representation

Supervised HMM [7]
Class Total Class Total Total
UD | 99.74% | 99.55% | 99.75% 98.22% 99.51%
Ul 99.18% 97.73% 99.33% | 97.82% 97.52%

Semi-Supervised

user, half of the data is used for training and half of the data is used
for testing. Fifty different permutations for each user are consid-
ered, resulting in 560 tests. As dependent variables we considered
the classification accuracy when only determining the gesture class
(Class Accuracy, 5 classes) and when also determining the rotation
(Rotation Accuracy, 18 gestures).

4.1.3 Results

The summary of the class and rotation classification results are
shown in Figure 5. Also, the summary of the overall classifica-
tions rates are provided in Table 1. We observed that the mean
classification rate is higher for the user dependent scenario. This
observation is supported by the two-way ANOVA algorithm and
training dataset vs class classification which presents a significant
main effect for training dataset (Fjgss =124.85, p<0.001, n2 <0.159).
Post-hoc tests (Bonferroni o0 = 0.05), shows that mean classifica-
tion rate is significantly higher for the user-dependent scenario. In
contrast there was no significant difference between the supervised
and semi-supervised techniques (F 657 =3.31, p=0.069, 2 <0.004).

When considering the recognition for each gesture class (see Fig-
ure 5, top), we observed that the class classification rate was higher
than 99% for all classes except for VShape in the user independent
condition. This observation is supported by the three-way ANOVA
algorithm, training dataset and gesture class vs class classifica-
tion which showed an interaction effect between training dataset
and gesture class (Fyssss =246.58, p<0.001, n2 <0.144). Post-hoc tests
showed that the classification rate for VShape in the Ul condition
had the lowest classification accuracy.

Regarding rotation accuracy (see Figure 5, bottom), the three-
way ANOVA of algorithm, training dataset and gesture class vs ro-
tation classification accuracy, showed an interaction effect training
dataset and gesture class (Fyssss =98.93, p<0.001, n2 <0.063). Post-hoc
tests showed that the classification rate for the Poke was signifi-
cantly higher for the UI condition, and that the classification rate
for the Swipe and VShape were significatly higer for the UD condi-
tion.

4.1.4 Discussion

The proposed classification scheme obtained a high classification
accuracy for the 6DMG database in all explored conditions. The ob-
tained results are comparable to the ones obtained by [7] (99.51%
for the used dependent and 97.52% for the user independent sce-
narios) and [34] (98% in the user-dependent scenario). We want
to notice that the existing classification accuracy was already really
high which left few room for improvement. Yet, these results shows
that our algorithm is able to produce results at the same level of the
current state of the art techniques.

While analyzing the classification errors, we observed two main
challenging situations, which also arise in existing gesture classifi-
cation algorithms. First, we observed abnormal misclassifications
due to the higher variability of the user independent scenario for
the VShape. The confusion matrix shows that most of the mis-
classified VShape gestures are classified as Swipe gestures. This
contrasts with the higher classification accuracy for the user depen-
dent scenario (almost 100%). The gesture data set showed that for
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Figure 5: Mean recognition scores for the 6DMG database. Top,
mean class classification accuracy (%). Bottom, mean rotation clas-
sification accuracy (%).

several users, the VShape was closer to a U-shaped gesture. In sev-
eral cases such U-shaped gestures where erroneously classified as
Swipes. This shows that different users might have different be-
haviors to perform Swipe and VShape gestures which for the user
independent scenario can introduce a higher degree of variability.
The second limitation was the orientation discrimination of the
eight orientations for the Swipe gesture, specially for the user in-
dependent scenario. Again, situations prone to increased variability
result in more challenging scenarios. Nevertheless, mean classifica-
tion error is lower than 5% for almost all conditions which is com-
parable to the average error rate in point and click interfaces [25].

4.1.5 Computational Performance

The computational cost for training a dictionary, when considering
only one sparse component is O(G x A x (Lg —Lp+ 1) x L% being
G the number of gestures in the training database, L the samples
for each gesture, A the number of atoms and L4 the samples for each
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Figure 6: Total mean classification time (including pre-processing)
per gesture for the 6DMG database when varying the number of pat-
terns and the number of samples per gesture.



atom (Lg > Ly;Lg ~ Ly). Analogously, the cost of computing the
sparse representation of a gesture is O(A x (Lg — Ly + 1) X LZ,).
Nevertheless, the computational cost is mainly driven by the num-
ber of patterns for each dictionary (see Figure 6). The addition of
more sparse components will increase the cost of both algorithms
exponentially. Regarding the memory footprint, it is negligible as
the required memory to store the dictionaries is linearly dependent
on the number of patterns.

4.2 Real-Time User Evaluation

The previous analysis showed the suitability of the sparse
representation-based classification in a set of a priori designed ges-
tures. In this additional study we aimed to study how a user would
be able to interact with a gesture-based interface, by allowing the
user to define the desired gestures or using an already defined
database. The real-time user evaluation was designed in order to
study the robustness of the classification algorithm when using ar-
bitrary gestures and to explore the robustness of the system in a real
use-case scenario. Additionally, at the end of the experiment, par-
ticipants were able to interact with a virtual environment with a set
of predefined gestures, this environment also presented contextual
graphical elements (3D widgets) in order to provide visual feedback
regarding the available actions and the gestures which enabled them
(see Figure 7). Finally, in order to gather the subjective impressions
of the users, a subjective questionnaire (Likert scale from -5 to 5)
was provided at the end of the experiment. The questionnaire had
the goal of gathering information about the quality of the gesture
recognition, the usability of the system and the user impressions.

4.2.1 Apparatus and Participants

Motion tracking was enabled through a Razer Hydra (magnetic
tracking) which was controlled by the participant’s dominant hand.
A button in the Razer Hydra controller allowed participants to input
a gesture to the system. During the first part of the experiment the
user interacted in front of a 45” HDTV. In the second part of the
experiment, participants were immersed in a virtual environment
using an Oculus Rift (DK2). The system was driven by a standard
workstation PC and the virtual environment was built using Unity
3D providing a constant refresh rate of 75 frames per second. The
gesture classification framework was built in Matlab and interfaced
to Unity using a DLL interface. Nine male volunteers with a mean
age of (M =25.6,5D=3.05) took part in the experiment.

4.2.2 Experimental Protocol

After reading and signing the consent form, participants were asked
to design a gesture dataset composed of six gestures. The only
guidelines provided were to design six gestures being easy to re-
member, to execute and not having similar trajectories. Once the

Figure 7: Unity 3D application used to test the real-time gesture
classification algorithm. Users were immersed in a virtual intelligent
house driven by our 3D gesture recognition system. The user could
walk in the virtual apartment and interact with different virtual objects.

experimenter validated that the participant followed the indications
when creating the gesture dataset, the participant was asked to train
the gesture recognition system by performing twenty times each of
the designed gestures (train dataset). Then, participants performed
an additional twenty repetitions for each gesture (test dataset), dur-
ing this phase participants were provided with real-time classifica-
tion feedback. Given the size of the training data set, computing
and training the kNN classifier required just a few seconds.

In the second part of the experiment, users were presented a
predefined gesture dataset of six gestures (the 5 gestures from the
6DMG database and an additional Z-shaped gesture). For this
dataset, the classification system was trained using the 6DMG
dataset and data recorded in the lab (just the Z-shaped gesture). Af-
ter a short training session (one or two repetitions for each gesture),
as in the first part of the experiment, users were asked to perform
twenty repetitions for each gesture. Participants had to perform 360
(240 + 120) gestures in total. The overall classification accuracy
was measured for each condition.

Furthermore and lastly, in order to evaluate the system in a re-
alistic use-case, users were immersed using an HMD in a virtual
apartment (see Figure 7 bottom) and instructed to interact with the
different elements in the apartment. In the virtual environment users
had to navigate using a simple steering technique (joystick) in order
to fully explore it. In total, including the questionnaires, the entire
experiment took approximately 40 minutes.

4.2.3 Results and Discussion

Although users were provided with minimal instructions when de-
signing the gesture database, and all had never used the system be-
fore, all succeeded on creating unambiguous gesture datasets (see
Figure 9). Furthermore, the overall classification rate was higher
than 96% (M =96.98,SD =3.36). For the second dataset, the mean clas-
sification accuracy was higher than 95% (M =95.63,sD=4.91). We
have to note that the 5 out of 6 gestures where trained with a dif-
ferent tracking system (from the 6DMG database) and potentially
participants had different instructions while performing them.
Regarding the overall subjective impression of the system (see
Figure 8), participants agreed that the system was simple to
use (M=4.5,SD=0.19), responsive (M=4.38,SD=0.74) and accurate
(M=3.75,sD=0.45). Users had no particular difficulty while train-
ing and testing the predefined gestures nor the custom gestures and
the recognition latency was always lower than 10ms. Users also
considered that gestural interfaces are useful (M =3.62,5D=2.1) and
natural (M =3.13,SD=1.81). In contrast, we observe lower scores in
terms of comfort (M =2.00,SD =0.91) and fatigue (M = —0.75,SD = 0.94),
as it can be expected in such systems. Yet, subjective results show
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Figure 8: Subjective questionnaire results. Participants were asked
to rate the usability of our gesture recognition system.
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Figure 9: Patterns trained by two different participants (split by rows) during the user evaluation. Users had the tendency of design simple 2D
gestures, although 3D gestures were sometimes used (first row, second column and second row, first column).

that participants had a positive appreciation of using gestures as the
main input modality and were able to accurately control the sys-
tem. Furthermore, users appreciated the contextualized feedback
(3D widgets) as it allowed to use the system with little a priori in-
formation. Taken together, these results demonstrates the robust-
ness of the proposed system with arbitrary gestures and positive
subjective impressions.

4.3 Limitations

The gesture recognition algorithm presented in this work is the first
3D gesture recognizer based on the sparse representation of 3D hu-
man motion. However, it still presents two major limitations that
should be addressed to enable its usage in real applications.

First, temporal segmentation is controlled by the user (e.g. by
a button press). This solution, although it could be argued to be
the most efficient mechanism for segmentation, both in terms of
accuracy and computation cost, it is not suited when the user is
not equipped with a hand-held device. In order to provide efficient
segmentation, there is the need to infer user intentions: determine
when the user is actually performing a gesture or when the user is
just moving their hands for other purposes (e.g. idle). While, a slid-
ing window can be used to spot gestures, the optimal size, and the
number of sliding windows remains a challenging problem, mainly
due to the strong gesture variability. Contextual information, such
as the user state or the application state could be used to restrict
the amount of active gestures classes and improve the gesture spot-
ting accuracy, but additional works are required to ensure a robust
segmentation algorithm.

Second, a limitation, but also a strength of the proposed ap-
proach, is the rotation and speed invariances. On one hand, invari-
ances ease the training process (reduce the training samples) and
ease the classification process (lower number of gesture classes).
On the other hand, in some scenarios, the rotation and the speed
(acceleration) of the gesture provide additional gestural information
that should be extracted. Although the proposed solution includes
an additional classification (kNN) step to discriminate the gesture
rotation based on the rotation component of the sparse representa-
tion (R), no additional information is extracted from the speed data.
We believe that in order to extract additional information from the
gesture data, fusion approaches [3] could be considered. A combi-
nation of other gesture classifiers could be used to further analyze
and classify gestures. However, this classification step might be
dependent on the application requirements.

5 CONCLUSION

Efficient and robust gesture recognition algorithms are required for
the democratization of natural user interfaces and allow the devel-
opment of new human-computer interfaces. For this purpose, in
this paper we have introduced the first gesture recognition algo-
rithm based on the sparse representation of human motion. The
proposed gesture recognition algorithm, in contrast to existing so-
lutions, ensures position, scale and rotation invariance and provides
a strong tolerance to noise. This allows to decrease the training
data required, for example, there is no need to train the same ges-
ture with different orientations or train the system with users having
different morphologies (e.g. different heights). In addition, for each
gesture, the redundancy of the sparse representation algorithm (ad-
ditional atoms in the dictionary) supports the recognition of slight
variations of the same gesture.

Moreover, we have validated the proposed algorithm through
two different evaluations. The first evaluation, considering an ex-
isting 3D gesture database, has showed that the proposed algorithm
achieves high classification accuracy in user independent situations
and can even tolerate changes in the users’ handedness. Such char-
acteristics are key in order to ensure that the system does not require
tedious training procedures each time a new user uses the system or
the hardware configuration changes. On the other hand, we ob-
served that the classification based on the sparse coding can be im-
proved by using more adapted classification schemes, specially for
the orientation discrimination (currently we were using a nearest-
neighbors classifier). Additional information or more sophisticated
machine learning approaches could be used in order to increase ro-
tation discrimination. Furthermore, in a user evaluation, we have
shown the robustness of the proposed approach when users have
total freedom when choosing the gesture set and when interacting
with the system in real-time. Although participants did not have
previous experience on gestural interfaces, the system was able to
recognize the gestures done with a classification error lower than
5%. Still, we observe that users are not always exploiting the full
potential of the gesture recognition system as they constraint the
length and orientation of the gestures, or they define too complex
gestures that can be tedious to execute. This is not a limitation of
the classification algorithm itself, but it has to be considered when
designing interfaces based on gestural input.

Future works will envision the recognition of complex gestures,
such as bi-manual or full-body motions. The proposed approach
can be used to decompose gestures in multiple patterns, for exam-



ple, motion can be expressed by the movement performed by dif-
ferent body joints. The combination of multiple patterns provides
additional information about the gesture being performed, which
could improve gesture recognition for complex gestures.
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