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2 Abstract11

In this study we identified a low-dimensional representation of control mechanisms in throwing12

motions from a variety of subjects and target distances. The control representation was identified13

at the kinematic level in task and joint spaces respectively, and at the muscle activation level using14

the theory of muscle synergies. Representative features of throwing motions in all of these spaces15

were chosen to be investigated. Features were extracted using factorization and clustering tech-16

niques from the muscle data of unexperienced subjects (with different morphologies and physical17

conditions) during a series of throwing tasks. Two synergy extraction methods were tested to assess18

their consistency. For the task features, the degrees of freedom (DoF) and the muscles under study,19

the results can be summarized as: 1) a control representation across subjects consisting of only20

two synergies at the activation level and of representative features in the task and joint spaces,21

2) a reduction of control redundancy (since the number of synergies are less than the number22

of actions to be controlled), 3) links between the synergies triggering intensity and the throwing23

distance, and finally 4) consistency of the extraction methods. Such results are useful to better24

represent mechanisms hidden behind such dynamical motions, and could offer a promising control25

representation for synthesizing motions with muscle-driven characters.26

3 Introduction27

Understanding how humans control motion is an important aspect in a variety of fields, ranging28

from neuroscience, to robotics, and animation [1]. Several theories have been proposed which aim at29

unveiling the efficient and powerful mechanisms behind human motion generation. In neuroscience30

and biomechanics some of the objectives of identifying such mechanisms are to validate an existing31

motor control theory, to diagnose and treat pathologies, or to enhance athletic performance. In32

animation and robotics, identifying such mechanisms is the key to enhance the realism and efficiency33

of the motions in virtual humans and robots, since it would allow the development of more realistic34

motion controllers, reflecting a global control of motion [2]. More realistic motions imply a higher35

degree of similarity to humans, at the visual, kinematic, and dynamic level.36

Our motivation lies in the domains of neuroscience and animation. In the animation field,37

characters with more detailed actuators (or muscles) are starting to be used for motion synthesis.38

The use of muscle-based characters, entails several advantages such as smoother torque gener-39

ation [3], more realistic responses to perturbations [4, 5], and an ease to simulate pathologies40

and fatigue [6, 7]. However, the use of muscles complicates the control problem by augmenting41

non-linearity and redundancy, as at least two muscles are necessary to actuate each degree of free-42

dom [8]. Furthermore, computationally expensive optimization-based solutions, which are unlikely43

to represent how humans control motions, are used to compute a high number of control signals.44

Thus, it is necessary to define compact control schemes reducing the complexity of the control45

for such applications. Neuroscience provides several interesting ways to circumvent this issue, such46
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as the theory of muscle synergies [9, 1], that tries to reduce redundancy by identifying a simple and47

generic control representation of given tasks. This theory is based on an interesting hypothesis of48

how redundancy is handled by the central nervous system (CNS): it assumes the existence of links49

between the ensemble of muscle control signals during the performance of a task, which reduces50

redundancy. Thus, through synergies, the muscles are controlled as groups and not individually.51

There is support for a neural organization of these synergies [10, 11] while remaining an open52

question [12, 13]. Even if the interpretation of the low-dimensionality revealed by decomposition53

methods is subject to debate [14, 15], these methods allow the creation of a compact and low54

dimensional control representation based on experimental data for simple and complex motions.55

Indeed, electromyography (EMG) signals processing strategies (Principal Components Analysis,56

Non-negative Matrix Factorisation) are able to extract compact features from EMG signals, even57

if these extracted synergies may be a consequence of a more complex mechanism [16, 17]. Many58

studies have extracted synergies during a variety of simple upper body human motions (such as59

pointing and reaching [18, 19]). However, to the authors’ knowledge, only few studies have dealt60

with complex, unconstrained (or free), and dynamic motion [20, 21] and, among them, overhead61

throwing is interesting to analyze through this theory.62

An overhead throwing motion consists in launching an object forward and above the shoulder63

by using one arm. This is the type of motion with which humans can throw with speed and64

accuracy [22]. Unlike simple manipulation tasks such as reaching, lifting, pulling and pushing, this65

task is more complex, requiring a higher coordination, accuracy, and skill. Thus, it is a highly66

redundant and nonlinear task, which involves a dynamic manipulation [23]. It is highly redundant67

because there exists an infinite number of solutions or movements that achieve the same target hit.68

It is highly non-linear due to the fact that positions and velocities are coupled, and that in order69

to hit the desired target, at the moment of ball release the hand velocity, position, and the object’s70

time of flight should satisfy the parabolic projectile equation. Finally, it is also dynamic because71

of the high accelerations and momentum at certain motion phases. Thus, the aim of this work is72

to identify a compact representation of the control mechanism behind overhead throwing motions,73

in order to: 1) validate a control representation extraction methodology, and 2) produce a low-74

dimensional control representation which could later be exploited to synthesize throwing motions75

in animation. Such representations could later be extracted from other types of throwing motions76

(such as sidehand and underhand throws) and simpler arm motions such as pointing, to feed a77

controller library that may produce variety of motions from these compact representations [24].78

The generic representation should contain a reduced set of control variables (less than the79

number of joint actions in study). It should also encode important temporal and spatial control80

trends, invariant over a variety of morphologies. Finally, it should show some of the links between81

these control variables and task space goals or features, that has to be used as controller inputs in82

motion synthesis tools. One of our previous work [25] has shown that the control strategy could83

be represented as synergies during throwing motions. However, this analysis comprehended solely84

the activation space and a unique subject. In this paper, we propose to extend this analysis by85

extracting control strategies from a variety of subjects, and by analyzing their relationships with86

kinematic goals.87

For this purpose, we present an analysis to identify generic representations of control strategies88

starting at the task space level, joint space level, until finally reaching the activation (or actuation)89

space level, where we extract the synergies or basis control functions. First, the experimental90

setup used to extract the motion and muscle data is presented. Next, the control variables or91

features at the task, joint, and activation spaces are defined. This is then followed by a detailed92

explanation of the methods used to extract the control representation, which encompass clustering93

and matrix factorization techniques. Two methods were used to extract the muscle synergies and94

the consistency of their results is assessed. Finally, the generic control strategies representations95

are illustrated and explained. Results show the existence of a generic control representation at96

the activation level for a variety of morphologies during throwing tasks, and its relationship with97

task space goals and features. Our new model could be later used to control a larger variety of98

characters and a larger family of motions involving similar task space goals.99
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4 Materials and Methods100

4.1 Experimental Setup101

4.1.1 Subjects102

Ten healthy men (age 29.8 ± 5.6 years old; weight 72.4 ± 9.9 kg; height 1.77± 0.07 m) volunteered103

for the experiments. The subjects were all right handed and all except one (subject 3) had never104

suffered injuries in the right arm. Furthermore, none of the participants were professional athletes,105

and they all had different physical conditions (with a mean number of hours of sport activity per106

week of 3.85 ± 3.07). Each subject provided a written informed consent form before participa-107

tion.The experimentation was conducted in accordance with the Declaration of Helsinki (1964).108

The study was approved by the ethics committee of the M2S laboratory of University of Rennes 2.109

4.1.2 Task110

A series of experiments were conducted where the task consisted of a right-hand overhead throw111

to a static target placed at different distances from a fixed throwing site. The target was placed at112

2 m, 4 m, and 7 m along a straight line from the throwing site. The target was a hole of diameter113

0.7 m placed at 1.5 m from the ground. The ball was a standard american football ball, 0.28 m114

long and 0.15 m large, weighing 0.4 kg. Before beginning the experiments subjects underwent a115

short training where they practiced long distance throws for 5 to 10 minutes. Once the training116

was finished the experiments began. During these experiments, the throwing order was randomized117

(to reduce learning effects) and for each distance the subjects performed 6 throws for a total of 18118

throws. A description of the motion and the experimental setup are featured in Figures 1 and 2.119

The overhead throw is composed of four main stages [26]: Starting position, cocking, acceleration,120

release and follow-through. In the starting position the thrower positions his body sideways with121

respect to the intended target. The cocking phase consists of the motion between the starting122

position until maximum external rotation is reached, before the ball starts to move forward. The123

acceleration begins as the ball is moved forward and finishes when the ball is released. This phase124

is known as the explosive phase since the velocity of the ball changes from zero to its maximum in125

a short time period. Finally, the release and follow-through phase consists in a deceleration of the126

throwing arm once the ball is released.127

Figure 1: Overhead throwing motion. Example of an overhead throwing motion to a 4 m
target (bone graphics issued from [27]). Representative posture of each phase of the motion are
shown.

For each throw, the subject stood in starting position (see Figure 1). Recording began (onset)128

when a motion of the hand was detected (threshold at 0.05 m/s) and ended when the ball was129

released (offset).130

4.1.3 Data Acquisition and Processing131

During the throwing task the activity of several muscles of the right arm and body kinematics132

were recorded. For this study we focused on studying 4 degrees of freedom (DoF), and 6 mus-133

cles. The Segmental Interaction Principle states that energy can be transferred between segments,134
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Figure 2: Experimental Setup. The setup consisted in a throwing site and a target that could
be placed at 2, 4 and 7m from the thrower. Motion capture was done thanks to 16 cameras and
EMG measurements were done through a wireless EMG system.

and in both simultaneous and sequentially coordinated movements, energy is transferred through135

the linked segment system of the body [28]. However, studies have shown that unlike baseball136

throwing, in football throwing (or passing) the rotations or contributions of the legs, pelvis, and137

upper torso are limited [29]. Thus, we decided to first focus on the arm’s kinematic chain (be-138

ginning at the glenohumeral joint), and on the degrees of freedom with the highest contribution139

to throwing per segment. These degrees of freedom were the shoulder internal/external rotation,140

and shoulder, elbow and wrist flexion/extension. The shoulder internal/external rotation and el-141

bow flexion/extension were especially selected due to the fact that they are the major upper limb142

actions during throwing [23], mainly during the acceleration phase [30].143

Next, we selected a set of muscles which contained: 1) at least an agonist and antagonist muscle144

per each DoF under study, 2) muscles with important contributions during throwing [31, 32], and145

3) muscles which could be reached by surface EMG electrodes [33]. Thus, the recorded muscles were146

the deltoid posterior and anterior, the biceps, the triceps long, and the wrist extensors (extensor147

digitorium, extensor carpi radialis and ulnaris) and flexors (flexor digitorium, flexor carpi radialis148

and ulnaris), which were recorded as a group.149

The muscle activity was collected using wireless surface EMG electrodes (Cometa Waveplus150

EMG system) and well known electrode placement protocols [33, 34]. This activity was then pro-151

cessed using a standard protocol [35]: The EMGs were amplified (gain 1000), digitized (1kHz),152

band-pass filtered (10-450 Hz, 4th order butterworth filter with no phase shift), rectified, and153

low-pass filtered (6 Hz, 4th order butterworth filter with no phase shift [36]). Additionally, elec-154

trocardiogram (ECG) artifacts were removed using an ICA-based filtering procedure [37]. Motion155

was captured using a Vicon system (16 cameras, 100Hz sampling rate) and reflective markers. The156

markers were placed on bony landmarks (49 markers) as recommended by the International Society157

of Biomechanics (ISB) [38, 39, 40, 41], around the target (6 markers), and on the ball (9 markers)158

(Figure 3). Each of the marker trajectories was low pass filtered (10 Hz, 4th order Butterworth159

low pass filter with no phase shift).160

4.2 Control Features161

The throwing motions can be characterized at three different levels: in the task space, in the joint162

space, and in the activation space (muscular space). The following sections aim at characterizing163

the motion at each of these levels through the definition of a set of kinematic and muscular features.164
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Figure 3: Marker and EMG placement. [33, 34] recommendations were followed for the EMG
placement, whereas reflective markers were placed following the ISB recommendations with small
adjustements [38, 39, 40, 41].

4.2.1 Task Space Features165

Overhead throwing motions are horizontal projectile motions which are determined by three factors:166

velocity of release, height of release, and angle of release [42]. Based on this observation a set of task167

space features was defined and analyzed across task space conditions. These task features were: the168

hand velocity of release and the hand release height which was normalized by the subject’s height,169

as shown in Figure 4. The angle of release was not considered due to its difficult estimation caused170

by marker occlusion - some of the markers of the arm were lost at the time of release of the ball,171

and the release angle computation was very sensitive to the methods used to reconstruct missing172

trajectories of the markers. Nevertheless, studies have shown that the most important parameter173

when determining range of throwing is the release speed [43, 44]. This is also evidenced by the174

equations of projectile motion, which show that the range is roughly proportional to the square of175

the release speed.176

Figure 4: Subject at release time and corresponding task space features. The features
consists in the hand release height and the hand velocity of release. Marker occlusion prevented
the definition of the angle of release as a reliable feature.

The time of release (trel) was computed as the instant at which maximum hand velocity was177

reached, since it is known that this event occurs almost in parallel to the ball release in the178
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acceleration phase. For this purpose, a reflective marker was placed on the outer side of the179

hand (third metacarpal bone) and its position was recorded. After the derivation of this marker’s180

trajectory, the maximum hand velocity or velocity at release (v) was computed as follows:181

v = max

(√
vx(t)

2
+ vy(t)

2
+ vz(t)

2

)
(1)

Where vx(t), vy(t) and vz(t) are the velocity components of the hand marker in the global182

coordinates frame, as defined in Figure 4 (~x front, ~z up). The hand height at release (h) was183

determined as follows and divided by the subject’s height to allow an inter-subject comparison:184

h =
hz(trel)

hsbj
(2)

Where hz is the hand marker’s position component along z, and hsbj is the height of the subject.185

These two features were computed for each subject and repetition. Then, they were grouped186

per throwing distance (d), which could be 2 m, 4 m or 7 m, yielding a total of six vectors. The187

means and standard deviations of these vectors were later calculated, resulting in one task feature188

vector for subject j:189

fT,j =
[
v2m,j v4m,j v7m,j h2m,j h4m,j h7m,j

]
(3)

4.2.2 Joint Space Features190

The joint space features consisted in the joint positions and velocities. The joints positions were191

estimated from motion capture, with an inverse kinematics method allowing the segment lengths192

and marker positions to be calibrated [45]. The joint velocities where computed by deriving the joint193

position trajectories. The joint space analysis focused on the following degrees of freedom of the194

throwing arm: shoulder internal/external rotation, and shoulder, elbow, and wrist flexion/extension195

(q1(t), q2(t), q3(t) and q4(t) respectively).196

An average trajectory was computed for each subject, each degree of freedom, and each throwing197

distance. These trajectories were later time normalized across subjects in order to allow the inter-198

subject comparison in section 4.3.1. A joint space feature vector per subject j was constructed,199

containing the mean joint position Qd matrices per throwing distance:200

fQ,j =
[
Q2m,j(t) Q4m,j(t) Q7m,j(t)

]
(4)

Where, each joint position matrix contains the average positions (q(t)) per DoF,201

Qd =
[
q1(t) q2(t) q3(t) q4(t)

]
(5)

4.2.3 Activation Space Features202

The control done at the muscle level is the one that interests us the most, since it is the actuation203

space. This control can be described via muscle activations. However, an activation representation204

is redundant since there are more muscles than degrees of freedom and each muscle needs its own205

activation signal. A simpler and less redundant representation of these signals can be achieved via206

muscle synergies [46, 18].207

One way to represent such synergies is via the time-invariant synergy model [25, 8]. In this208

model a synergy wi is defined as a M × 1 vector of coefficients, specifying the relative activation209

level of M-muscles. Each synergy is paired with a time-varying combination coefficient vector ci(t)210

(1 × T ), which determines its temporal evolution. A set of N-synergies can be linearly combined211

to generate M-muscle activation patterns A(t):212

A(t) = WC(t) =
[
w1 w2 ... wN

] 
c1(t)
c2(t)
...

cN (t)

 (6)
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Where, A(t) is the M × T samples matrix containing the recorded muscle activations patterns,213

W is the M × N muscle synergy matrix, and C(t) is the N × T samples combination coefficient214

matrix. To separate and highlight the contribution of each synergy wi and its coefficient ci(t) to215

the muscle activation patterns, the previous equation can also be written as:216

A(t) =

N∑
i=1

wici(t) (7)

Based on this model, the time-invariant activation space feature fA was defined as the matrix217

W , and the time-variant activation space feature fAt
(t) was defined as the matrix C(t):218

fA = W (8)

fAt
(t) = C(t) (9)

Where,219

C(t) =
[
C2m(t) C4m(t) C7m(t)

]
Each sub-matrix Cd(t) is of dimensions N × Td, where Td is the total number of samples220

contained in the throws to distance d.221

In our case, this model was used in two methods (see section 4.3.2). Their results were com-222

pared to test their robustness and consistency. The first method consisted in extracting a synergy223

model (W,C(t)) per subject, and the second method consisted in extracting one synergy model224

representative of all subjects. Thus, in the first case a variety of W matrices were generated repre-225

senting each subject’s throw, and in the second case a single W matrix was generated representing226

all subjects and throws.227

For both models the combination coefficient matrix C(t) encoded the temporal evolution of228

the synergies during each throw. These coefficients will be further described in terms of: 1) their229

shapes, 2) how their energy changes with throwing distance, and 3) their triggering order. In230

general, the average image of the energy Eci,d of each combination coefficient ci,d contained in231

matrix Cd(t) was computed as follows:232

Eci,d =

∑Td

s=1 |ci,d(ts)|
2

n
(10)

Where n is the number of trials per throwing distance, and ts the current time sample.233

4.3 Control Representations Extraction234

Once the features to analyze were defined at each level (task, joint, and activation spaces) and for235

each subject j, control representations based on these features were extracted. The objective of236

such an extraction was to verify if a generic control representation existed for overhead throwing237

across subjects. Such representations are denoted by an index All, which generalizes the subject238

feature vectors (j) of the previous sections to all participants.239

The identification of these representations was made through clustering algorithms for the240

time-invariant features and averaging and cross-correlation for the time-variant features.241

Clustering is a technique that consists in the assignment of features into groups or subsets based242

on a similarity criteria. In the next sections we will see that the existence of a generic representation243

in each space will depend on the number of clusters or groups found with these techniques.244

The first step before using the clustering algorithms is feature scaling. This preprocessing step245

is necessary due to the fact that clustering algorithms use distances to classify features. Thus,246

features should be standardized such that they have contributions of equal importance in the247

distance measurements.248

Two different types of clustering algorithms were used to extract control representations from249

the time-invariant features: a centroid-based clustering (k-means) algorithm and a connectivity-250

based clustering algorithm (hierarchical clustering). These two algorithms were used in order251

to verify if different techniques yielded similar control representations. Furthermore, the specific252
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interest in using hierarchical clustering was to verify if the chosen number of clusters of the k-means253

algorithm matched the natural divisions in the data.254

K-means clustering is an iterative algorithm for data partitioning that assigns or classifies255

features into one of k clusters defined by centroids. The main steps of the algorithm are the256

following, given k: 1) select k initial cluster centroids, 2) compute the distances between each257

feature to each cluster centroid, 3) assign the features to the cluster with the closest centroid all258

at once (phase 1), and individually reassign points if it reduces the sum of distances (phase 2), 4)259

obtain new centroids by averaging the features in each cluster, and 5) repeat steps 2-4 until the260

assignments do not change or the iterations reach their maximum. The k-means++ algorithm in261

MATLAB was used with a squared euclidean norm to compute distances. The advantage of this262

algorithm is that it uses the heuristic in [47] to find centroid seeds for k-means clustering. This263

induces a faster convergence to higher quality solutions, or to a lower sum-of-squares point-to-264

cluster centroid distances (within each cluster). Finally, in order to assess the k-means clustering265

quality an indicator called cluster silhouette was computed [48, 49]. This indicator enables us to266

distinguish clear-cut clusters from weak ones. It measures how similar the features are to features267

in their own cluster, when compared to features in other clusters, and is computed as follows:268

Sil =
(bj − gj)

max(bj , gj)
(11)

Where, gj is the average distance from the jth feature to the other features in the same cluster269

as j, and bj is the minimum average distance from the jth point to points in a different cluster,270

minimized over clusters. The silhouette value can range from −1 to 1. By averaging the silhouette271

values of each feature in the cluster, an average silhouette (Sil) can be obtained for the entire272

cluster. A subjective interpretation for this value was proposed by the authors of [49] to assess the273

clustering quality, as shown in Table 1.274

Table 1: Assessment of k-means clustering quality [49].
Subjective Interpretation of the average silhouette value

Sil Proposed Interpretation
0.71-1.00 A strong structure has been found
0.51-0.70 A reasonable structure has been found
0.25-0.50 The structure is weak and could be artificial; try additional methods on data set
≤ 0.25 No substantial structure has been found

This interpretation was used to select with which number k of clusters the data was well275

separated (Sil ≥ 0.71) or if no separations could be made, in which case only a single cluster276

exists.277

To complete this assessment, hierarchical clustering was also used to partition the feature space278

into groups. Hierarchical clustering is an algorithm for cluster analysis that aims at grouping fea-279

tures at different levels using a cluster tree or dendrogram. In agglomerative hierarchical clustering280

each feature starts in its own cluster, these clusters are then combined via a metric and a linkage281

criterion. The metric defines a distance between pairs of features, and the linkage criterion defines282

the distance between sets by computing the pairwise distances between features. An advantage of283

this strategy is that it does not need an initial indication of the number of clusters, and therefore,284

it reveals the natural divisions in the data. For its implementation, the hierarchical algorithm tools285

in MATLAB were used with the euclidean distance as metric, and an unweighted average distance286

(euclidean) for the linkage.287

The following sections present how these methods and the synergy extractions [9] were used to288

extract control representations across subjects.289

4.3.1 Task and Joint Space Control Representation Extraction290

First, we determined if a common representation existed across subjects in task space. Thus, the291

feature vectors fT,j in Eq(3) were first standardized, and then given as inputs to the clustering292

algorithms. First, the k-means algorithm was applied by varying the number of clusters and293
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checking how well the clusters were separated thanks to the clusters’ silhouette values. In this294

space, since each subject is characterized by a single vector, we expect a common representation295

to exist when k = 1. In other words when the features are so similar, that well separated clusters296

cannot be formed. If this was the case, then the common strategy was defined by averaging the297

task feature vectors across subjects:298

fT,All =
[
v2m,All v4m,All v7m,All h2m,All h4m,All h7m,All

]
(12)

To further verify the results of k-means, hierarchical clustering was then applied. This algorithm299

does not need an initial estimate of the desired number of clusters, thus, it was used in order to300

determine if the natural cluster divisions of the data agreed with the results provided by k-means.301

In other words, if no natural cluster divisions were found and a common task control strategy across302

subjects existed. Finally, a Wicoxon rank sum test was performed on the features across subjects303

to detect significant changes in their values with regard to the throwing distance (confidence level304

below 0.05).305

At the joint space level, the features fQ,j used to represent the motion are all time varying306

(average joint positions per subject). Therefore, cross-correlation was used to evaluate the similarity307

of the joint trajectories and velocities across subjects and throwing distances. A high correlation308

signified that the joint trajectories or velocities were similar among subjects. Low correlations309

signified very low kinematic similarities. The common joint space strategy was then defined by310

averaging the joint trajectories and velocities across subjects:311

fQ,All =
[
Q2m,All(t) Q4m,All(t) Q7m,All(t)

]
(13)

4.3.2 Activation Space Control Representation Extraction312

The synergies and their combination coefficients (section 4.2.3) were extracted via a NMF (non-313

negative matrix factorization) [50] algorithm. This algorithm decomposes a non-negative matrix314

into a non-negative linear combination of basis vectors, by solving the following optimization prob-315

lem:316

minimize
W,C

1

2
||A(t)−WC(t)||2F

subject to W,C(t) ≥ 0

(14)

When applying this algorithm, the synergy model order or number of synergies to extract317

should be defined. To do this we used two criteria. The first criteria consisted in choosing a318

number of synergies N less than the number of recorded muscles M = 6 in order to obtain319

a lower dimensional control representation. The second criteria attempted to preserve a good320

quality in the reconstruction of the original activations. Therefore, a criterion based on the average321

coefficient of determination r2 between the original and reconstructed muscle patterns [9, 18] was322

used. This criterion states that the chosen number of synergies should correspond to the sharpest323

change in the slope of the r2 curve (Figure 10)). This change in slope is interpreted as the point324

separating "structured" from noise-dependent variability. After this point, additional synergies325

start to capture only the small residual noise-dependent variability, therefore, this can be used to326

define the minimum number of synergies that capture the task-related features [51, 52, 46]. We327

highlight the fact that these criteria guarantee that the number of control variables N will be less328

than the number of muscles or actuators, however there is no guarantee that they will be less than329

the number of DoF. This is a possible added value of a representation through synergies. The330

NMF algorithm used was the one developed in [53] and the update rule used was the non-negative331

least squares one.332

We employed two methods for identifying a representative synergy (or time invariant features)333

using this extraction algorithm. The first is based on k-means [54] and hierarchical clustering,334

and the second one is based on the identification procedure in [9]. The comparison of the results335

extracted from both methods was useful to test the consistency and robustness of these extraction336

methodologies.337
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The first method consisted of 3 stages: 1) extraction of individual subject synergy models, 2)338

standardization of wi vectors, and 3) application of k-means and hierarchical clustering algorithms.339

In the first stage matrix A(t) (6 muscles x 3600 samples) was constructed by concatenating the ac-340

tivation signals for all the trials of individual subjects. This method enabled us to take into acount341

intra-subject variability in the synergy extraction. The concatenated signals were normalized by342

their maximal value to obtain activations framed between 0 and 1. Next, NMF was applied on343

this matrix to obtain one N-synergy model (W , C(t)) per subject. Once a model was obtained344

for each subject, the synergy matrices W were standardized for their use in the clustering algo-345

rithms. Essentially, each synergy wi of each subject was a feature vector containing the relative346

activation levels of the muscles. These vectors were treated individually and without specifying347

their correspondence to a specific subject. They were used to create a synergy pool on which348

k-means and hierarchical clustering were applied in order to identify common features among this349

synergy pool. The k-means algorithm was applied first while varying the number of clusters k. We350

expected a unique strategy to exist when k = N , in other words when the number of clusters is351

equal to the number of synergies extracted for each subject. If this was the case, then the centroids352

of these clusters represented the mean synergy vectors, or the representative activation control353

representation for all subjects through method I (WI,All).354

fA,All = WI,All (15)
Finally, hierarchical clustering was applied. This algorithm was used in order to determine if355

the natural cluster divisions of the data corresponded to the number of k-means centroids.356

The second synergy extraction method consisted in the direct identification of a common ac-357

tivation control strategy for all subjects, based on [9]. In this method, the NMF algorithm was358

applied on a matrix A(t) (6 muscles x 36000 samples) , constructed by concatenating the activation359

signals for all trials of all subjects. Therefore, by applying NMF on this pool of EMG signals one360

common synergy model (WII,All) was found for all subjects.361

fA,All = WII,All (16)
However, the coefficients (CII(t)) in this method encoded how much and when each synergy362

was triggered for each repetition and subject. Therefore, to identify a common time-varying control363

representation for all subjects and repetitions (CII,All(t)), averaging and correlation computation364

were used. First, the mean combination coefficients per subject, per throwing distance were com-365

puted. Next, cross-correlation was used to make comparisons across subjects at each throwing366

distance. Thus, a common combination coefficient was computed by making a second averaging367

across all subjects .368

fAt,All(t) = CII,All(t) (17)
Where CII,All(t) contains the coefficient matrices per throwing distance,369

CII,All(t) =
[
CII,2m,All(t) CII,4m,All(t) CII,7m,All(t)

]
(18)

5 Results and Discussion370

5.1 Global Considerations371

The motion, as defined in the task description above, had an average duration of 1.67 ± 0.27 s for372

all the throws made by all the subjects. Thus, the standard deviation seemed sufficiently low to373

compare the different throws and normalize them against time, as it has been done for some of the374

processings of extraction. Subjects had a global performance higher than 80%, meaning that the375

task was quite easy to perform and reproducible from one trial to one other. The following sections376

detail the representations extracted from the experimental data in the task, joint and activation377

spaces. For all the cross-correlation we performed, the mean value of the lag was about less than378

10−15% of the signal length, meaning that most of the signal shapes were comparable directly.379

Therefore, we did not present the lags related to cross-correlation results in the corresponding380

tables.381

10



5.2 Task Space Control Representation382

The subject task features fT,j were collected and a representative task space control representation383

fT,All was extracted as described in section 4.3.1. The task feature vector for each subject is384

featured in Figure 5. A gradual increase in hand release velocity and height can be seen across385

subjects as the throwing distance increases. Moreover, as evidenced by the Wilcoxon rank sum386

test, this increment is statistically relevant in 9/10 subjects for the hand velocity, and in 7/10387

subjects for the hand height.388
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Fig 5. Task space features per subject and throwing distance.

K-means was applied first while varying the number of clusters k. Fig.6 shows each 386

cluster’s silhouette as k increases. The average silhouette value Sil remains below 0.71 387

(Table 1) until k = 5. However, although the threshold is surpassed clusters containing 388

1-2 subject vectors begin formed. Therefore, from the k-means analysis we can conclude 389

that the subjects do not employ significantly different task space strategies, and that 390

only one task space strategy exists with the chosen set of features. 391

Fig 6. Task space cluster separation quality using k-means. Strongly
separated clusters (Sil ≥ 0.71) cannot be found. A single cluster or a common
kinematic strategy in the task space exists across subjects.

Hierarchical clustering was then applied in order to verify if there was indeed only 392

one strategy, and if there were any natural and significant divisions in the data. Fig.7 393

features the resulting cluster tree or dendrogram. In this tree no significant divisions are 394

found. This is shown by the fact that heights of the links at the top of the hierarchy are 395

not significantly different from the heights of the links below them, indicating similar 396

and even shorter distances between clusters than between the features they contain. 397

Furthermore, with this procedure we can also see that as the number of clusters 398

increases, groups containing very few subject vectors begin to be formed. 399

Fig 7. Task space cluster separation using hierarchical clustering. Strongly
separated clusters are not found. The heights of the links at the top of the hierarchy do
not differ significantly from the heights of the links below them, indicating a shorter
distance between clusters than between the features they contain.

Consequently, we concluded that there exists one kinematic strategy in the task 400

space (fT,All) for all subjects. A strategy which consists in increasing the hand release 401

velocity and height as the throwing distance increases (Fig.8). In average, as this 402

distance increased 2-3m, the hand velocity (v) increased by 1.3m/s, and the 403

hand-height/subject-height (h) by 0.05m. The distance or range, was also roughly 404

proportional to the square of the release velocity, as can be evidenced through the 405

equations of projectile motion. Both of these observations are consistent with other 406

studies that indicate an increase in height and speed with throwing distance, and the 407

existence of a proportionality relationship between speed and range [9]. 408

PLOS 12/21

Figure 5: Task space features per subject and throwing distance. Both hand release
velocity and release height increased with the throwing distance for all the subjects.

Next, k-means and hierarchical clustering were applied on the feature vectors in order to deter-389

mine if one sole task space control representation existed. We expected a unique control represen-390

tation if no strong separated groups can be found among the subject task vectors, in other words391

if a single cluster exists.392

K-means was first applied while varying the number of clusters k. Figure 6 shows each cluster’s393

silhouette. The average silhouette value Sil is below 0.71 (Table 1) as k increases. At k = 5 , it394

reaches a value above this threshold but clusters containing 1-2 subject vectors begin to be formed.395

Therefore, since the k-means analysis did not differentiate the subjects, a common representation396

of the control at the task space level can be obtained from the averaging of the task space features.397
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Figure 6: Task space cluster separation quality using k-means. Strongly separated clusters
(Sil ≥ 0.71) containing a similar number of subjects cannot be found. A single cluster exists across
subjects.

Hierarchical clustering was then applied in order to verify if the results of the k-means clustering398

was consistent with the natural division of the data. The hierchical clustering was only used to399
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consider qualitative and visual informations about data division. Figure 7 features the resulting400

cluster tree. In this tree, no visually significant divisions are found. This is shown by the fact401

that heights of the links at each level are not qualitatively different from the heights of the links402

below them, indicating a high closeness across groups. Furthermore, with this procedure we can403

see that as the number of clusters increases, groups containing very few subject vectors begin to be404

formed. Consequently, we concluded that all subjects were presenting similar changes in the task405

space features with regard to the task constraints (throwing distance). In other words, subjects406

increased significantly the hand release velocity and height as the throwing distance increased.407

The average task features fT,All were computed by averaging the subject task feature vectors and408

it is shown in Figure 8. Velocity increments of about 1.3 m/s and hand-height/subject-height409

increments of 0.05 are seen as the distance increases by 2 to 3 m. Moreover, the range is roughly410

proportional to the square of the release speed, as can also be evidenced through the equations411

of projectile motion. Thus, our results are consistent with other studies that indicate an increase412

in height and speed with throwing distance, and the existence of a proportionality relationship413

between speed and range [23]. This is a straightforward result that may be mostly induced by the414

motion contraints (distance to throw, motion type) and the difference of strategy between subjects415

may appear in the amount of changes from one distance to one other as it can be observed in416

Figure 5. However, the averaging of the task space features as a unique representation of the417

control in the task space makes sense since the trends featured in Figure 8 respects the same418

pattern as the one seen for all the subjects.419

 8 10  1  9  2  6  3  5  4  7
1

1.5

2

2.5

3

3.5

4

Individual subjects task space features

D
is

ta
nc

e 
be

tw
ee

n 
cl

us
te

rs

Figure 7: Task space cluster separation using hierarchical clustering. In this case the
clusters are not well separated.

5.3 Joint Space Control Representation420

The subject joint features fQ,j were then used to determine if a common joint space control rep-421

resentation fQ,All existed, as described in section 4.3.1. The features showed a high repeatability422

across subjects at each throwing distance, regardless of the inexperience and small differences in423

style of our throwers. These kinematic similarities were quantified as correlations among subjects,424

and are shown in Table 2. As the throw is performed, the motion is repeatable in the forward425

direction. Thus, high correlations are seen in the joint trajectoriess, especially in shoulder (q2(t))426

and elbow (q3(t)) flexion/extension. Lower but still significant correlation is seen in the shoulder427

internal/external rotation (q1(t)) and wrist flexion/extension (q4(t)). The differences in inter-428

nal/external rotation (q1(t)) could be due to each subject’s throwing style. While the differences429
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Figure 8: Representative task space representation for all subjects (fT,All). These are the
mean and standard deviation values of the features shown in figure 5. The global increase of both
features with regard to the throwing distance is straightforward.

Table 2: Mean inter-subject cross-correlation coefficient per throwing distance.
Mean inter-subject cross-correlation coefficient per throwing distance

DoF corr2m corr4m corr7m
q1 0.6681± 0.2396 0.7493± 0.1579 0.6335± 0.2048
q2 0.9684± 0.0259 0.9494± 0.0485 0.9403± 0.0529
q3 0.9723± 0.0207 0.9526± 0.0316 0.9329± 0.0394
q4 0.6025± 0.2520 0.6077± 0.2634 0.6210± 0.1922
q̇1 0.7349± 0.1012 0.6290± 0.1392 0.4830± 0.1317
q̇2 0.6878± 0.1257 0.6374± 0.1671 0.5588± 0.1063
q̇3 0.8170± 0.1036 0.8502± 0.0880 0.7954± 0.0840
q̇4 0.7217± 0.1309 0.6540± 0.2192 0.7277± 0.1226

in wrist flexion/extension (q4(t)) could be linked to the fact that the most distal segments have430

larger contributions to accuracy over speed [32, 55].431

In terms of articular velocities the motion is less repeatable. Nevertheless, as seen in the432

previous section, different velocity control strategies in the joint space can result in a common433

velocity feature in the task space accross subjects. These differences may be linked to individual434

differences in the throwing strategy and can not be used as a common feature of the control435

representation in the joint space.436

Finally, a representative joint space control strategy was computed by making averages across437

subjects and throwing distances for joint trajectory included as a feature. This control representa-438

tion is featured in Figure 9 and in Table 3. Similar kinematic trends are shared across throw types.439

For instance, as the throw progresses, the shoulder is internally rotated and flexed, while the elbow440

is extended and the wrist is gradually flexed. Lastly, these similarities were also reflected in the441

inter-subject and inter-distance correlation, which resulted in very high correlation coefficients for442

all DoF, as shown in Table 3.443

5.4 Activation Space Control Representation444

The synergy extraction method described in section 4.3.2 was applied on each of the subject’s445

EMG dataset while varying the number of synergies. The objective was to identify a model with446

less synergies than the number of recorded muscles or actuators (N < M), for each subject, that447

would guarantee a good reconstruction of the original EMG signals. Figure 10 depicts the quality448
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Figure 9: Representative joint space strategy for all subjects (fQ,All). Computed by
averaging joint features across subjects for each DoF. Solide lines are the average values, dashed
lines the standard deviation values. The joint space analysis focused on the following degrees of
freedom of the throwing arm: shoulder internal/external rotation, and shoulder, elbow, and wrist
flexion/extension (q1(t), q2(t), q3(t) and q4(t) respectively). Angles are given in degrees.

Table 3: Mean inter-subject and inter-distance cross-correlation coefficients. The repre-
sentative joint space strategy shown in Figure 9 was correlated across throwing distances.

Mean inter-distance cross-correlation coefficients
DoF corr2m,4m,7m

q1 0.9171± 0.0213
q2 0.9989± 0.0005
q3 0.9991± 0.0004
q4 0.9315± 0.0467

of reconstruction r2 for each subject and synergy model. The sharpest change in slope of this curve449

occurred at N = 2 for 8 subjects and at N = 3 for 2 subjects. Thus, we opted for the 2-synergy450

model which allowed an average quality reconstruction of 0.7382 across subjects.451

5.4.1 Synergy Model (W)452

Method I was applied in order to determine a common representation of the control in the activation453

space. First, the 2-synergy models were extracted for each subject. Then, a pool containing the454

individual synergies wi of all subjects was constructed, without specifying if the synergies belonged455

to the same subject. Thus, the pool contained 20 synergies (2 synergies per subject). Finally, k-456

means clustering was applied on this pool while varying the number of clusters k. We expected a457

common control representation to exist when k = N , or when the number of clusters is equal to458

the number of synergies extracted per each subject. Figure 11 shows that indeed, the best cluster459

separation is achieved at k = N or k = 2, where the average silhouette value for both clusters is460

equal to 0.7181. If a higher number of clusters or separations is found, the average silhouette values461

decrease and clusters containing very few synergies are formed. This evidences that 2 clusters are462

sufficient to classify the synergies.463
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Figure 10: Activation reconstruction quality across synergy models per subject. The
NMF algorithm was applied on each of the subject’s EMG data set while varying the number of
synergies (N). The resulting curve depicts the r2 values for each model.
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Figure 11: Cluster separation quality using k-means. Strongly separated clusters (Sil > 0.71)
are found at k = N or k = 2. A common activation space control representation exists across
subjects.

To further verify if the natural divisions of the data corresponded to 2 groups of distinctive464

synergies, hierarchical clustering was applied. This resulted in the cluster tree in Figure 12. In465

this tree we can see how the 20 synergies in the pool are partitioned into 2 clusters as well. This466

is shown by the fact that the link separating the synergy data into two branches is inconsistent467

with the links below it. It indicates a higher closeness among the synergies within each group than468

across each group.469

Interestingly, the individual synergies within each cluster in the tree matched those in the470

clusters computed via k-means. Thus, a mean activation control representation WI,All for all471

subjects was extracted from the centroids of the 2-cluster model obtained via k-means (Figure 6472

top). Each of these centroids or mean synergies contains the relative action levels of groups of473

muscles. Finally, we wanted to demonstrate how well the synergy WI,All represented all of the474

subjects’ individual synergies. In order to do this, the normalized dot product between the synergy475

WI,All (centroid) and each of the subjects’ 2-synergy models W (cluster points) was computed.476

The results showed that a high similarity exists between these models, with a mean normalized477

dot product of 0.9495± 0.0485 for w1, and 0.9170± 0.0537 for w2.478

Method II was then applied to identify the representative synergy model directly from a pool479

containing the EMG signals of all subjects. Thus, this pool contained 6 signals (one per muscle),480

and each signal contained 180 concatenated activations corresponding to each of the subjects’ trials481

(10 subjects, 3 throwing distances, 6 trials per distance). As in the individual subject synergy482

extractions, the number of synergies was chosen as the number corresponding to the sharpest483

change in the r2 curve. This change occurred again at N = 2 synergies, where the quality of484

reconstruction was of 0.6526. This slight decrease in quality of reconstruction with respect to the485

individual extractions is expected since method II attempts to reconstruct a higher number of trials486

performed by different subjects simultaneously.487

The resulting representative synergy WII,All is depicted in Figure 13 (bottom). Again, each488

synergy contains the relative activation levels of a group of muscles throughout the motion. The489

first synergy w1 can be seen as the agonist synergy, and the second synergy w2 can be seen490
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Figure 12: Synergy clusters using hierarchical clustering. Natural data divisions are found
when the height of a link strongly differs to the height of the links below it. Thus, in this case the
clusters are well separated.
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Figure 13: Representative activation space strategy (synergies) WI,All and WII,All for
all subjects. A common control representation in the activation space was identified for the
time-invariant part of the synergies (W) through method I and method II.

as the antagonist synergy to the motion. Therefore, w1 contains a high activation of muscles491

corresponding to shoulder flexion, internal rotation (deltoid anterior), elbow extension (triceps492

longs) and wrist flexion (wrist flexor group). While w2 contains a high activation of muscles493

corresponding to elbow flexion (biceps), wrist extension (wrist extensor group), and a very low494

activation of the shoulder muscles (deltoid anterior and posterior).495

Finally, the representative synergy vectors (W ) computed with both methods are similar, as496

shown by their normalized dot products (0.9248 for w1 and 0.9524 for w2). Consequently, a com-497

mon grouping and relative activation of muscles was found for different task space conditions and498

subjects during a throwing motion. This emphasizes the consistency of the results obtained by499

both methods to find a proper activation space control representation of the motion. However, in500

order to define a common control representation for throwing in the activation space, it is also nec-501

essary to identify a representative pattern for the time-varying part of the synergies (combination502

coefficients). The following section presents the results of this analysis.503
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Table 4: Synergy coefficients mean inter-subject cross-correlation coefficient per throw-
ing distance.

Mean inter-subject cross-correlation coefficient per throwing distance
Synergy Coeff corr2m corr4m corr7m
c1 0.9129± 0.0534 0.9390± 0.0320 0.9264± 0.0382
c2 0.8761± 0.0727 0.8615± 0.0769 0.8702± 0.0650

5.4.2 Combination Coefficients (C)504

Method II also resulted in a set of time-varying coefficients which encoded the triggering times505

and intensity for each subject and their repetitions CII(t). The average coefficients computed per506

subject and throwing distance are featured in Figure 14 and Figure 15. Repeatable trends can be507

seen among and across subjects. For instance, the first coefficient c1 is generally bell shaped (as508

the velocity profile in ballistic movements), while the second coefficient c2 is more irregular, it has509

a lower amplitude, and it tends to decrease as the throw is performed. A considerable inter-subject510

repeatability at each throwing distance is also demonstrated by high correlation coefficients, as511

featured in Table 4.512
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Figure 14: Average combination coefficient c1 per subject and throwing distance.
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Figure 15: Average combination coefficient c2 per subject and throwing distance.

The high intra and inter-subject repeatability outlines the existence of similar patterns of ac-513

tivation for each synergy across subjects and throwing distances. Therefore, an activation space514

control representation CII,All(t) was computed by performing averages across subjects at each515

throwing distance. The mean coefficients per distance are depicted in Figure 16. A high inter-516

distance correlation is seen for both coefficients (Table 5). Thus, these coefficients not only preserve517

the main trends in each of the subjects’ averages, but also emphasize the similarities in terms of518

shape across throwing distances.519

Besides a repeatability in terms of shape, the combination coefficients exhibit discrepancies520
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Figure 16: Representative activation space strategy (combination coefficients) CII,All(t)
for all subjects. A common control strategy in the activation space was identified for the time-
variant part of the synergies through method II.

Table 5: Synergy coefficients mean inter-distance cross-correlation coefficients
Mean inter-distance cross-correlation coefficients
Synergy Coeff. corr2m,4m,7m

c1 0.9895± 0.0035
c2 0.9833± 0.0089

across subjects. Figure 17 shows the coefficients c1 and c2 from Figure 14 and Figure 15 in one521

same plot. Globally, at the beginning of the throw c2 (antagonist synergy) is activated, then the522

amplitude of this synergy is diminished, until c1 (agonist synergy) is activated. At this moment c2523

is activated again, and the most significant co-activation occurs among the synergies. The same524

behavior is seen on the representative activation space strategy in Figure 16. This is consistent with525

the fact that ballistic movements exhibit concurrent agonist and antagonist muscle activation [56].526

During these motions a first activation is needed to accelerate the limb toward the target (c1),527

followed by a second activation to decelerate and stop the movement (c2). This sequence of bursts528

(from antagonist to agonist, and from agonist to antagonist) are characteristic of the antagonist529

activity in the upper extremity while throwing. Such “triad” burst sequences have been previously530

identified in EMG analysis of throwing (at the wrist and elbow muscles) [32], and in badminton531

smash strokes [55].532

Individual differences in combination coefficients triggering can be seen between subjects, espe-533

cially for c1. This indicates that even if it is possible to find a common representation of the control534

in the activation space for time-invariant features W , the combination coefficients C encapsulate535

individual strategies and differences between subjects.536

Another characteristic that was analyzed was the change in energy across throw types. Figure 18537

shows the average energy at each throwing distance per subject, as described in Equation 10. The538

results show that the energy changes in the coefficients are linked to changes in the task space539

features: Like the task space features, the energy in the coefficients increases with the throwing540

distance. For c1 (agonist synergy), this increment is always gradually incrementing, and it is541

statistically relevant for 6/10 of the subjects. This increment in the actuation signals (or synergies),542

is consistent with the increment in torque magnitudes, observed during the synthesis of throwing543

motions to different ranges [23].544

This link between the task space and the activation space is fundamental in order to specify545

muscle-based controllers available to synthetize motions from task space goals. Indeed, such a546

controller will define a control law to actuate muscle in order to achieve task space goals and the547

results of the current study is helpful to design these control laws [2].548
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Figure 17: Triggering order and co-activation per subject and throwing distance. A
repeatable triggering tendency is seen across subjects: 1) c2 triggering, 2) c1 triggering, and 3) c2
triggering. This sequence is consistent with the expected triggering in ballistic motions.
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Figure 18: Combination coefficient energy per subject and throwing distance. The energy
in c1 (agonist synergy) gradually increases with throwing distance.

5.4.3 Activation Reconstruction549

Finally, we show the quality of EMG reconstruction using the representative synergy model (WII,All,550

CII,All(t)) found through method II. We finally get an overall reconstruction quality of r2 = 0.6526551

for the 180 concatenated muscle activations. This is reflected through different degrees of qual-552

ity reconstruction among the subject trials. In Figure 19 and Figure 20 are shown examples of553

the activation reconstruction of a 7m trial for different subjects. In the first case, the triggering554

order and shape of the reconstructed activations follow closely the recorded ones. In the second555

example, the original activations contain many small oscillations, which are not well reconstructed.556
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These oscillations may be noise artifacts and were therefore excluded from the reconstruction by557

the reconstruction quality criteria r2, as it has been explained in the methods section. More-558

over, considering the number trials that are being reconstructed simultaneously, such differences559

in reconstruction accuracy were expected.560
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Figure 19: Example 1: Activation reconstruction using WII,All and CII,All(t).
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Figure 20: Example 2: Activation reconstruction using WII,All and CII,All(t).

In addition, we can see (Figure 21) the reconstruction quality per muscle with regard to the561

number of synergies extracted on the global set (method II). We can see that the results are quite562

consistent from one muscle to one other. Indeed, Most muscle respect the rule that the biggest563

change of slope of r2 appears after 2 synergies. However, the Biceps exhibits a relatively low564

reconstruction level with 2 synergies and seem to have its highest change in slope at 3 synergies.565

This result can be explained by the relatively low level of activation of the Biceps during the task,566

that may be less well captured by the synergy extraction than more activated muscles like the567

Triceps Long. In a more general manner, muscles thats stabilizes the motion may be less well568

captured by the low order synergies than the muscles producing the motion.569

5.5 Summary570

The previous results show the existence of a common control representation (for a subset of muscles571

and DoF) in various throwing tasks, and subjects with no particular training on throwing motions572

or throwing sports. This representation was described through a set of features in the task, joint,573

and activation spaces. The control representation identified in the task space consisted in increasing574

the hand release height and velocity to reach longer distance targets. These endpoint features were575

achieved through a common set of joint trends, but with different velocity trends across subjects.576

In the activation space a lower dimensional control representation and its link with changes in577

the task space features was identified. This control strategy consisted in using only 2 synergies578
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Figure 21: Activation reconstruction quality per muscle . Results per muscle shows dis-
crepencies in the reproductibility of the results. Some muscles have relatively consistent patterns
to reconstruct with 2 synergies (Triceps Long, Wrist Flexors Group) whereas some other may be
better reconstructed thanks to higher synergy levels (Biceps).

(an agonist and an antagonist synergy), to represent the activation of 6 muscles of the right arm.579

These synergies were triggered with the order and concurrency expected from ballistic movements,580

and their triggering intensity was linked to the desired launch distance, the increments in velocity581

and height of release. Therefore, at the actuation level we were able to extract a reduced control582

representation (muscle synergies) linked to task conditions, for a highly redundant, nonlinear, and583

dynamic motion. Such a method, by providing a compact representation, has a interest to depict584

the individual and common control features in the way the motion is generated by each subject and585

seems useful to better understand the control strategies used. This does not prove the existence of586

a motor control mechanism that would be muscle synergies. However, the results are compatible587

with the notion of muscle synergies organized by the nervous system to implement such control588

strategies.589

Moreover, the direct extraction of a single synergy model from an experiment involving such590

a complex motion, and a variety of human morphologies, skills, and task conditions, is also a591

contribution. The results obtained by both methods of synergy extraction showed encouraging592

results, since their consistency and robustness was clearly established through their comparison.593

The accuracy of this synergy model is supported by studies [57] that evidence a higher performance594

of matrix factorization algorithms in experimental protocols that incorporate unconstrained tasks,595

a variety of conditions, and motor variability (synergy extraction from EMG time-series data, and596

not averages).597

It is worth noting that these results span a limited set of degrees of freedom and muscles,598

and that the extracted synergies for this task can change depending on the number and choice599

of muscles [58]. They also highlight generic but basic mechanisms needed to control an overhead600

throwing motion to a specific distance. To analyze the accuracy, efficiency, or performance of the601

throw, studies with additional features at key moments, and their relationship to successful target602

hits are needed. These features could include: task space features, such as release angle, joint space603

features, such as velocities and accelerations at release, and activation space features that include604

more muscles and quantify subtle difference in the way in which the synergies are triggered across605

different throws. With more features, we could expect to find more links across task, joint, and606

activation spaces.607
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Future contributions could include repeating this analysis on professional throwers (such as608

football players or pitchers). We expect a higher repeatability at all levels for trained subjects.609

Also, future analysis could include throws to larger distances and the usage of balls of different610

masses and sizes.611

Finally, the synergies obtained in the current studies will be applied and validated in the domain of612

muscle-based character animation. For instance, the relationships between the 2 control variables613

(or synergies) and well defined task space goals (desired release speed and height) will be exploited614

to control highly redundant characters. A previous study [8, 24] has already tested synergies on615

a subject-scaled character. It would be interesting to test the generic synergies presented in this616

paper on a variety of morphologies. Ultimately, this application could also entail the construction617

of a synergy database for animation. A database containing synergies and their relationships with618

task space goals, for a richer variety of motions (reaching, writing or other arm gestures), degrees619

of freedom, and muscles, which could also serve as a basis to synthesize motions in physics-based620

animation.621

6 Conclusion622

It seems that motion control can be encapsulated through lower dimensional control representation623

of each task we perform, to achieve fast, efficient, and coordinated movements. Synergies encode624

a variety of muscle information in a reduced set of temporal and spatial signals, and are thus a625

good candidate to represent the control in a compact way. Many studies have extracted muscle626

synergies from EMG signals in both upper-body and lower-body motions. Our study has found627

common control features among subjects in the task, joint and activation space, especially though628

the extraction of muscle synergies from a set of EMG signals, for a dynamic and acyclic motion.629

A motion which was performed by unexperienced subjects while following general guidelines that630

allowed a free throwing motion.631

We first described the throwing task and experiments from which the control strategy was632

extracted. Next, we characterized the motion through a set of control features in the task, joint, and633

activation spaces, and detailed the methods to extract them. Finally, the results showed that with634

this set of features: 1) a common control representation exists across subjects, 2) this representation635

significantly reduces the redundancy in the activation space through the encapsulation of the co-636

activated muscles in a low-dimensional representation (2 synergies encode the actions of 6 muscles),637

3) links exist between the task and activation space features, which were revealed by varying the638

throwing distance, 4) and finally both methods of synergy extraction were able to provide consistent639

and similar results and are therefore legitimate these methods of extraction.640

Lastly, since the identified control representation comprises the use of less control signals than641

actuators and DoF, it would be useful for synthesizing motions with overactuated or muscle-based642

characters at a reduced computational cost.643
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