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Abstract. We continue our efforts on modeling of the population dy-
namics of herbivorous insects in order to develop and implement effective
pest control protocols. In the context of inverse problems, we explore the
dynamic effects of pesticide treatments on Lygus hesperus, a common
pest of cotton in the western United States. Fitting models to field data,
we consider model selection for an appropriate mathematical model and
corresponding statistical models, and use techniques to compare models.
We address the question of whether data, as it is currently collected, can
support time-dependent (as opposed to constant) parameter estimates.

Key words: inverse problems, generalized least squares, model selection, infor-
mation content, residual plots, piecewise linear splines, Hemiptera, herbivory,
pesticide
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1 Introduction

When addressing questions in fields ranging from conservation science to agricul-
tural production, ecologists frequently collect time-series data in order to better
understand how populations are affected when subjected to abiotic or biotic dis-
turbance [12,|13}/22]. Fitting models to data, which generally requires a broad
understanding of both statistics and mathematics, is an important component
of understanding pattern and process in population studies. In agricultural ecol-
ogy, pesticide disturbance may disrupt predator-prey interactions [27,28| as well
as impose both acute and chronic effects on arthropod populations. In the past
several decades, the focus of many studies of pesticide effects on pests and their
natural enemies has shifted away from static measures such as the LC50, as
authors have emphasized population metrics/outcomes [17H19}[26}[29]. Simple
mathematical models, parameterized with field data, are often used to then pre-
dict the consequences of increasing or decreasing pesticide exposure in the field.
Accuracy in parameter estimation and quantification of uncertainty in fitting
data to models, which has recently received increasing attention in ecological
circles |20,21], depends critically on the appropriate model selection. In most
cases, this includes selection of both statistical and mathematical models
in fits-to-data — something that is not always fully explicitly addressed in the
ecological literature. We first addressed this gap in |1,/3] using data from pest
population counts of Lygus hesperus Knight (Hemiptera: Meridae) feeding on
pesticide-treated cotton fields in the San Joaquin Valley of California [23].

In particular, in |1,}3] we investigated the effect of pesticide treatments on the
growth dynamics of Lygus hesperus. This was done by constructing mathemati-
cal models and then fitting these models to field data so as to estimate growth
rate parameters of Lygus hesperus both in the absence and in the presence of
pesticide application. Overall, compelling evidence was found for the untreated
fields, using model comparison tests, that it may be reasonable to ignore nymph
mortality (i.e., just count total number of L. hesperus and not distinguish be-
tween nymphs and adults). This would greatly simplify the models, as well as
the data collection process.

In the present effort we further examine the importance of model selection
and demonstrate how optimal selection of both statistical and mathematical
models is crucial for accuracy in parameter estimation and uncertainty quantifi-
cation in fitting data to models. This report further investigates these issues by
testing different data sets from the same database as in [1,/3] but with a varied
number of pesticide applications in treated fields.

2 Methods

The data used came from a database consisting of approximately 1500 replicates
of L. hesperus density counts, using sweep counts, in over 500 Pima or Acala
cotton fields in 1997-2008 in the San Joaquin Valley of California. This data is
described more fully in [3]. We selected subsets to analyze using the following
criteria:
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— In each replicate (corresponding to data collected during one season at one

field) we considered data that was collected by pest control advisors (PCAs)

between June 1 and August 30.

We considered data which had the pesticide applications that targeted beet

armyworms, aphids, mites as well as Lygus.

We used only replicates where adult and nymph counts were combined into

a total insect count.

— No counts were made on the days of pesticide applications.

— Superposition of pesticide applications has not been incorporated in the
algorithm, so we chose samples with at least a week gap between consecutive
pesticide applications.

We consider inverse or parameter estimation problems in the context of a
parameterized (with vector parameter ¢ € 2" C R"a) N-dimensional vector
dynamical system or mathematical model given by

() = glt.2(1).a), )
$(t0) = Xy, (2)

with scalar observation process
f(t;6) = Cx(1;0), 3)

where 0 = (qT,fBOT)T € 25 c RratN = Rre N < N, and the observation
operator C maps RN to R!. The sets £2"¢ and £2"° are assumed known restraint
sets for the parameters.

We make some standard statistical assumptions (see |7,[8L[16}24]) underlying
our inverse problem formulations.

— Al) Assume &; are independent identically distributed i.i.d with E(&;) =0
and cov(&;, &) = 03, where i = 1,...,n and n is the number of observations
or data points in the given data set taken from a time interval [0, T.

— A2) Assume that there exists a true or nominal set of parameters g € £2 =
e,

— A3) £2 is a compact subset of Euclidian space of R"® and f(¢, ) is continuous
on [0,7] x £2.

Denote as 0 the estimated parameter for 8y € 2. The inverse problem is
based on statistical assumptions on the observation error in the data. If one
assumes some type of generalized relative error data model, then the error is
proportional in some sense to the measured observation. This can be represented
by a statistical model with observations of the form

Y, = f(ti;00) + f(t:;00)"E;, ~v€[0,2], (4)
with corresponding realizations

yi = f(ti;00) + f(ti;00)7€, v €[0,2], (5)



Modelling Pesticide Treatment Effects on Lygus hesperus in Cotton Fields 99

where the ¢; are realizations of the &, i =1,...,n.
For relative error models one should use inverse problem formulations with
Generalized Least Squares (GLS) cost functional

roce=3 (V) o

The corresponding estimator and estimates are respectively defined by

(Y St 0))
@GLS_arogergn;<]W’) , v €1][0,2], (7

with realizations

n . 2
Ocrs = argminz (W) , v €][0,2]. (8)

oc2 t;;6)7

GLS estimates 6" and weights {w;}"_; are found using an iterative method as
defined below (see [7]). For the sake of notation, we will suppress the superscript
A IND)

n (i.e., OGLS = OGLS)'

1. Estimate Ocrg by é(o) using the OLS method ((8) with v =0). Set k = 0.
5 (k)

2. Compute weights @; = f=27(¢;,60 ).
A(k+1)

3. Obtain the k + 1 estimate for Ogrg by 6 ;= argmin Z;'L=1 Wjly; —
f(t;,0).
4. Set k := k + 1 and return to step 2. Terminate when the two successive

estimates for O g are sufficiently close.

3 Mathematical Models

Our focus here is on the comparison of two different models for insect (L. hespe-
rus) population growth/mortality in pesticide-treated fields. The simplest model
(which we denote as model B) is for constant reduced growth due to effects of
pesticides versus an added time-varying mortality (denoted by model A) to re-
flect this decreased total population growth rate. Model B is given by

a 9)
x(t1) = o,

where x( is defined as initial population count at time ¢; of initial observation
and 7 is the reduced population growth rate in the presence of pesticides.
Model A is given by
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dx
o ke (10)
Jf(tl) = Xy,

where ¢ is again the time of the first data point, and k(¢) is a time dependent
growth rate

{n +p(t) teP;je{l,23,4}
k(t) = :
n otherwise.
Here p(t) is composed of piecewise linear splines as described below, and P; =
[ty tp; +1/4],5 =1,...5% with ¢, as the time point of the jth pesticide appli-
cation. Observe that these t,,. are not the same as the observation or data points
t;. Also note that |P;| = 1/4 which is approximately the length of time of one
week when t is measured in months. This reflects the general assumption that
pesticides are most active during the 7 days immediately following treatment.
Clearly, 7 is a reduced constant growth rate of the total population in the pres-
ence of pesticides. In addition, t=0 refers to June 1 (as no data is present before
June 1 in our database).

Piecewise linear splines |25] were used to approximate p(t) as follows. Con-
sider m linear splines

m
p(t) = > Nili(),
i=1
where
t—t1 i1 St<ty
Li(t) =1/hQtipr —t t; <t <tip
0 otherwise,
where h is the step size, h = B Piecewise linear spline representations are

m+1) -

simple, yet flexible in that t}(le; zillow the modeler to avoid assuming a cer-
tain shape to the curve being approximated. Incorporating a time-dependent
component such as p(t) is useful when modeling a system with discontinuous
perturbations (such as the removal of a predator, or the application of an insec-
ticide). The addition of more splines (m > 3) provides a finer approximation,
but demands more terms in the parameter estimates. We assume here that it
is likely that m = 3 is sufficient. (Our subsequent findings suggest that per-
haps even m = 2 is sufficient!). In our analysis, we first estimated the initial
condition xg using model B (as this data point precedes any pesticide applica-
tions and provides a good estimate for x), and then fixed this parameter in all
subsequent parameter estimates. Therefore, the parameters to be estimated in
model A are @ = q = {1, A1, A2, A3} whereas for model B we must only esti-
mate 8 = g = {n,0,0,0} since model A reduces to model B when applying the
constraint p(t) =0, i.e. \; =0 for i = 1,2, 3.
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4 Parameter Estimation

Using the model information provided in [3] we try to estimate parameters for
new data sets and determine whether the fit-to-data provided by model A does
provide a statistically significantly better fit than the fit provided by model B. A
big part of the parameter estimation process is the minimization of the respec-
tive cost functions for both model A and model B. The constrained nonlinear
optimization solver in Matlab, fmincon was initially being used for minimiza-
tion of GLS cost functionals in model A while fminsearch was being used for
minimization of cost functionals for model B. We later switched to lsqnonlin
which gave faster and better results. Since model A is stiff in nature, Matlab
solver odelbs was used whereas for model B ode45 was used. Both fmincon and
fminsearch require an initial guess of parameters. While for model B fminsearch
was able to find a minimum fairly quickly, the initial guess of @ = {n, A1, A2, A3}
for model A involved a fairly detailed process given below:

1. Create a trial file of data selected based on a specific set of rules.

2. Choose a parameter space £2 = [e, K| x [-K, —¢3.

3. Choose a constant vy € [0,1.5]. (Note that best way to choose (see [7,8])
gamma is to consider the plot of residuals using both residual vs time and
residual vs model plots to ascertain whether the scatter of the error appears
to violate the statistical assumption of being i.i.d.).

4. Choose an initial condition zy to the exponential model by considering the
plot of the data and model and visually estimating xy. We observe that this
did not produce acceptable results so we eventually solved a separate inverse
problem to estimate intrinsic growth rate ignoring the effects of pesticides
and initial condition.

5 Model Comparsion: Nested Restraint Sets

Here we summarize the use of statistically based model comparison tests. These
residual sum of squares model comparison tests as developed in [5], described
in [7,8] and extended in [9] to GLS problems is used in the same manner as used
in [1,3]. This test is used to determine which of several nested models is the best
fit to the data; therefore, this test can be applied to the comparison of models A
and B. In these examples below we are interested in questions related to whether
the data will support a more detailed or sophisticated model to describe it. In
the next section we recall the fundamental statistical tests to be employed here.

5.1 Statistical Comparison Tests

In general, assume we have an inverse problem for the model observations f(¢, )
and are given n observations. As in @, we define

03 (M)

=1
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where our statistical model has the form . Here, as before, 6, is the nominal
value of @ which we assume to exist. We use §2 to represent the set of all the
admissible parameters 8. We make some further assumptions.

— A4) Observations are taken at {t;}7_; in [0,7]. There exists some finite
measure g on [0, 7] such that

e r
n;huj)H/o

as n — oo, for all continuous functions h.
— A5) Jo(0 fo f(t;00) — f(t;0))%du(t) = 02 has a unique minimizer in £2
at 00

Let ©" = ©F;5(Y) be the GLS estimator for J™ as defined in so that

O (YY) =argmin J"(Y; 0)
6en

and
BGLS = argmin J"(y; 0),
0cn

where as above y is a realization for Y.

One can then establish a series of useful results (see [5,[7,|9] for detailed
proofs).

Result 1: Under Al) to A5), £0" = L@, 4(Y) — 6y as n — oo with
probability 1.

We will need further assumptions to proceed (these will be denoted by A7)-
A11) to facilitate reference to [5,7]). These include:

— A7) £2 is finite dimensional in RP and 8¢ € int{2.

— A8) f: 02— C[0,T] is a C? function.

— Al10) J = %(00) is positive definite.

— All) 2y = {0 € 2|HO = ¢} where H is an r X p matrix of full rank, and ¢

is a known constant.

In many instances, including the examples discussed here, one is interested in us-
ing data to question whether the “nominal” parameter 6y can be found in a sub-
set 2 C §2 which we assume for discussions here is defined by the constraints
of assumption A11). Thus, we want to test the null hypothesis Hy: 0y € 2,
i.e., that the constrained model provides an adequate fit to the data.
Define then
O%(Y) = argmin J*(Y; 0)
0Ny
and

OAZI = argmin J"(y; ).
0cNy
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Observe that J"(y;0p) > J"(y;0"). We define the related non-negative test
statistics and their realizations, respectively, by

T.Y)=J"Y;0%) — J"(Y;0")

and . o o
T, =Ta(y) =J"(y;0y) — J"(y; 6 ).

One can establish asymptotic convergence results for the test statistics T, (Y )—
see [5]. These results can, in turn, be used to establish a fundamental result about
much more useful statistics for model comparison. We define these statistics by

nT,(Y)

Un(Y) = Ty ) (11)

with corresponding realizations
an = Un(y)

We then have the asymptotic result that is the basis of our analysis-of-
variance-type tests.

Results 2: Under the assumptions A1)-Ab5) and A7)-All) above and as-
suming the null hypothesis Hy is true, then U, (Y") converges in distribution (as
n — o0) to a random variable U(r), i.e.,

U, 2 U(r),

with U(r) having a chi-square distribution x?(r) with r degrees of freedom.

In any graph of a x? density there are two parameters (7, ) of interest. For
a given value 7, the value « is simply the probability that the random variable
U will take on a value greater than 7. That is, Prob{U > 7} = « where in
hypothesis testing, « is the significance level and T is the threshold.

We then wish to use this distribution U,, ~ x2(r) to test the null hypothesis,
Hy, that the restricted model provides an adequate fit to represent the data. If
the test statistic, @, > 7, then we reject Hy as false with confidence level (1 —
«)100%. Otherwise, we do not reject Hy. For our examples below, we use a x?(3)
table, which can be found in any elementary statistics text, online or the partial
summary below. Typical confidence levels of interest are 90%, 95%, 99%, 99.9%,
with corresponding («, 7) values given in Table 1 below.

To test the null hypothesis Hy, we choose a significance level o and use x?
tables to obtain the corresponding threshold 7 = 7(a) so that Prob{x?(r) >
7} = a. We next compute @, = 7 and compare it to 7. If @,, > 7, then we reject
Hj as false; otherwise, we do not reject the null hypothesis Hy.

We use a x?(3) for our comparison tests as summarized here.

We can then formulate the null and alternative hypotheses:

Hy: The fit provided by model A does not provide a statistically significantly
better fit to the data than the fit provided by model B.
H 4: The fit provided by model A does provide a statistically significantly better
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Table 1: Chi-Square Table: x?(3)
al .10 | .05 | .01 .001
716.251|7.815(11.345|16.266

fit to the data than the fit provided by model B.

We considered such comparison tests for a number of data sets with a varying
no. of pesticides applications among the fields. These included

— Replicate number 296 (1 pesticide application at t = 0.5 months)

— Replicate number 350 (2 pesticide applications at times t = 1 and t = 1.7
months)

— Replicate number 277 (3 pesticide applications at t = .4, .7, 1.9 months)

— Replicate number 178 (4 pesticide applications at t = .13, .77, 1.9, 2.27
months)

— Replicate number 174 (4 pesticide applications at t = .13, .77, 1.83, 2.27
months)

We carried out multiple inverse problems with varying values of for these
data sets (see [2]). We visually examined the resulting residual plots (residual
vs time and residual vs observed output) and determined whether the scatter
of the error appear to be i.i.d.. On examining the plots for a wide range of we
observed that the statistical i.i.d assumptions were approximately satisfied for
values ranging around 0.7 to 0.8. We therefore used these values of in the results
reported here and in [2].

‘We note here that one could, as an alternative to use of residual plots, include
the parameter as a parameter to be estimated along with as often done in sta-
tistical formulations [16] for the joint estimation of = (, ), or one could attempt
to estimate the form of the statistical model (i.e., the value of directly from the
data itself as suggested in [6]. Both of these methods offer some advantages but
include more complex inverse problem analysis. We have therefore chosen here
to use the simpler but less sophisticated analysis of residuals in our approach.

6 Results

We examine the importance of model selection and how optimal selection of
both statistical and mathematical models is crucial for accuracy in parameter
estimation and fitting data to models testing different data sets from the same
database with varied number of pesticide applications. Tables 2, 3 and 4 contain
summaries of the results for the investigated replicates.
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Table 2: Parameter estimates for models A and B

Replicate No.|No. of pest. apps Par. Est. for model A

Par. Est. for model B

(n, A1, A2, A3) (n, A1, A2, A3)
296 (n=19) 1 (1.3551, —7.8782, —7.1632, —9.9904) (0.3548,0,0,0
350 (n=19) 2 (3.0150, —16.7393, —17.9356, —8.580) (0.7683, 0,0,
277 (n=19) 3 (3.1255, —3.5165, —6.2870, —7.1868) (1.7284, 0,0,
178 (n:22) 4 (1.8201, —6.6352, —2.5786, —4.1605) (0.6335, 0,
174 (n=20) 4 (2.8600, —7.9867, —13.2780, —4.6992) (0.4110,0,0,

Table 3: Cost Functional values for models A and B

Replicate No. COS;AZEI;CItXmaI Cosi/{itggtg nal Range of v values| zg
296 3.9577 7.3663 0.5 to 1.0 0.39
350 7.4100 18.223 0.5 to 0.8 0.28
277 5.5290 8.075 0.7 t0 0.9 0.05
178 5.7596 8.371 0.7 to 1.0 0.37
174 6.7480 9.390 0.0 to 0.8 0.34

7 Concluding Remarks

The above results strongly support the notion that time varying reduced growth/mortality

rates as opposed to constant rates provide substantially better models at the pop-
ulation levels for the description of the effects of pesticides on the growth rates.
It is interesting to note that our findings hold consistently across the differing
levels of pesticide applications, even in the case of only one pesticide applica-
tion. Another interesting observation is that this is consistent even when one
uses total pest counts as opposed to individual nymph and adult counts. This,
of course, has significant implications for data collection procedures. The model
comparison techniques employed here are just one of several tools that one can
use to determine aspects of information content in support of model sophistica-
tion/complexity. Of note are the use of the Akiake Information Criterion (AIC)
and its variations [1,/4,/10,/11,/14}/15] for model comparison.
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Table 4: Statistical comparison test results for degrees of freedom r = 3

Replicate No. Test SAtatistic Threshold|Signif. Level| Null hyp. (HO) Confid. Level
Up, T e} Accept or reject
296 16.36 16.26 0.001 Rejected 99.9 %
350 27.73 16.26 0.001 Rejected 99.9 %
277 8.7458 7.815 0.05 Rejected 95 %
178 9.9715 7.815 0.05 Rejected 95 %
174 7.8281 7.815 0.05 Rejected 95 %
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