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Abstract. This paper presents the modelling of the evolution of plasma
equilibrium in the presence of external poloidal field circuits and passive
structures. The optimization of plasma scenarios is formulated as an
optimal control problem where the equations for the evolution of the
plasma equilibrium are the constraints. The procedure determines the
voltages applied to the external circuits that minimize a certain cost-
function representing the distance to a desired plasma augmented by an
energetic cost of the electrical system. A sequential quadratic program-
ming method is used to solve the minimization of the cost-function and
an application to the optimization of a discharge for ITER is shown.

Keywords: plasma equilibrium, optimization, tokamak, magnetohydro-
dynamics, optimal control

1 Introduction

A tokamak is an experimental device whose purpose is to confine a plasma
(ionized gas) in a magnetic field so as to control the nuclear fusion of atoms of
low mass (deuterium, tritium,..) and to produce energy. The magnetic field has
two components (see Fig. 1) :

– a toroidal field created by toroidal field coils, that is necessary for the stability
of the plasma,

– a poloidal field in the section of the torus created by poloidal field coils and
by the plasma itself.

The plasma current is obtained by induction from currents in these poloidal
field coils. The tokamak thus appears as a transformer whose plasma is the
secondary. The currents in the external coils play another role, that of creating
and controlling the equilibrium of the plasma. The goal of this paper is to provide
a model for the evolution in time of the equilibrium of the plasma and to derive
control methods in order to optimize a typical scenario of a discharge of the
plasma in a tokamak.

There are two approaches for simulating a plasma made of electrons and ions:
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Fig. 1. Schematic representation of a tokamak

– the microscopic approach based on kinetic equations (Vlasov, Boltzmann,
Fokker-Planck) that are 6D (3D in space and 3D in terms of the velocity)
and 1D in time.

– the macroscopic approach based on magnetohydrodynamics (MHD) equa-
tions that are obtained by taking moments of the kinetic equations, and
which are 3D in space and 1D in time. The validity of the MHD equations
is clearly more restrictive than the one of the kinetic equations. We will
present in section 2 the way in which the MHD equations are obtained from
the kinetic ones.

At the slow resistive diffusion time-scale, the plasma is in equilibrium at
each instant (the kinetic pressure force balances at each point the Lorentz force
due to the magnetic field) and hence the plasma follows the so-called quasi-static
evolution of the equilibrium. The resistive diffusion in the external passive struc-
tures surrounding the plasma and the equations of the circuits of the poloidal
field system enable to follow in time this quasi-static evolution. An axisymmetric
hypothesis enables to reduce the problem to a 2D p.d.e. formulation, with the
Grad-Shafranov equation for the equilibrium of the plasma. The plasma bound-
ary is a free boundary, which is a particular poloidal flux line. It is either the
outermost closed flux line inside the limiter, which prevents the plasma from
touching the vacuum vessel, or a separatrix (with a hyperbolic X-point), as they
are in presence of a poloidal divertor. This equilibrium model will be presented
in section 3 of the paper.
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In order to solve numerically the set of equations for the poloidal flux, it is
necessary to derive the weak formulation of this system and then a finite element
method, coupled to Newton iterations for the treatment of the non-linearities,
enables to solve the evolution of the equilibrium configuration in a tokamak.
This is presented in section 4 of this paper.

A typical discharge in a tokamak is made of several phases : ramp-up of total
plasma current, plateau phase (stationary phase), ramp-down. The plasma shape
can also move from a small circular plasma (at the beginning of the discharge)
to a large elongated one with an X-point. The goal of this work is to determine,
thanks to optimal control theory of systems governed by partial differential equa-
tions [1], the voltages applied to the poloidal field circuits that achieve at best
the desired scenario, by minimizing a certain cost-function which represents the
sum of the distance to the desired plasma and of the energetic cost of the electri-
cal system. The introduction of an appropriate lagrangian taking as constraints
the equilibrium system of the previous sections and the determination of the
corresponding adjoint state enable the computation of the gradient of the cost-
function in terms of the adjoint state. The minimization of this cost-function
is performed thanks to a SQP (Sequential Quadratic Programming) method.
An interesting test-case, solved by using these techniques, will be presented for
the ITER (International Thermonuclear Experimental Reactor) tokamak. This
is presented in section 5 of this paper. This method has the purpose to replace
the empirical methods used commonly to compute the pre-programmed voltages
that enable to go from one snapshot to another one. This method can of course
be extended to other type of optimization of the scenarios just by modifying the
cost-function and the control variables (consumption of flux, desired profile of
plasma current density,..).

2 The magnetohydrodynamic equations

A plasma is a ionized gas composed of ions and electrons. The kinetic equations
describe the plasma thanks to a distribution function fα(x,v, t) (with α = e for
electrons and α = i for ions) where x is the point position and v the particles
velocity. For a collisional plasma the kinetic equations are based on the Fokker-
Planck equation

∂fα
∂t

+ (v.∇x)fα +
Fα
mα

.∇vfα = Cα, (1)

where mα is the mass of the particles, Fα the force applied to these particles
and Cα the term due to collisions between particles. This microscopic approach
requires the resolution of a partial differential equations in 6 dimensions (space
and velocity) plus the time dimension. This is extremely difficult from a compu-
tational point of view. Therefore from this equation one derives a macroscopic
representation based on the fluid equations in the following way. Let us define
the density of particles by

nα(x, t) =

∫
fα(x,w, t)dw,
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the fluid velocity by

uα(x, t) =
1

nα

∫
fα(x,w, t)wdw,

and the pressure tensor

Pα(x, t) = mα

∫
fα(x,w, t)(w − uα)(w − uα)dw,

which under the isotropic assumption becomes

pα(x, t) =
mα

3

∫
fα(x,w, t)(w − uα)2dw.

Multiplying equation (1) by a test function φ(w) and integrating over the
space of velocities leads to the fluid equations. The first moment (corresponding
to φ = 1) gives the equation for the density of particles:

∂nα
∂t

+∇.
∫
fαwdw −

1

mα

∫
∂F α

∂w
fαdw = 0.

Since for electromagnetic forces
∂F α

∂w
= 0, and since collisions do not change

the number of particles one obtains:

∂nα
∂t

+∇.(nαuα) = 0.

The second moment is obtained by taking φ = mαw which leads to the momen-
tum equation

mα
∂

∂t
(nαuα) +mα∇x.

∫
fαwwdw −

∫
∇w.(F α.w)fαdw =

∫
mαwCαdw,

where we have set w = (w − uα) + uα. Using the equation for conservation of
the density one gets

mαnα(
∂uα
∂t

+ uα.∇uα) = −∇.Pα + nαF α + Rα,

whith F α = Ze(E + uα ×B) where Ze is the charge of particles and Rα is the
change rate of the momentum due to collisions.
The third moment gives the energy equation which needs to be complemented
with closing relations on the heat flux. These latter come from a transport model.
The single fluid magnetohydrodynamic equations are derived by defining the
mass density

mn = mene +mini

= meZni +mini ≈ mini
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the velocity of the fluid

u =
meneue +miniui

ρ
≈ ui,

the current density

j = −eneue + Zeniui,

= ene(ui − ue),

and the scalar pressure
p = nekTe + nikTi,

where k is the Boltzmann constant. The Maxwell equations need to be added
since we are in the presence of a magnetic field B and of an electric field E.
Finally the resistive MHD equations for a single fluid [2] read:

∂n

∂t
+∇.(nu) = s ( Conservation of particles)

mn(
∂u

∂t
+ u.∇u) +∇p = j ×B (Conservation of momentum)

3

2
(
∂p

∂t
+ u.∇p) +

5

2
p∇.u +∇Q = s′ (Conservation of particle energy)

∇×E = −∂B
∂t

(Faraday’s law)

∇.B = 0 (Conservation of B)
E + u×B = ηj (Ohm’s law)
∇×H = j (Ampere’s law)
B = µH (Magnetic permeability)
p = nkT (Law of perfect gases)

(2)

where n denotes the density of the particles, m their mass, u their mean velocity,
p their pressure, T their temperature, Q the heat flux, η the resistivity tensor, s
and s′ the source terms and k the Boltzmann constant.

3 Equilibrium of a plasma in a tokamak

In order to simplify system (2) some characteristic time constants of the plasma
need to be defined. The Alfven time constant τA is

τA =
a(µ0mn)1/2

B0
,

where a is the minor radius of the plasma and B0 is the toroidal magnetic field.
It is of the order of a microsecond for present tokamaks.
The diffusion time constant of the particle density n is

τn =
a2

D
,



6 Jacques Blum, Cédric Boulbe, Blaise Faugeras, and Holger Heumann

where D is the particle diffusion coefficient. Likewise, the time constants for
diffusion of heat of the electrons and of the ions are

τe =
nea

2

Ke
,

τi =
nia

2

Ki
,

where ne, ni are the density of electrons and ions, respectively, and Ke, Ki are
their thermal conductivities. These constants τn, τe, τi are of the order of a
millisecond on tokamaks currently operating.
Finally, the resistive time constant for the diffusion of the current density and
magnetic field in the plasma is given by

τr =
µ0a

2

η
,

and is of the order of a second.
If a global time constant for plasma diffusion is defined by

τp = inf(τn, τe, τi, τr),

we note that

τA � τp.

On the diffusion time-scale τp the term (∂u∂t +u∇u) is small compared with ∇p
(see [3, 4]) and the equilibrium equation

∇p = j ×B (3)

is thus satisfied at every instant in the plasma.
Consequently the equations which govern the equilibrium of a plasma in

the presence of a magnetic field in a tokamak are on the one hand Maxwell’s
equations satisfied in the whole of space (including the plasma):∇ ·B = 0,

∇× (
B

µ
) = j,

(4)

and on the other hand the equilibrium equation (3) for the plasma itself.
Equation (3) means that the plasma is in equilibrium when the force ∇p

due the kinetic pressure p is equal to the Lorentz force of the magnetic pressure
j ×B. We deduce immediately from (3) that

B · ∇p = 0, (5)

and

j · ∇p = 0. (6)
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Thus for a plasma in equilibrium the field lines and the current lines lie on
isobaric surfaces (p = const.); these surfaces, generated by the field lines, are
called magnetic surfaces. In order for them to remain within a bounded volume
of space it is necessary that they have a toroidal topology. These surfaces form
a family of nested tori. The innermost torus degenerates into a curve which is
called the magnetic axis.

In a cylindrical coordinate system (r, φ, z) (where r = 0 is the major axis
of the torus) the hypothesis of axial symmetry consists in assuming that the
magnetic field B is independent of the toroidal angle φ. The magnetic field can
be decomposed as B = Bp+Bφ, where Bp = (Br, Bz) is the poloidal component
and Bφ is the toroidal component. From equation (4) one can define the poloidal
flux ψ(r, z) such that 

Br = −1

r

∂ψ

∂z
,

Bz =
1

r

∂ψ

∂r
.

(7)

Concerning the toroidal component Bφ we define f by

Bφ =
f

r
eφ, (8)

where eφ is the unit vector in the toroidal direction, and f is the diamagnetic
function. The magnetic field can be written as:

B = Bp + Bφ,

Bp =
1

r
[∇ψ × eφ],

Bφ =
f

r
eφ.

(9)

According to (9), in an axisymmetric configuration the magnetic surfaces are
generated by the rotation of the flux lines ψ = const. around the axis r = 0 of
the torus.

From (9) and the second relation of (4) we obtain the following expression
for j: 

j = jp + jφ,

jp =
1

r
[∇(

f

µ
)× eφ],

jφ = (−∆∗ψ)eφ,

(10)

where jp and jφ are the poloidal and toroidal components respectively of j, and
the operator ∆∗ is defined by

∆∗· = ∂r

(
1

µr
∂r·
)

+ ∂z

(
1

µr
∂z·
)

= ∇
(

1

µr
∇·
)
. (11)
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Expressions (9) and (10) for B and j are valid in the whole of space since
they involve only Maxwell’s equations and the hypothesis of axisymmetry. Hence
they can be reduced to one equation given in 2 space dimensions in the poloidal
plane (r, z) ∈ Ω∞ = (0,∞)× (−∞,∞) for the poloidal flux ψ:

−∆∗ψ = jφ. (12)

r

ΩFe

z

Ωci

Ωps

Ωp

ΩL

∂ΩL

0

Fig. 2. Schematic representation of the poloidal plane of a tokamak. Ωp is the plasma
domain, ΩL is the limiter domain accessible to the plasma, Ωci represent poloidal field
coils, Ωps the passive structures and ΩFe the ferromagnetic structures.

The toroidal component of the current density jφ is zero everywhere outside
the plasma domain, the poloidal field coils and the passive structures. The dif-
ferent sub-domains of the poloidal plane of a tokamak (see Fig. 2) as well as the
corresponding expression for jφ are described below:

• ΩL is the domain accessible to the plasma. Its boundary is the limiter ∂ΩL.
• Ωp is the plasma domain where relation (5) implies that ∇p and ∇ψ are

co-linear, and therefore p is constant on each magnetic surface. This can be
denoted by

p = p(ψ). (13)

Relation (6) combined with the expression (10) implies that ∇f and ∇p are
co-linear, and therefore f is likewise constant on each magnetic surface

f = f(ψ). (14)

The equilibrium relation (3) combined with the expression (9) and (10) for
B and j implies that:

∇p = −∆
∗ψ

r
∇ψ − f

µ0r2
∇f, (15)
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which leads to the so-called Grad-Shafranov equilibrium equation:

−∆∗ψ = rp′(ψ) +
1

µ0r
(ff ′)(ψ). (16)

Here µ is equal to the magnetic permeability µ0 of the vacuum and ∆∗ is
a linear elliptic operator. From (10) it is clear that right-hand side of (16)
represents the toroidal component of the plasma current density. It involves
functions p(ψ) and f(ψ) which are not directly measured inside the plasma.
The plasma domain is unknown, Ωp = Ωp(ψ), and this is a free boundary
problem. This domain is defined by its boundary which is the largest closed
ψ iso-contour contained within the limiter ΩL. The plasma can either be
limited if this iso-contour is tangent to the limiter ∂ΩL (see figure 3, left) or
defined by the presence of a saddle-point also called X-point (see figure 3,
right). In the later configuration which is obtained in presence of a divertor,
the plasma does not touch any physical component and the performances
and the confinement of the plasma are improved (see [5]).

• ΩFe represents the ferromagnetic structures. They do not carry any current,
jφ = 0 but the magnetic permeability µ is not constant and depends on the
magnetic field:

µ = µFe(
|∇ψ|2

r2
). (17)

• Domains Ωci represent the poloidal field coils carrying currents. If we con-
sider that the voltages Vi applied to these coils are given, using Faraday and
Ohm laws the current density can be written as

jφ =
niVi
Ri|Ωci |

− 2πn2i
Ri|Ωci |2

∫
ΩCi

ψ̇ds, (18)

where ni is the number of windings in the coil, |Ωci | its section area, Ri its
resistance and ψ̇ is the time derivative of ψ,

• Ωps represents passive structures where the current density can be written
as

jφ = −σ
r
ψ̇, (19)

where σ is the conductivity.

In summary we are seeking for the poloidal flux ψ(t) that is a solution of
(12) with jφ given by (16), (18) and (19) and verifies boundary conditions

ψ(0, z) = 0 and lim
‖(r,z)‖→+∞

ψ(r, z) = 0.

4 Weak Formulation and Discretization

We chose a semi-circle Γ of radius ρΓ surrounding the iron domain ΩFe, the coil
domains Ωci and the passive structures domain Ωps. The truncated domain, we
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Fig. 3. Example of a plasma whose boundary is defined by the contact with limiter
(left) or by the presence of an X-point (right).

use for our computations, is the domain Ω having the boundary ∂Ω = Γ ∪ Γ0,
where Γ0 := {(0, z), zmin ≤ z ≤ zmax}. The weak formulation for ψ(t) uses the
following Sobolev space:

H :=

{
ψ : Ω → R, ‖ψ‖ <∞, ‖ |∇ψ|

r
‖ <∞, ψ|Γ0

= 0

}
∩ C0(Ω),

with

‖ψ‖2 =

∫
Ω

ψ2 r drdz.

It reads as: Given V(t) = {Vi(t)}Ni=1 find ψ(t) ∈ H such that for all ξ ∈ H

A(ψ(t), ξ)− Jp(ψ(t), ξ) + jps(ψ̇(t), ξ) + jc(ψ̇(t), ξ) + c(ψ(t), ξ) = `(V(t), ξ), (20)

where

A(ψ, ξ) :=

∫
Ω

1

µ(ψ)r
∇ψ · ∇ξ drdz,

Jp(ψ, ξ) :=

∫
Ωp(ψ)

(
rSp′(ψN) +

1

µ0r
Sff ′(ψN)

)
ξ drdz,

`(V(t), ξ) :=

N∑
i=1

ni
Ri|Ωci |

Vi(t)

∫
Ωci

ξ drdz,

jps(ψ, ξ) :=

∫
Ωps

σ

r
ψξ drdz,

jc(ψ, ξ) :=

Ni∑
i=1

2πn2i
Ri|Ωci |2

∫
Ωci

ψ drdz

∫
Ωci

ξ drdz,

(21)
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and

c(ψ, ξ) :=
1

µ0

∫
Γ

ψ(P1)N(P1)ξ(P1)dS1

+
1

2µ0

∫
Γ

∫
Γ

(ψ(P1)− ψ(P2))M(P1,P2)(ξ(P1)− ξ(P2))dS1dS2, (22)

with

M(P1,P2) =
kP1,P2

2π(r1r2)
3
2

(
2−k2P1,P2

2−2k2P1,P2

E(kP1,P2
)−K(kP1,P2

)

)
,

N(P1) = 1
r1

(
1
δ+

+ 1
δ−
− 1

ρΓ

)
and δ± =

√
r21 + (ρΓ ± z1)2.

where Pi = (ri, zi) and K and E the complete elliptic integrals of first and
second kind, respectively and

kPj ,Pk =

√
4rjrk

(rj + rk)2 + (zj − zk)2
.

The bilinear form c : H ×H → R is accounting for the boundary conditions at
infinity [6]. We refer to [7, Chapter 2.4] for the details of the derivation. The
bilinear form c(·, ·) follows basically from the so-called uncoupling procedure in
[8] for the usual coupling of boundary integral and finite element methods. As
we focus here on the equilibrium problem the two functions p′ and f f ′ have to
be supplied as data, called Sp′ and Sff ′ in the definition of Jp(ψ, ξ). While the
domain of p′ and f f ′ depends on the poloidal flux itself, it is more practical to
supply those profiles Sp′ and Sff ′ as functions of the normalized poloidal flux
ψN(r, z):

ψN(r, z) =
ψ(r, z)− ψax(ψ)

ψbd(ψ)− ψax(ψ)
, (23)

where
ψax(ψ) := ψ(rax(ψ), zax(ψ)),

ψbnd(ψ) := ψ(rbd(ψ), zbd(ψ))
(24)

with (rax(ψ), zax(ψ)) the magnetic axis, where ψ has its global maximum in ΩL

and (rbnd(ψ), zbnd(ψ)) the coordinates of the point that determines the plasma
boundary. The point (rbnd, zbnd) is either an X-point of ψ or the contact point
with the limiter ∂ΩL. Sp′ and Sff ′ , have, independently of ψ, a fixed domain
[0, 1] and are usually given as (piecewise) polynomial functions. Another frequent
a priori model is

Sp′(ψN) = λ
β

r0
(1− ψαN)γ , Sff ′(ψN) = λ(1− β)µ0r0(1− ψαN)γ (25)

with r0 the major radius of the vacuum chamber and α, β, γ ∈ R given pa-
rameters. We refer to [9] for a physical interpretation of these parameters. The
parameter β is related to the poloidal beta, whereas α and γ describe the peakage
of the current profile and λ is a normalization factor.
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Numerical Methods It is straightforward to combine Galerkin methods in
space and time-stepping schemes to get approximation schemes for solving (20)
numerically. For the choice of the spatial discretization, the fine details of realis-
tic tokamak sections (see Figure 4) give here favor to finite element spaces based
on triangular meshes. Since for many years now the piecewise affine approxi-
mations are the standard choice for the stationary free-boundary equilibrium
problems [10, 11, 7], we stay also here with linear Lagrangian finite elements for
the discretization in space. Higher order methods are likewise implementable.

Fig. 4. The different subdomains of the geometry of the tokamak WEST (left) and
ITER (right) and triangulations that resolve the geometric details.

In order to prohibit numerical instablities it is advisable to use implicit
time-stepping methods such as implicit Euler, which leads to non-linear finite-
dimensional problems. The Newton-type methods for solving such non-linear
problems can be based on the Gâteaux derivative

DψA(ψ, ξ)(ψ̃) =

∫
Ω

1

µ(ψ)r
∇ψ̃ · ∇ξ drdz

− 2

∫
ΩFe

µ′Fe(
|∇ψ|2
r2 )

µ2
Fe(
|∇ψ|2
r2 )r3

(∇ψ̃ · ∇ψ)(∇ψ · ∇ξ) drdz
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of A(ψ, ξ) and the Gâteaux derivative

DψJp(ψ, ξ)(ψ̃) =

∫
Ωp(ψ)

∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)

∂ψ
ψ̃ ξ drdz

−
∫
Γp(ψ)

jp(r, 1)|∇ψ|−1(ψ̃ − ψ̃(rbd(ψ), zbd(ψ)))ξ dΓ

+

∫
Ωp(ψ)

∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)

∂ψax
ψ̃(rax(ψ), zax(ψ))ξ drdz

+

∫
Ωp(ψ)

∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)

∂ψbd
ψ̃(rbd(ψ), zbd(ψ))ξ drdz

(26)

of Jp(ψ, ξ), where Γp is the plasma boundary ∂Ωp and

jp(r, ψN(ψ)) = rSp′(ψN(ψ)) +
1

µ0r
Sff ′(ψN(ψ)). (27)

The derivation of the linearization DψJp(ψ, ξ)(ψ̃) requires to assume that ∇ψ 6=
0 on ∂Ωp and involves shape calculus [12, 13] and the non-trivial derivatives:

Dψψax(ψ)(ψ̃) = ψ̃(rax(ψ), zax(ψ)) and Dψψbd(ψ)(ψ̃) = ψ̃(rbd(ψ), zbd(ψ)).

Clearly, ∇ψ 6= 0 on ∂Ωp will not be true for the nowadays important X-point
equilibria. Nevertheless this theoretical difficulty is not very essential for prac-
tical computations. In [14] it is pointed out that accurate Newton methods for
discretized versions of the weak formulation (20) need to use accurate deriva-
tives for the discretized non-linear operator, which is not necessarily equal to
the discretization of the analytical derivatives. Here, the discretization and lin-
earization of Jp(ψ, ξ) needs special attention due to the ψ-dependent domain of
integration. We refer to [14, section 3.2] and [14, section 3.3] for the technical
details.

5 The optimal control problem

We intend to determine the voltages Vi(t) applied to the poloidal field circuits
so that the plasma boundary Γp fit to a desired boundary Γdesi during the whole
discharge while minimizing a certain energetic cost.

Let Γdesi(t) ⊂ ΩL denote the evolution of a closed line, contained in the do-
main ΩL that is either smooth and touches the limiter at one point or has
at least one corner. The former case prescribes a desired plasma boundary
that touches the limiter. The latter case aims at a plasma with X-point that
is entirely in the interior of ΩL. Further let (rdesi(t), zdesi(t)) ∈ Γdesi(t) and
(r1(t), z1(t)), . . . , (rNdesi

(t), zNdesi
(t)) ∈ Γdesi(t) be Ndesi + 1 points on that line.

We define a quadratic functional K(ψ) that evaluates to zero if Γdesi(t) is an
ψ(t)-isoline, i.e. if ψ(t) is constant on Γdesi(t):

K(ψ, t) :=
1

2

(
Ndesi∑
i=1

(
ψ(ri(t), zi(t))− ψ(rdesi(t), zdesi(t))

)2)
. (28)
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Another functional, that will serve as regularization, is

R(V(t)) :=

N∑
i=1

wi
2
V2
i (29)

with regularization weights wi ≥ 0. The regularization functional penalizes the
strength of the voltages Vi and represents the energetic cost in the coil system.

We consider the following minimization problem:

min
ψ(t),V(t)

∫ T

0

K(ψ(t), t) +R(V(t)) dt (30)

subject to

A(ψ(t), ξ)− Jp(ψ(t), ξ)+ jps(ψ̇(t), ξ)+ jc(ψ̇(t), ξ)+c(ψ(t), ξ) = `(V(t), ξ) ∀ξ ∈ H.

This minimization problem for transient axisymmetric equilibria extends the
minimization problems for static axisysmmetric equilibria introduced in [15,
Chapter II]. Hence, theoretical assertions for (30) such as the first order nec-
essary conditions for optimality follow by similar arguments as those in [15,
page 80–84].

The Lagrangian for the optimization problem (30) with Lagrange multiplier
φ is:

L(ψ(t),V(t), φ(t)) =

∫ T

0

K(ψ(t), t) +R(V(t)) dt

−
∫ T

0

A(ψ(t), φ(t))− Jp(ψ(t), φ(t)) + c(ψ(t), φ(t))dt

−
∫ T

0

jps(ψ̇(t), φ(t)) + jc(ψ̇(t), φ(t))− `(V(t), φ(t))dt.

We can state the first order necessary conditions for optimality under the fol-
lowing three assumptions in the limiter case:

1. supΩL
ψ is attained at one and only one point M0 = (rbd, zbd).

2. supΩp
ψ is attained at one and only one point M1, which is an interior point

of Ωp and M1 = (rax, zax). ψ is of class C2 in a neighbourhood of M1 and
the point M1 is a non-degenerated elliptic point.

3. ∇ψ vanishes nowhere on ∂Ωp.

Equivalent necessary conditions can be obtained in the X-point case.

Then necessary conditions for (ψ(t),V(t), φ(t)) to be a saddle point of L are
obtained, after integrating by parts in time the Lagrangian:

– ψ(t) and V(t) are solution of the direct problem (20)



Control methods for plasma scenarios 15

– ψ(t) and φ(t) are solution of the adjoint problem

DψA(ψ(t), φ(t))(ξ)−DψJp(ψ(t), φ(t))(ξ) + c(ξ, φ(t))

− jps(ξ, φ̇(t))− jc(ξ, φ̇(t)) = DψK(ψ(t), t)(ξ) ∀ξ ∈ H (31)

with φ(T ) = 0 and

DψK(ψ, t)(ξ) =

Ndesi∑
i=1

(
ψ(ri(t), zi(t))− ψ(rdesi(t), zdesi(t))

)
·(

ξ(ri(t), zi(t))− ξ(rdesi(t), zdesi(t))
)
.

– V(t) and φ(t) are solution to

wiVi(t) +
ni

Ri|Ωci |

∫
Ωci

φ(t) drdz = 0 , 1 ≤ i ≤ N. (32)

The adjoint problem has the following strong formulation:

−∆∗φ(t)+1ΩFe
∇ ·

(
2
µ′Fe(

|∇ψ|2
r2 )

µ2
Fe(
|∇ψ|2
r2 )r3

(∇φ(t) · ∇ψ)∇ψ

)

− 1Ωp(ψ)
∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)

∂ψ
φ(t)

− δbd
∫
Γp(ψ)

jp(r, 1)

|∇ψ|
φ(t) dΓ + (δΓp

,
jp(r, 1)

|∇ψ|
φ(t))

− δax
∫
Ωp(ψ)

∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)

∂ψax
φ(t) drdz

− δbd
∫
Ωp(ψ)

∂jp(r, ψN(ψ))

∂ψN

∂ψN(ψ)

∂ψbd
φ(t) drdz

− 1Ωps

σ

r
φ̇(t)−

Ni∑
i=1

1Ωci

2πn2i
Ri|Ωci |2

∫
Ωci

φ̇ drdz

=

(
Ndesi∑
i=1

(
ψ(ri(t), zi(t), t)− ψ(rdesi(t), zdesi(t), t)

)) (
δ(ri,zi) − δ(rdesi,zdesi)

)
with φ(T ) = 0, where δax and δbd are the Dirac masses at the points (rax, rax)
and (rbd, rbd), respectively. δΓp is the Dirac mass of Γp with

(δΓp
,
jp(r, 1)

|∇ψ|
φ(t)ξ) =

∫
Γp

jp(r, 1)

|∇ψ|
φ(t)ξ dΓ.

Equation (32) is the Euler equation for the minimization of (30). Equations (20),
(31) and (32) constitute the optimality system for problem (30).
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Numerical Methods The discretization of our minimization problem (30)
builds on the space-time discretization for (20) that we outlined in the previous
section. Next, the discrete minimization problem can be recast as the following
constrained optimization problem

min
u,y

J(y,u) s.t. B(y) = F(u), (33)

where y and u are the so-called state and control variables. In our setting y will
be the variable that describes the plasma and u will be the externally applied
voltages. We think of y as the vector of degrees of freedoms describing the space
and time evolution of the poloidal flux ψ, and B(y) and F(u) are the discretiza-
tions of the non-linear operators in the variational formulation (20). Sequential
Quadratic Programming (SQP) is one of the most effective methods for non-
linear constrained optimization with significant non-linearities in the constraints
[16, Chapter 18]. SQP methods find a numerical solution by generating iteration
steps that minimize quadratic cost functions subject to linear constraints. The
Lagrange function formalism in combination with Newton-type iterations is one
approach to derive the SQP-methods: the Lagrangian for (33) is

L(y,u,p) = J(y,u) + 〈p,B(y)− F(u)〉, (34)

and the solution of (33) is a stationary point of this Lagrangian:

DyJ(y,u) +DyB
T (y)p = 0,

DuJ(y,u)−DuF
T (u)p = 0,

B(y)− F(u) = 0.
(35)

A Newton-type method for solving (35) are iterations of the type Hk
y,y Hk

y,u DyB
T (yk)

Hk
u,y Hk

u,u −DuF
T (uk)

DyB(yk) −DuF(uk) 0

yk+1 − yk

uk+1 − uk

pk+1 − pk


= −

DyJ(yk,uk) +DyB
T (yk)pk

DuJ(yk,uk)−DuF
T (uk)pk

B(yk)− F(uk)

 (36)

with (
Hk

y,y Hk
y,u

Hk
u,y Hk

u,u

)
=

(
Dy,yL(yk,uk,pk) Dy,uL(yk,uk,pk)
Du,yL(yk,uk,pk) Du,uL(yk,uk,pk)

)
.

If the linear systems in (36) become too large, we are pursuing the null space
approach to arrive at the SQP formulation with the reduced Hessian for the
increment ∆uk := uk+1 − uk:

M(yk,uk)∆uk = −h(yk,uk), (37)

where

M(yk,uk) :=
(
DuF

T (uk)DyB
−T (yk) Id

)(Hk
y,y Hk

y,u

Hk
u,y Hk

u,u

)(
DyB

−1(yk)DuF(uk)
Id

)
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and

h(yk,uk) :=DuJ(yk,uk) +DuF
T (uk)λk

−
(
DuF

T (uk)DyB
−T (yk)Hk

y,y + Hk
u,y

)
DyB

−1(yk)r(yk,uk))

with

λk :=DyB
−T (yk)DyJ(yk,uk) , r(yk,uk) :=B(yk)− F(uk).

We are using iterative methods, e.g. the conjugate gradient methods, to solve
(37). Since in our case the number of control variables will be small we can
expect convergence within very few iterations. Within each iteration step of the
iterative method, we still have to solve the two linear systems corresponding to
DyB(yk) and DyB

T (yk). Alternatively, if we have sufficient memory to store
M(·, ·), we can compute M(·, ·) explicitly. Clearly, we never compute neither
DyB

−1(yk) nor DyB
−T (yk) explicitly.

Once we know ∆uk we can compute yk+1 and pk+1 by:

yk+1 − yk = DyB
−1(yk)DuF(uk)∆uk − r(uk,yk),

pk+1 + λk = −DyB
−T (yk)(Hk

y,y(yk+1 − yk) + Hk
y,u(uk+1 − uk)).

We would like to highlight that the SQP-method relies on proper derivatives
of the non-linear operators B and F. In our case F is affine, hence the derivative
of B remains the most difficult part. On the other hand these are exactly the
same terms that appear in the Newton iterations for the direct problem (20) and
we can reuse the methodology presented at the end of Section 4. For practical
purposes we do neglect all involved second order derivatives of B.

It is very instrumental to compare the expression involved in the reduced
formulation (37) of SQP to the gradient and the Hessian of the reduced cost
function, that would appear when using algorithms for unconstrained optimiza-
tion problems.

Let Ĵ(u) := J(y(u),u), with B(y(u)) = F(u) be the reduced cost function,
then we have the following expressions for gradient

DuĴ(u) = DuJ(y,u) +DuF
T (u), λ

and Hessian

Du,uĴ(u) =ZT
(
Dy,yJ(y,u) Dy,uJ(y,u)
Du,yJ(y,u) Du,uJ(y,u)

)
Z

+ ZT
(
−Dy(DyB

T (y)λ) 0
0 Du(DuF

T (u)λ)

)
Z

with

λ = DyB
−T (y)DyJ(y,u) and Z =

(
DyB

−1(y)DuF(u)
Id

)
Hence, the reduced gradient h(yk,uk) is not the gradient of the reduced cost

function, unless the state and control variable yk and uk verify the equation of
state B(yk) = F(uk).
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Preliminary Example Finally, we would like to show first results for a so-
called ramp-up scenario in an ITER-like tokamak, where the plasma evolves
from a small circular to a large elongated plasma. The optimal coil voltages are
depicted in Figure 5. Then, if we use those as data to solve the direct problem
we verify that the plasma boundary follows indeed the prescribed trajectory (see
Figure 6).

Conclusion The study and the optimization of scenarios is more and more im-
portant for the realization of objectives in magnetic confinement controlled fusion
and will certainly be crucial for the ITER project. The first results presented in
this paper are very encouraging and are the starting point of the development
of new tools devoted to the preparation of scenarios of the future devices.

Fig. 5. The optimal voltages.
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Fig. 6. Optimal control for a ramp-up scenario: the plasma bound-
ary (green) follows the prescribed boundary (black points), snapshots at
t = 0, 2, 6, 10, 20, 30, 40, 45, 50, 54, 58, 60s (from left to right, top to down).
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