R. Hiptmair and A. Paganini, Abstract, Computational Methods in Applied Mathematics, vol.15, issue.3, pp.291-305, 2015.
DOI : 10.1515/cmam-2015-0013

D. Murai and H. Azegami, Error analysis of the H1 gradient method for shape-optimization problems of continua, JSIAM Letters, vol.5, issue.0, pp.29-32, 2013.
DOI : 10.14495/jsiaml.5.29

R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Mathematics of Computation, vol.38, issue.158, pp.437-445, 1982.
DOI : 10.1090/S0025-5718-1982-0645661-4

URL : http://www.ams.org/mcom/1982-38-158/S0025-5718-1982-0645661-4/S0025-5718-1982-0645661-4.pdf

R. Hiptmair, A. Paganini, and S. Sargheini, Comparison of approximate shape gradients, BIT Numerical Mathematics, vol.85, issue.5, pp.459-485, 2015.
DOI : 10.1002/nme.2982

J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, H??lder estimates for Green???s functions on convex polyhedral domains and their applications to finite element methods, Numerische Mathematik, vol.30, issue.1, pp.221-243, 2009.
DOI : 10.1016/j.matpur.2004.09.017

V. G. Maz-'ya and J. Romann, Weighted Lp estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Z. Angew. Math. Mech, vol.83, issue.7, p.435467, 2003.

M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE constraints, 2009.

G. Allaire, Conception optimale de structures, 2007.

M. C. Delfour and J. P. Zolésio, Shapes and geometries. Metrics, analysis, differential calculus, and optimization, Society for Industrial and Applied Mathematics (SIAM), 2011.
URL : https://hal.archives-ouvertes.fr/hal-01626899

S. C. Brenner, R. Scott, and L. R. , The mathematical theory of finite element methods, 2008.

P. G. Ciarlet, The finite element method for elliptic problems, Society for Industrial and Applied Mathematics (SIAM), 2002.

K. Eppler and H. Harbrecht, Shape Optimization for Free Boundary Problems ??? Analysis and Numerics, Internat. Ser. Numer. Math, vol.160, pp.277-288, 2012.
DOI : 10.1007/978-3-0348-0133-1_15

A. Paganini, Approximate Shape Gradients for Interface Problems, Internat. Ser. Numer. Math, vol.10, issue.1, pp.217-227, 2015.
DOI : 10.1007/BFb0076261

V. Schulz, M. Siebenborn, and K. Welker, A novel Steklov-Poincaré type metric for efficient PDE constrained optimization in shape spaces, 2015.

A. Laurain and K. Sturm, Domain expression of the shape derivative and application to electrical impedance tomography, WIAS Preprint No, p.1863, 2013.