Cahn–Hilliard Approach to Some Degenerate Parabolic Equations with Dynamic Boundary Conditions

Abstract : In this paper the well-posedness of some degenerate parabolic equations with a dynamic boundary condition is considered. To characterize the target degenerate parabolic equation from the Cahn–Hilliard system, the nonlinear term coming from the convex part of the double-well potential is chosen using a suitable maximal monotone graph. The main topic of this paper is the existence problem under an assumption for this maximal monotone graph for treating a wider class. The existence of a weak solution is proved.
Type de document :
Communication dans un congrès
Lorena Bociu; Jean-Antoine Désidéri; Abderrahmane Habbal. 27th IFIP Conference on System Modeling and Optimization (CSMO), Jun 2015, Sophia Antipolis, France. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-494, pp.282-291, 2016, System Modeling and Optimization. 〈10.1007/978-3-319-55795-3_26〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01626916
Contributeur : Hal Ifip <>
Soumis le : mardi 31 octobre 2017 - 14:41:26
Dernière modification le : mardi 31 octobre 2017 - 14:44:53
Document(s) archivé(s) le : jeudi 1 février 2018 - 13:03:21

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Takeshi Fukao. Cahn–Hilliard Approach to Some Degenerate Parabolic Equations with Dynamic Boundary Conditions. Lorena Bociu; Jean-Antoine Désidéri; Abderrahmane Habbal. 27th IFIP Conference on System Modeling and Optimization (CSMO), Jun 2015, Sophia Antipolis, France. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-494, pp.282-291, 2016, System Modeling and Optimization. 〈10.1007/978-3-319-55795-3_26〉. 〈hal-01626916〉

Partager

Métriques

Consultations de la notice

17