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Abstract. A boundary value problem with state constraints is under
consideration for a nonlinear noncoercive Hamilton-Jacobi equation. The
problem arises in molecular biology for the Crow — Kimura model of ge-
netic evolution. A new notion of continuous generalized solution to the
problem is suggested. Connections with viscosity and minimax general-
ized solutions are discussed. In this paper the problem is studied for the
case of additional requirements to structure of solutions. Constructions
of the solutions with prescribed properties are provided and justified via
dynamic programming and calculus of variations. Results of simulations
are exposed.

Keywords: Hamilton — Jacobi equation, method of characteristics, gen-
eralized solutions, viscosity solutions, state constraints

1 Introduction

In [1] a new way to study molecular evolution has been proposed. According to
this way dynamics of the Crow — Kimura model for molecular evolution can be
analyzed via the following HJE

Ou/ot + H(x,0u/dz) =0, (1)
where the Hamiltonian H(-) has the form

1—|—J;€2p_1—x
2 2

H(x,p)=—f(z)+1- e 2. (2)
The function f(-) in (2) is given and called fitness. Equation (1) is considered
fort >0, —1 <z < 1. It is also assumed that an initial function ug : R — R is

given such that
w(0,z) = up(z), =z €[-1;1]. (3)

In [1] problem (1)-(3) was studied for input data ug(z) = —a(z — z0)?, a > 0,
f(x) = 2% and physical interpretations were used.
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The classical method for solving PDE of the first order in Cauchy problem
is the method of characteristics (see, e.g. [2]). This method reduces integration
of PDEs to integration of the characteristic system of ODEs.

The characteristic system for problem (1)-(3) has the form

i = Hylw,p) = —(1+2)e™ + (1 — 2)e,
p=—Hy(z,p) = f'(z) + (e — ) /2, (4)
z= pHp(xap) - H(-’IT,p),

with initial conditions
z(0,y) =y, p0,y) =uo(y), 2(0,y) =uo(y), yel[-1;1]. (5)

Here Hy(z,p) = 0H(z,p)/0x, Hpy(x,p) = 0H(z,p)/0p, f'(z)=0f(z)/0x.
Solutions of the system (4)-(5) are called characteristics. Components z(-,y),
p(-,y) and z(+,y) of the solution are called state, conjugate, and value charac-
teristics, respectively.

Fig. 1. State characteristics for the case f(z) = —0.252% uo(x) = 0.25(z — 0.5)% —
0.1cos2mz.

The method of characteristics can be applied to constructions of solutions
for problem (1)-(3) in such a neighborhood of the initial manifold (5) where
state characteristics don’t cross. As a rule, characteristics for problem (1)-(3)
are nonextendable to the whole time axis and can cross each other. Moreover,
there are points in strip ¢ > 0, —1 < z < 1. where solution of (1)-(3) should be
found, and where the state characteristics do not pass. An example of such a
behavior of state characteristics is presented on Fig. 1.

So, one can see that solutions of the problem (1)-(3) should be understood
in a generalized sense.
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In [3], we introduced a concept of continuous generalized solutions (see Def-
inition 1 below) and proved it’s existence in problem (1)-(3) using tools of Non-
smooth Analysis and results of the Optimal Control Theory. It was also shown
that the generalized solution is not unique.

In this paper, we consider problem (1)-(3) with additional requirements to the
structure of solutions, see [4] and [5]. Namely, we need to construct a continuous
solution in the strip ¢ > 0, —1 < z < 1 in such a way that it coincides with a
solution obtained by the method of characteristics in a domain part where the
characteristics defined by (4) and (5) pass.

The paper is organized as follows. In Section 2, the definition of a continuous
generalized solution is introduced, and the results on its existence are presented.
In Section 3 we state the problem of constructing the generalized solution with
prescribed properties, give sufficient conditions under which the problem can be
solved, and formulate auxiliary results on which solving is based. A scheme for
constructing the generalized solution and results of a simulation are presented
in Section 4 and Section 5 respectively. And, in Section 6, we compare our
generalized solution with viscosity solutions.

2 Continuous Generalized Solutions to the Problem with
State Constraints

2.1 The Problem with State Constraints and Definition of
a Generalized Solution

Let T > 0 be such an instant that characteristics (4), (5) are extendable up to
T, and z(-,y), p(-,y), 2(-,y) are continuous on [0,T] for all y € [—1;1]. Exact
estimates for intervals of extendibility are obtained in [4, 6].

We consider problem (1)-(3) on the restricted closed domain

7 =[0;7T) x [-1;1],
and also use the notations
Iy = (0;T) x (—=1;1), Ir={(t,x)|te(0,T), z==1}.

In the HJEs’ theory various concepts of generalized solutions have been in-
troduced (see, e.g. [7-9]). Note that definitions of generalized solutions to HJEs
in open areas were applied to problems with state constraints as additional re-
quirements to solutions on the border were imposed. These requirements play a
role of boundary conditions. Unfortunately, results of the theories of generalized
solutions are inapplicable to the problem (1)-(3). In particular, one of the key
conditions under which the known theorems on existense of a generalized viscos-
ity solution [8,10] has been proved is the coercivity of the Hamiltonian (see (22)
below). And the theory of minimax solutions [9] is not developed for problems
with state constraints. So, below a new definition of a generalized solution is
introduced [3]. This definition is based on the minimax and viscosity approahes
and uses the following tools of nonsmooth analysis [10, 11].
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Let W be a set in R?. Denote by W the closure of this set, by C(W) — the
class of functions continuous on the set W.

Let u(-) € C(W) and (t,z) € W. The subdifferential of the function u(-) at
(t,z) is the set

D~u(t,z) = ¢ (a,s) E Rx R | liminf “(T’y)fuﬁ’fllf_ﬁg_jl)75(y7w) >0
(Ty) = (t,x)

(T,y)EW
The superdifferential of the function u(-) at (¢,z) is the set

Dtu(t,z) =< (a,s) e Rx R | limsup “(T’y)_“ﬁ’ﬁ‘_ﬂg__j‘)_s(y_z) <0
(Ty) = (t,z)
(r,y)eEW
Let Dif(u) be the set of points where the function u(-) € C(W) is differen-
tiable. For a given set M C R?, the symbol coM means its convex hull [13]. Let
us define the set

Ou(t,x) = co{(a, s) ‘ a= leglo

Ou(ti,z;) .

Ou(t;,x;)
ot ox ’

, § = lim
i—>00

(tiyxi) = (t,x) as i = o0, (t;,x;) € Dif(u)}.

Definition 1. A continuous function u(-) : IIT — R? is called a generalized so-
lution to problem (1)—(3) iff it satisfies the initial condition (3) and the following
relations are true

a+ H(z,s) <0, Y(a,s)€ D u(t,z),V(t, x) € I, (6)
a+ H(x,s) >0, V(a,s)€ D u(t,z),Y(t,x) € IIr, (7
a+ H(z,s) >0, V(a,s)€ D u(t,z)Nou(t, ),V (t,z) € I'r. (8)

2.2 Existence of Generalized Solutions

The following statement was proved in [4] by using tools of Mathematical Theory
of Optimal Control [14] and the method of generalized characteristics [15, 16].

Theorem 1. Let input data up(-) : [-1,1] = R and f(-) : [-1,1] — R be

continuously differentiable functions. Let a function o(t,z) : R> — R be also
continuously differentiable and satisfy the relations

0(0,2) = ug(z) Vxel[-1,1]

Op(t, £1) Op(t, £1)
ot ox

Then there ezists a solution u(t, x) of problem (1)—(3) in sense of definition 1.
The solution has the form

+H<j:1, ):0 V>0 9)

u(t, o) = meax {w(t”7y”)+
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t

+ [ o () op(rf) — Hlalr ) plrgfdr | (10)
tt
for all (t,x) € 1, where t* € [0,T). If t* = 0 then y* =y € [-1,1]; if t' >0,
then y* = +1. The functions (x(-,y*),p(-,y")): [t},t] — R? are solutions for
the system composed of the first two equations of characteristic system (4) with
initial conditions

dp(th,y")
0y

To obtain u(t,z) in accordance with (10), one should consider the set of all
state characteristics z(-, y?) passing through the point (¢, ), namely, x(t,y*) =
x. Note that the generalized solution to problem (1)—(3) is not unique because
of wide choice of functions ¢(-) in Theorem 1.

ety =y, p(thyt) = = po(t*,y").

3 Solutions with Prescribed Properties

Here, we consider a problem to construct the generalized solution of some par-
ticular structure.

Let 27 (t) = z(t,—1) and =7 (t) = z(t,+1), t € [0,T] be the state character-
istics started at ¢ = 0 from the points © = —1 and = = 1, respectively. Below,
we assume that the following condition is satisfied.

A. For the state characteristics z(,y) with initial conditions (5) at ¢ = 0
the inequalities are valid

1<z (t)<azt,y) <zT(t)<1, Vye|[-1,1],Vte]0,T].
Define the subdomains
Go={(t,z)[t€[0,T], = (t) <z <az"(t)}.
Gy ={(t,z)|t€[0,T), 2T (t) <z <1}, (11)
G- ={(t,z)|t€[0,T], -1 <z <z (i)}
So, under the assumption A, we get
Iy =G, UG UG_.
The goal of the work is to construct the generalized solution to problem (1)—

(3) such that it has the following form in Gjy:

t

u(t.) = max fuoy) + [ p(r)H(a(r).p(r) ~ Ha()p(o)r], (12
0

where z(t) = x(t,y), p(t) =p(t,y), t > 0, are state and conjugate characteris-
tics, respectively, which satisfy at ¢ = 0 the initial conditions

z(0,y) =y, p0,y) =up(y), ye[-1,1].
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3.1 Sufficient Conditions

To solve the problem (1)—(3) with the requirement (12) we introduce the follow-
ing additional assumptions on input data.
B1. The derivative ugy(-) : [-1,1] — R is continuous and satisfies the in-
equalities
up(1) <0, wug(—1) > 0.

B2. The derivative f/(-):[—1,1] — R is continuous and monotone nonde-
creasing. It satisfies the inequalities

27/(1) + 20 < e=2u0() | _9¢/(—1) 4 e 2u0(-1) < (2uo(=1),

3.2 Auxiliary Problems of Calculus of Variations

Consider the following two problems of Calculus of Variations over the set of all
continuously differentiable functions z(-) : [0,7] — R

I(2()) = /H*(x(T), #(7))dr — max (13)
0
nO)=1, n@=z G1)e,: (14
22(0) = —1, 22() =7 (£7)€C_ (15)
where
H*(x(t), 2(t)) = gglf%[pf(t) — H(x(t),p)]. (16)

The following assertions are proven in [4,5], where conditions B1-B2 are
essential.

Theorem 2. For any interior point (t,T) € G there exists a unique extremal
x = x(t) of the problem (13),(14),(16). The extremal coinsides with a state char-
acteristic x(+;0,1,po) satisfying the initial conditions ©(0) = 1, p(0) = py €
(—o0,u( (1)) where initial value py can be defined uniquely from the condition
z(t) = z. The functional (13) attains its strong mazimum at this extremal.

Theorem 3. For any interior point (t,Z) € G_ there exists a unique extremal
x = x(t) of the problem (13),(15),(16). The extremal coinsides with a state char-
acteristic x(+;0,—1, pg) satisfying the initial conditions x(0) = —1, p(0) = py €
(ug(—=1),00) where initial value py can be defined uniquely from the condition
z(t) = &. The functional (13) attains its strong mazimum at this extremal.

Theorem 4. For any boundary point (t,1),0 <t < T in G4, the mazimum of
functional (13), (16) is attained at a state characteristic x(-;0,1,pg), such that
the characteristics x(-;0,1,p0), p(+;0,1,po) are nonextendable from the interval
[0,t*(po) = t) to the right. The mazimum of functional (13), (16) is equal to
1(2(::0,1, o)) = (f(1) — D).
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Theorem 5. For any boundary point (t,—1),0 <t < T in G_, the mazimum
of the functional (13)-(16) is attained at a state characteristic x(-;0,—1,po),
such that characteristics x(-;0,—1,pp), p(+;0,—1,pg) are nonextendable from the
interval [0,t*(po) = t) to the right. The mazimum of functional (13),(16) is equal

to I(w(-10,—1,po)) = (f(~1) — D).

4 Construction of the generalized solution

The generalized solution of the problem (1)-(3) with the prescribed property (12)
has the following form in Gy:

t

u(t.o) = max | [ p(r)H, (a(r).p(r) = Hla(r)p(r)dr +uo)). (17)
0

where z(t) = z(t,y), p(t) =p(t,y), t > 0, are state and conjugate characteris-
tics satisfied initial conditions

z(0,y) =y, p(0,y)=0uo(y)/dx, ye[-1,1].
Let (t«,24) € G4 and z, < 1. We assign

T

ults, z.) = uo(1) +/ [p(7)H(x(7),p(7)) — H(x(7),p(7))]dr,  (18)

0

where z(t) = 1 (t,po(ts,z+)), p(t) = pT(t,po(t«,z.)) is the solution of the
problem of Calculus Variations (13),(14),(16).
Forz, =1,0<1t, <T, we set

u(ts, 1) = uo(1) + (f(1) = D)t (19)

Let (t,x.) € G- and x, > —1. We assign

u(ts, xx) = uo(—1) +/ [p(7)H,(x(7), p(7)) — H(2(7),p(7))]dr, (20)
0

where z(t) = z7 (¢, po(ts, x)), p(t) = p~ (¢, po(ts, z«)) is the solution of the
problem of Calculus Variations (13),(15),(16).
For z, = —1,0<t, <T, we set

w(te, 1) = up(—1) + (F(=1) — D)t.. (21)

So, we have defined function u(-) for all points from II7 by relations (17)-
(21). Following the Cauchy method of characteristics [2], one can show that ()
is continuously differentiable at any interior point (t,2) € G4+ U G_, and the



472 Construction of the Generalized Solution to a Molecular Genetic Model

gradient of u(-) is equal to (—H (z,p(t)), p(t)). Theorems 2-5 imply that u(-) is
continuous in II7, and inequalities (6)-(7) are valid. Below, in section 6.2, we
will show that D~ u(t,z) N ou(t,z) = &, (t,x) € I'r. So, u(-) is a generalized
solution of problem (1)-(3) in sense of Definition 1. It follows from (17) that w(-)

satisfies the prescribed property (12).

5 Numerical example

Results of simulation for the input data ug(z) = —0.0222 +0.001 cos 27z, f(-) =
—0.522 are presented in Fig. 2. One can easily check that these input data satisfy
the conditions B1, B2.

/ /////2
e -
e L

4 = " 88

Fig. 2. The graph of the generalized solution and its projection on the (¢, z)-plane for
the input data uo(z) = —0.022% + 0.001 cos 27z, f(x) = —0.527%.

6 Comparison with Viscosity Solution

One can see that Definition 1 coincides with the definition of viscosity solution
in the interior points of the region IIp. The difference between these definitions
is evident at boundary points, namely, on the set I'r. In condition (8), the
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inequality holds for such points (a,s) of the subdifferential D~ u(t,2) which
at the same time belong to the set du(t,z). In contrast to Definition 1, the
notion of viscosity solution [10] for equation (1) on the set Il requires that
this solution satisfies inequality (8) at the boundary points (¢,x) € I'p for all
(a,s) € D™ u(t, x).

6.1 On coercivity condition

Conditions ensuring existence and uniqueness for viscosity solutions on the com-
pact domain were obtained in [10]. One of the key conditions for the existence
of viscosity solutions (see [10,12]) is the coercivity of the Hamiltonian:

H(z,p) = 400 as |p| = o0 (22)

It can be easily checked that the Hamiltonian (2) does not satisfy condition (22),
for example, at © = 1 and x = —1. Therefore, the existence theorems for viscosity
solutions in the sense of paper [10] cannot be used in the problem (1)-(3).

Moreover, the notion of generalized viscosity solution is inapplicable to the
initial value problem (1)—(3) on the compact setIIr: If a viscosity solution would
satisfy the condition D~ u(t, z«) # & at some point (¢, z.) € I'r, then inequal-
ity (8) would not hold in this case. Indeed, let 0 < ¢, < T and, for definiteness,
. = 1. Let (a,8) € D™ u(ts,z,). One can use the above definition of subdiffer-
ential to get the following inclusion:

(a,s + k) € D™ u(ts, zs) VEk>0.
So, if condition (8) would hold then
a+H(,s+k)=a— f(z)+1—e2TH >, Vk >0,

which is obviously unfair. Therefore, we use the intersection of the subdifferential
with the set du(t, z) (see condition (8)) in Definition 1 of a continuous generalized
solution to the initial value problem (1)—(3) on the compact set IIr.

6.2 Structure of subdifferentials on the border

Let’s consider the structure of the sets D~ u(t,z) and du(t, ) for the function
u(-) defined by (17)-(20) if (¢,z) € I'r.
In the case 0 <t < 7T, =z =1, we have
Dult,z) = D-u(t,1) = {(f(1) — 1,8)|s € R,s > 0},
Ou(t,z) = Ou(t,1) = {(_H(L _OO>7 _OO)} = {(f(l) -1, _OO)}
In the case 0 <t <T, x = —1, we have
D u(t,z) = D u(t,—1) = {(f(-1) — 1,9)| s € R, s < 0},
dult, ) = dult, —1) = {(—H(~1,00),00)} = {(f(~1) — 1,00)}.
Thus, for generalized solution (17)-(20)

D7 u(t,z)Nou(t,x) =@, (t,x)€ Ir.
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