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Proving Partial Correctness Beyond Programs

Vlad Rusu Vlad.Rusu@inria.fr

Inria, Lille, France

Partial correctness is perhaps the most important functional property of algo-
rithmic programs. It can be broadly stated as: on all terminating executions,
a given relation holds between a program’s inputs and outputs. It has been
formalised in several logics, from, e.g, Hoare logics [1] to temporal logics [2].

Partial correctness is also a relevant property for any class of specification
that has a notion of terminating execution. For example, communication pro-
tocols have both nonterminating executions (all messages are forever lost and
re-sent) and terminating executions (all messages sent are properly received).
Here, partial correctness may, for instance, require that on all terminating exe-
cutions, the set of messages corresponding to the transmission of a given file are
received and the reception of every message is acknowledged.

How can one naturally specify such generic partial-correctness properties,
and how can one verify them in a maximally trustworthy manner? One pos-
sibility would be to use Hoare logics, but that solution is not optimal because
Hoare logics intrinsically require programs (as their deduction rules focus on how
program-instructions modify logical predicates), and we are targeting systems
specified in formalisms that are not programs but more abstract models, e.g.,
one more naturally specifies communication protocols in some version of state-
transition systems. Another possibility is to state partial-correctness properties
in temporal logic and to use a model checker to prove the temporal formula on
a state-transition system specification. This is a better solution, since it stays at
a model-abstraction level; however, as we are aiming at trustworthy verification,
this is not satisfactory as even in case of a successful verification, one’s trust in
the result is limited as one does not get independently-checkable verification cer-
tificates. Moreover, model checkers are limited to essentially finite-state systems
(perhaps up to some data abstraction), a limitation we want to avoid.

Contribution We thus propose a generic approach implemented in the Coq proof
assistant [24], a system trustworthy enough to be widely regarded as a certifi-
cation tool, in the sense that Coq proofs are independently machine-checkable
certificates. We define and implement therein a notion of Abstract Symbolic Ex-
ecution (hereafter, ASE) to capture a generic notion of symbolic execution for
otherwise arbitrary specifications. As property-specification language we adapt
Reachability Logic [3—7) (hereafter, RL) to any system for which ASE is defined.
We propose a new deductive system for this version of RL and prove its soundness
both on paper and in the Coq proof assistant [24]; the latter provides us with a
Coq-certified RL deductive system. We also prove a relative completeness result
for our deductive system, which, although theoretical in nature, also has a prac-
tical value, since it amounts to a strategy for applying the proof system that does



succeed on valid RL formulas. Initial examples (proving the Needham-Schroeder-
Lowe protocol [11]}) suggest that the approach is applicable in practice.

Related Work Reachability Logic [3—7] is a formalism initially designed for ex-
pressing the operational semantics of programming languages and for specifying
programs in the languages in question. Languages whose operational semantics
is specified in (an implementation of) RL include those defined in the K frame-
work [8], e.g., Java and C. Once a language is formally defined in this manner,
programs in the language can be formally specified using RL formulas; the typical
properties expressible in RL are partial-correctness properties. The verification
of such formally-specified programs is performed by means of a sound deductive
system, which is also complete relative to an oracle deciding certain first-order
theories. Recently, it has been noted that RL is also relevant for other classes of
systems, i.e., rewriting-logic specifications [9, 10]. In this paper we adapt RL to
an even broader class of specifications - essentially, any specification for which
an abstract notion of symbolic execution is defined.

The papers [3-7,10], which describe several variants of RL (earlier known as
matching logic?). The version of RL that we are here adapting is the all-paths
version [6], suitable for concurrent nondeterministic systems, in contrast with
the one-path version [5] for sequential programs.

We note that Coq soundness proofs have also been achieved for various proof
systems for RL [5, 6]. Those proofs did not grow into practically usable RL inter-
active provers, however, because the resulting Coq frameworks require too much
work in order to be instantiated even on the simplest programming languages>.
By contrast, our ambition is to obtain a practically usable, certified RL prover
within Coq, directly applicable to formalisms more abstract than programs.

Our approach is based on a generic notion of symbolic execution, an old
technique that consists in executing programs with symbolic values rather than
concrete ones [13]. Symbolic execution has more recently received renewed inter-
est due to its applications in program analysis, testing, and verification [14-19].
Symbolic execution-like techniques have also been developped for rewriting logic,
including rewriting modulo sMT [20] and narrowing-based analyses [21, 22].

Finally, abstract interpretation [23] provides us with a useful terminology
(abstract and concrete states, abstract and concrete executions, simulations,
etc) which we found most convenient for defining abstract symbolic execution.
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