M. D. De-assuncao, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya, Big data computing and clouds: Trends and future directions, Journal of Parallel and Distributed Computing, vol.79, issue.800

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally et al., Exascale computing study: Technology challenges in achieving exascale systems, Defense Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO)

D. A. Reed and J. Dongarra, Exascale computing and big data, Communications of the ACM, vol.58, issue.7, pp.56-68, 2015.
DOI : 10.1145/1555349.1555372

L. A. Barroso and U. Hölzle, The Case for Energy-Proportional Computing, Computer, vol.40, issue.12, 2007.
DOI : 10.1109/MC.2007.443

A. Orgerie, M. D. Assuncao, and L. Lefevre, A survey on techniques for improving the energy efficiency of large-scale distributed systems, ACM Computing Surveys, vol.46, issue.4, p.47, 2014.
DOI : 10.1109/SURV.2011.062410.00034

URL : https://hal.archives-ouvertes.fr/hal-00767582

A. Kulseitova and A. T. Fong, A survey of energy-efficient techniques in cloud data centers, International Conference on ICT for Smart Society, pp.1-5, 2013.
DOI : 10.1109/ICTSS.2013.6588099

R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, Energy Efficiency in the Future Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network Infrastructures, IEEE Communications Surveys & Tutorials, vol.13, issue.2, pp.223-244, 2011.
DOI : 10.1109/SURV.2011.071410.00073

K. Krauter, R. Buyya, and M. Maheswaran, A taxonomy and survey of grid resource management systems for distributed computing, Software: Practice and Experience, pp.135-164, 2002.

M. Bagein, J. Barbosa, V. Blanco, I. Brandic, S. Cremer et al., Energy efficiency for ultrascale systems: Challenges and trends from nesus project, Supercomputing Frontiers and Innovations, vol.2, issue.2, pp.105-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01196798

S. Benedict, Energy-aware performance analysis methodologies for HPC architectures???An exploratory study, Journal of Network and Computer Applications, vol.35, issue.6, pp.1709-1719, 2012.
DOI : 10.1016/j.jnca.2012.08.003

A. Noureddine, R. Rouvoy, and L. Seinturier, A review of energy measurement approaches, ACM SIGOPS Operating Systems Review, vol.47, issue.3, pp.42-49, 2013.
DOI : 10.1145/2553070.2553077

URL : https://hal.archives-ouvertes.fr/hal-00912996

C. Hsu and S. W. Poole, Power measurement for high performance computing: State of the art, International Green Computing Conference and Workshops (IGCC), pp.1-6, 2011.

D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt et al., Power measurement techniques on standard compute nodes: A quantitative comparison, 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp.194-204
DOI : 10.1109/ISPASS.2013.6557170

T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J. Pierson et al., Cloud Computing, ACM Computing Surveys, vol.47, issue.2, pp.1-3336, 2014.
DOI : 10.1002/9781118342015

URL : https://hal.archives-ouvertes.fr/hal-01153714

R. Ge, X. Feng, S. Song, H. C. Chang, D. Li et al., PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications, IEEE Transactions on Parallel and Distributed Systems, vol.21, issue.5, pp.658-671, 2010.
DOI : 10.1109/TPDS.2009.76

J. Flinn and M. Satyanarayanan, PowerScope: a tool for profiling the energy usage of mobile applications, Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp.2-10, 1999.
DOI : 10.1109/MCSA.1999.749272

G. Da-costa, J. Pierson, and L. F. Cupertino, Mastering system and power measures for servers in datacenter, Sustainable Computing: Informatics and Systems, pp.28-38, 2017.
DOI : 10.1016/j.suscom.2017.05.003

D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, PowerMon: Fine-grained and integrated power monitoring for commodity computer systems, Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), pp.479-484, 2010.
DOI : 10.1109/SECON.2010.5453824

J. H. Laros, P. Pokorny, and D. , DeBonis, Powerinsight ? a commodity power measurement capability, International Green Computing Conference (IGCC), pp.1-6, 2013.
DOI : 10.1109/igcc.2013.6604485

D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel et al., HDEEM: High Definition Energy Efficiency Monitoring, 2014 Energy Efficient Supercomputing Workshop, 2014.
DOI : 10.1109/E2SC.2014.13

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, A Portable Programming Interface for Performance Evaluation on Modern Processors, The International Journal of High Performance Computing Applications, vol.14, issue.3, pp.189-204, 2000.
DOI : 10.1177/109434200001400303

URL : http://www.cs.utk.edu/~mucci/latest/pubs/ut-cs-00-444.pdf

A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco, Energy Measurement Library (EML) Usage and Overhead Analysis, 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp.554-558, 2015.
DOI : 10.1109/PDP.2015.120

Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette et al., Energy Accounting and Control with SLURM Resource and Job Management System, Distributed Computing and Networking -15th International Conference, pp.96-118, 2014.
DOI : 10.1007/978-3-642-45249-9_7

URL : https://hal.archives-ouvertes.fr/hal-01237596

D. Hackenberg, R. Schöne, D. Molka, M. S. Müller, and A. Knüpfer, Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks, Computer Science - Research and Development, vol.1, issue.2, pp.155-163, 2010.
DOI : 10.14778/1454159.1454162

T. R. Scogland, C. P. Steffen, T. Wilde, F. Parent, S. Coghlan et al., A power-measurement methodology for large-scale, high-performance computing, Proceedings of the 5th ACM/SPEC international conference on Performance engineering, ICPE '14, pp.149-159
DOI : 10.1145/2568088.2576795

URL : http://synergy.cs.vt.edu/pubs/papers/scogland-icpe14-power-measurement-hpc.pdf

T. Scogland, J. Azose, D. Rohr, S. Rivoire, N. Bates et al., Node variability in large-scale power measurements, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.741-7411, 2015.
DOI : 10.1109/GreenCom-CPSCom.2010.140

M. E. Diouri, O. Glück, L. Lefèvre, and J. Mignot, Your Cluster is not Power Homogeneous: Take Care when Designing Green Schedulers!, IGCC -4th IEEE International Green Computing Conference
URL : https://hal.archives-ouvertes.fr/hal-00870637

M. E. Diouri, M. F. Dolz, O. Glck, L. Lefvre, P. Alonso et al., Assessing Power Monitoring Approaches for Energy and Power Analysis of Computers, Sustainable Computing: Informatics and Systems, pp.68-82, 2014.
DOI : 10.1016/j.suscom.2014.03.006

URL : https://hal.archives-ouvertes.fr/hal-01065998

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, Mobile edge computing: A key technology towards 5G, Whitepaper ETSI White Paper No, European Telecommunications Standards Institute (ETSI), 2015.

J. Mair, Z. Huang, D. Eyers, and M. , Manila: Using a Densely Populated PMC-Space for Power Modelling within Large-Scale Systems, 2016 45th International Conference on Parallel Processing Workshops (ICPPW), pp.210-219, 2016.
DOI : 10.1109/ICPPW.2016.41

K. Yoshii, K. Iskra, R. Gupta, P. Beckman, V. Vishwanath et al., Evaluating power-monitoring capabilities on ibm blue gene, IEEE International Conference on Cluster Computing, pp.2012-2048, 2012.
DOI : 10.1109/cluster.2012.62

J. Davey, F. Mansmann, J. Kohlhammer, and D. Keim, The future internet, Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions, pp.93-104

R. Kosara and J. Mackinlay, Storytelling: The Next Step for Visualization, Computer, vol.46, issue.5, pp.44-50, 2013.
DOI : 10.1109/MC.2013.36

URL : http://kosara.net/papers/2013/Kosara_Computer_2013.pdf

F. Rossigneux, L. Lefevre, J. Gelas, and M. Dias-de-assuncao, A Generic and Extensible Framework for Monitoring Energy Consumption of OpenStack Clouds, 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, 2014.
DOI : 10.1109/BDCloud.2014.105

URL : https://hal.archives-ouvertes.fr/hal-01094387

F. Clouet, S. Delamare, J. Gelas, L. Lefèvre, L. Nussbaum et al., A Unified Monitoring Framework for Energy Consumption and Network Traffic, Proceedings of the 10th EAI International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, 2015.
DOI : 10.4108/icst.tridentcom.2015.259704

URL : https://hal.archives-ouvertes.fr/hal-01167915

R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez et al., Grid'5000: A Large Scale And Highly Reconfigurable Experimental Grid Testbed, Journal of High Performance Computing Applications, pp.481-494, 2006.
DOI : 10.1145/1060289.1060313

URL : https://hal.archives-ouvertes.fr/hal-00684943

P. Hintjens, ZeroMQ: Messaging for Many Applications, O'Reilly Media, 2013.

F. Almeida, J. Arteaga, V. Blanco, and A. Cabrera, Energy measurement tools for ultrascale computing: A survey, Supercomputing Frontiers and Innovations, vol.2, issue.2

D. Martinez, J. Cabaleiro, T. Pena, F. Rivera, and V. Blanco, Accurate analytical performance model of communications in MPI applications, 2009 IEEE International Symposium on Parallel & Distributed Processing, p.5161175, 2009.
DOI : 10.1109/IPDPS.2009.5161175

A. C. Pérez, F. Almeida, J. Arteaga, and V. B. Pérez, Measuring energy consumption using EML (energy measurement library), Computer Science -R&D, vol.30, issue.2, pp.135-143, 2015.

F. Almeida, V. B. Pérez, A. C. Pérez, and J. Ruiz, Modeling energy consumption for master???slave applications, The Journal of Supercomputing, vol.4, issue.1, pp.1137-1149, 2013.
DOI : 10.1109/88.481662

A. C. Pérez, F. Almeida, V. B. Pérez, and D. Giménez, Analytical modeling of the energy consumption for the high performance linpack, IEEE Computer Society, pp.343-350, 2013.

F. Almeida, V. B. Pérez, I. Gonzalez, A. C. Pérez, and D. Giménez, Analytical energy models for MPI communications on a sandybridge architecture, IEEE Computer Society, pp.868-876, 2013.
DOI : 10.1109/icpp.2013.103

S. Barrachina, M. Barreda, S. Catalán, M. F. Dolz, G. Fabregat et al., An integrated framework for power-performance analysis of parallel scientific workloads, pp.114-119, 2013.

M. Barreda, S. Catalán, M. F. Dolz, R. Mayo, and E. S. Quintana-ortí, Automatic detection of power bottlenecks in parallel scientific applications, Fourth International Conference on Energy- Aware High Performance Computing, pp.3-4, 2013.
DOI : 10.1177/1094342006064482

L. F. Cupertino, G. D. Costa, A. Sayah, and J. Pierson, Energy Consumption Library, pp.51-57, 2013.
DOI : 10.1007/978-3-642-40517-4_4

URL : https://hal.archives-ouvertes.fr/hal-01220610

. F. Cupertino, Energy consumption tools web-page (https, 2013.

. Christmann, Description for resource efficient computing system (recs), 2009.

L. Fontoura-cupertino, G. Da-costa, A. Sayah, and J. Pierson, Valgreen: an Application's Energy Profiler, International Journal of Soft Computing and Software Engineering, issue.3, pp.13-16

L. and F. Cupertino, Modeling the power consumption of computing systems and applications through Machine Learning techniques, 2015.

M. Jarus, A. Oleksiak, T. Piontek, and J. Weglarz, Runtime power usage estimation of HPC servers for various classes of real-life applications, Future Generation Computer Systems, vol.36, pp.299-310, 2014.
DOI : 10.1016/j.future.2013.07.012

L. Atzori, A. Iera, and G. Morabito, The Internet of Things: A survey, Computer Networks, vol.54, issue.15, pp.2787-2805, 2010.
DOI : 10.1016/j.comnet.2010.05.010

I. Arel, D. C. Rose, and T. P. Karnowski, Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier], IEEE Computational Intelligence Magazine, vol.5, issue.4, pp.13-18, 2010.
DOI : 10.1109/MCI.2010.938364