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ABSTRACT

DCASE 2017 Challenge consists of four tasks: acoustic scene clas-
sification, detection of rare sound events, sound event detection in
real-life audio, and large-scale weakly supervised sound event de-
tection for smart cars. This paper presents the setup of these tasks:
task definition, dataset, experimental setup, and baseline system re-
sults on the development dataset. The baseline systems for all tasks
rely on the same implementation using multilayer perceptron and
log mel-energies, but differ in the structure of the output layer and
the decision making process, as well as the evaluation of system
output using task specific metrics.

Index Terms— Sound scene analysis, Acoustic scene classifi-
cation, Sound event detection, Audio tagging, Rare sound events,
Weak Labels

1. INTRODUCTION

Sounds carry a large amount of information about our everyday en-
vironment and physical events that take place in it. Humans are
very skilled in perceiving the general characteristics of the sound
scene around them, whether it is a busy street, a quiet park or a
quiet office environment, and recognizing individual sound sources
in the scenes, such as cars passing by, birds, or footsteps. Develop-
ing computational methods to automatically extract this information
has huge potential in several applications, for example searching for
multimedia based on its audio content [1], making context-aware
mobile devices [2], robots, cars, etc., and intelligent monitoring
systems [3, 4] to recognize activities using acoustic information.
However, a significant amount of research is still needed to reliably
recognize sound scenes and individual sound sources in real-life
soundscapes, where multiple sounds are present, often simultane-
ously, and distorted by the environment.

Building up on the success of the previous editions, DCASE
2017 Challenge supports the development of computational scene
and event analysis methods by comparing different approaches us-
ing common publicly available datasets. The continuous effort in
this direction will set another milestone of development, and anchor
the current performance for further reference. The challenge con-
sists of four tasks: acoustic scene classification, detection of rare
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sound events, sound event detection in real-life audio, and large-
scale weakly supervised sound event detection for smart cars.

Acoustic scene classification is a prominent topic in environ-
mental sound classification. It is defined as recognition of the en-
vironment in which a recording has been made, relying on the as-
sumption that an acoustic scene, as a general characterization of
a location or situation, is distinguishable from others based on its
general acoustic properties. It has been present as a task in DCASE
2013 [5] and DCASE 2016 [6], and has been approached in a variety
of ways. A review of the features and classifiers used for it is pre-
sented in [7], with features including the well-known mel-frequency
cepstral coefficients [2, 8] or more specialized features such as
histograms of sound events [9] or histogram of gradients learned
from time-frequency representations [10], and acoustic models such
as hidden Markov models (HMMs) [2], Gaussian mixture models
(GMMs) [8] or support vector machines (SVMs) [10, 11]. More re-
cently, the emergence of methods using deep learning is noticeable,
with many of the submitted systems for DCASE 2016 being based
on various types of deep neural networks (DNNs) [6].

Sound event detection is defined as recognition of individual
sounds in audio, involving also estimation of onset and offset for
distinct sound event instances, possibly for multiple sound classes.
It assumes that similar sounds can be represented as a single class,
and as such this class is sufficiently different from other sound
classes to allow recognition. The most used features for sound event
detection are mel-scale representations, namely cepstral coefficients
or log energies [12, 13, 14], and they are used with various machine
learning methods, including HMMs [12], non-negative matrix fac-
torization (NMF) [15, 16], random forests [11], and DNNs [14, 17].

Sound event detection in real-life audio presents many difficul-
ties for automatic methods, such as the inherent acoustic variability
of the sounds belonging to the same sound event class, or other
sounds overlapping with the sound event of interest. In some situ-
ations, the target sound events are very rare, imposing additional
burden on detection systems to avoid false detections. DCASE
2017 Challenge addresses rare sound events and highly overlapping
sounds through two separate tasks: detection of rare sound events,
sound event detection in real-life audio.

Sound recordings are shared on the Internet on a minute-by-
minute basis. These recordings are predominantly videos and con-
stitute the largest archive of sounds we’ve ever seen. Most of
their acoustic content is untagged; hence automatic recognition of
sounds within recordings can be achieved by sound event detection.
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However, most of the literature and the previous two iterations of
DCASE focus on audio-only recordings and supervised approaches,
by which the training and test data are annotated with strong labels
(including precise timestamps). Collecting such annotations hardly
scales to the number of web videos and sound classes. Therefore,
we argue that there is a need for semi-supervised approaches that
are trained and evaluated with weak labels (not including precise
timestamps). Current literature has shown potential using unsuper-
vised [18, 19, 20] and semi-supervised approaches [21, 22] some
of them employing weak labels [23]. Success in this task would
complement other modalities for video content analysis.

This paper presents in detail the DCASE 2017 Challenge tasks.
For each task we provide the task definition, information about the
dataset, the task setup and baseline system, and baseline results on
the development dataset. The baseline systems for all tasks rely on
the same implementation and use the same features and techniques;
they differ in the way they handle and map the input data to target
outputs, as this is application specific and was chosen according to
the task.

2. CHALLENGE SETUP

The challenge provided the potential participants with four tasks,
with publicly available datasets and a baseline system for each task.
Challenge submission consisted in system output(s) formatted ac-
cording to the requirements. In addition, participants were required
to submit a technical report containing the description of the sys-
tem(s) in sufficient detail, to allow the community to compare and
understand all submissions. The timeline of the challenge is pre-
sented in Table 1, and the general organization of the datasets and
baseline systems presented in detail in the following sections.

2.1. Datasets

A development dataset was provided for each task when the chal-
lenge was launched, consisting of predefined training and test sets
(for some tasks in a cross-validation folds format) to be used dur-
ing system development. A separate dataset, referred to as eval-
uation dataset, was kept for evaluation of the developed systems.
The development datasets consist of audio material and associated
reference annotations in a task-specific format, and an experimental
setup for reporting system performance on the development dataset.
The organizers’ recommendation was to use the provided exper-
imental setup, in order to allow a direct comparison between sub-
missions. Access to the datasets was provided through the challenge
website !.

As general rules applicable for all tasks, participants were not
allowed to use external data for system development, with datasets
from a different task considered as external data. However, manip-
ulation of the provided training and development data was allowed,
for augmentation without use of external data (e.g. by mixing data
sampled from a probability distribution function or using techniques
such as pitch shifting or time stretching).

The evaluation datasets were provided as audio only, with-
out reference annotations, shortly before the challenge submission
deadline. Participants were required to run their systems on this
data and submit the system outputs to the organizers for evaluation.
Participants were not allowed to make subjective judgments of the
evaluation data, nor to annotate it. The use of the evaluation dataset

"http://www.cs.tut.fi/sgn/arg/dcase2017/

16 November 2017, Munich, Germany

Table 1: Challenge timeline
Release of development datasets | 21 Mar 2017
Release of evaluation datasets 30 June 2017
Challenge submission 31 July 2017
Publication of results 15 Sept 2017
DCASE 2017 Workshop 16-17 Nov 2017

to train the submitted system was also forbidden. Reference anno-
tations for the evaluation data were only available to the organizers,
therefore they were responsible with performing the evaluation of
the results according to the metrics for each task.

2.2. Baseline system

A baseline system was provided, with a common implementation
for all tasks. The system consists of a basic approach that was tai-
lored to each task. Its purpose is to provide a comparison point for
the participants while developing their systems. The performance
of the baseline system on the development set is provided for each
task. When run with the default parameters, the system downloads
the needed dataset and outputs the task-specific results [24].

The implementation is based on a multilayer perceptron archi-
tecture (MLP) and uses log mel-band energies as features. The fea-
tures are calculated in frames of 40 ms with a 50% overlap, using
40 mel bands covering the frequency range 0 to 22050 Hz. The fea-
ture vector was constructed using a 5-frame context, resulting in a
feature vector length of 200. The MLP consists of two dense layers
of 50 hidden units each, with 20% dropout. The network is trained
using Adam algorithm for gradient-based optimization [25]; train-
ing is performed for maximum 200 epochs using a learning rate of
0.001, and uses early stopping criteria with monitoring started af-
ter 100 epochs and a 10 epoch patience. The output layer of the
network is task specific, and will be described in the corresponding
section. The network is trained using the aforementioned features,
and the learning target is presented according to the implemented
task. The baseline system also includes evaluation of the system
outputs using a specific metric for each task.

The baseline system was implemented using Python, using
Keras for machine learning. It has all needed functionality for
dataset handling, storing and accessing features and models, and
evaluating the results, and allows straightforward adaptation and
modification of the various involved steps. Participants were al-
lowed and encouraged to build their system on top of the given
baseline system.

3. TASK 1: ACOUSTIC SCENE CLASSIFICATION

The goal of acoustic scene classification is to classify a test record-
ing into one of the provided predefined classes that characterizes the
environment in which it was recorded for example “park”, “home”,
“office”, as illustrated in Fig. 1.

The dataset provided for this task is TUT Acoustic Scenes 2017,
which consists of TUT Acoustic Scenes 2016 [26] as the develop-
ment set, and a newly recorded evaluation set. The main difference
is that for this edition of the challenge, the original recordings of
3-5 minutes length were split into 10 s long segments which were
provided in individual files and considered as independent. Shorter
audio segments provide less information to the system for the de-
cision making process, thus increasing the task difficulty from the
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Figure 1: A schematic illustration of the acoustic scene classifica-
tion addressed in Task 1.

Table 2: Class-wise accuracy of the baseline system for Task 1.

Development set  Evaluation set
Acoustic scene Acc. (%) Acc. (%)
Beach 75.3 40.7
Bus 71.8 38.9
Cafe/Restaurant 57.7 43.5
Car 97.1 64.8
City center 90.7 79.6
Forest path 79.5 85.2
Grocery store 58.7 49.1
Home 68.6 76.9
Library 57.1 30.6
Metro station 91.7 93.5
Office 99.7 73.1
Park 70.2 324
Residential area 64.1 77.8
Train 58.0 72.2
Tram 81.7 574
Overall 74.8 61.0

previous edition. This length is regarded as challenging for both hu-
man and machine recognition, based on the study in [2]. A detailed
description of the data recording and annotation procedure can be
found in [26].

The acoustic scene classes considered in this task were: bus,
cafe/restaurant, car, city center, forest path, grocery store, home,
lakeside beach, library, metro station, office, residential area, train,
tram, and urban park. A cross-validation setup containing four folds
was provided, splitting the available audio material in the develop-
ment set such that all segments obtained from the same original
recording are included to one side of the learning algorithm, either
training or test. For each class, the development set contains 312
segments of 10 seconds (52 minutes of audio material).

For this task, the baseline system was tailored to a multi-class
single label classification setup, with the network output layer con-
sisting of softmax type neurons representing the 15 classes. The
classification decision was based on the output of the neurons,
which can be active only one at a time. Frame-based decisions were
combined using majority voting to obtain a single label per classi-
fied segment. The system performance was measured using accu-
racy, defined as the ratio between the number of correct system out-
puts and the total number of outputs [27]. The system was trained
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Figure 2: A schematic illustration of the detection of rare sound
events addressed in Task 2.

and tested using the provided four fold cross-validation setup, ob-
taining an average classification accuracy of 73.8% on the devel-
opment set and 61.0% on the evaluation set. Class-wise accuracy
is presented in Table 2. Ranking of the systems submitted for the
challenge is done using classification accuracy.

4. TASK 2: DETECTION OF RARE SOUND EVENTS

Task 2 focused on the detection of rare sound events, as illustrated
in Fig. 2. The audio material used in this task consists of artificially
created mixtures, allowing the creation of many examples at differ-
ent event-to-background ratios. Here, “rare” refers to target sound
events occurring at most once within a half-minute recording. For
each of the three target sound event classes, a separate system is to
be developed to detect the temporal occurrences of these events.

The provided dataset consists of source files for creating mix-
tures of rare sound events with background audio, as well as a set
of readily generated mixtures and the so-called recipes according
to which the mixtures were created. Additionally, a software pack-
age was provided, which performs further generation of additional
mixture recipes and generates the audio mixtures.

The background recordings originate from the TUT Acoustic
Scenes 2016 development dataset [26], with the exception of seg-
ments naturally containing the target class events and interference
from mobile phone, which were removed. The rare sound events are
of the following classes: baby cry (106 training, 42 test instances,
mean duration 2.25 s), glass break (96 training, 43 test instances,
mean duration 1.16 s) and gun shot (134 training, 53 test, mean du-
ration 1.32 s). The recordings were downloaded from freesound.org
through the API with python wrapper”. In the “source” part of this
dataset, these recordings were presented in their original form, and
were accompanied by the added annotations of the temporal occur-
rences of isolated events.

We isolated the target sound events from the full-length record-
ings acquired from freesound.org that may consist of the actual
event, silence regions and background noise in the following man-
ner. First, a semi-supervised segmentation [28] was performed us-
ing an SVM trained to classify high-energy and low-energy frames.
The active segments were then obtained with a dynamic thresh-
old computed as a weighted average of top 10% and lower 10%
of the onset probability values over all the analysis frames of a
recording. Thereupon, a human annotator listened to each obtained
segment, and segments containing irrelevant events were discarded
(baby coughs, unrealistically sounding gun shots such as laser guns

2https://github.com/xavierfav/freesound-python-tools
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Table 3: Baseline system results for Task 2, event-based metrics.

Development set Evaluation set
Event Class | ER  F-score (%) ER  F-score (%)
Baby cry 0.67 72.0 0.80 66.8
Glass break | 0.22 88.5 0.38 79.1
Gun shot 0.69 57.4 0.72 46.5
Average 0.53 72.7 0.63 64.1

etc.). In the process of such screening, additional manual refinement
of the timing of the events was performed with a step of 100 ms to
eliminate pauses before and after the event, while not introducing
any abrupt jumps at the boundaries.

The mixture generation procedure had the following parame-
ters. For each target class in both training and test sets, there were
500 mixtures. The event presence rate was 0.5 (250 mixtures with
target event present and 250 “mixtures” of only background). The
event-to-background ratios (EBR) were -6, 0 and 6 dB. The EBR
was defined as a ratio of average RMSE values calculated over the
duration of the event and the corresponding background segment
on which the event will be mixed, respectively. The background
instance, the event instance, the event timing in the mixture, its
presence flag and the EBR value were all selected randomly and
uniformly. The data required to perform the generation of the ex-
act mixtures (the filenames of the background and sound event, if
present, the timing and the amplitude scaling factor of the event)
was encoded in the so-called recipes. The recipes were generated
randomly, but with a fixed seed of the random generator, allowing
reproducibility.

The mixtures were generated by summing the backgrounds
with the corresponding target event signals according to the recipes,
with downsampling to 44100 Hz prior to summation in the case of
a higher sampling rate. The resulting signals were scaled with a
global empirical factor of 0.2, preserving the dynamics while avoid-
ing clipping. The files were then saved in 24 bit format in order to
avoid adding quantization noise.

The dataset is accompanied by a software package, which,
given the default parameters, produces exactly the same mixture
recipes and audio mixture files as in this dataset. It also allows for
tuning the parameters in order to obtain larger and more challeng-
ing training datasets: number of mixtures, EBR values and event
presence probabilities are adjustable.

The information needed to perform the split into training and
test sets in terms of underlying source data was provided. The split
of backgrounds was done in terms of recording location ID, accord-
ing to the first fold of the DCASE 2016 task 1 setup, yielding 844
training and 277 test files. The sound events were split in terms of
freesound.org user names. The ratio of target event examples was
set to 0.71:0.29, and the split was performed in such a way that the
isolated event counts are of a similar ratio. The resulting unique
event counts are therefore the following:

e baby cry: 106 training, 42 test;
e glass break: 96 training, 43 test;
e gun shot: 134 training 53 test.

The baseline system follows the common implementation, with
the following specifics. For each of the target classes, there is a
separate binary classifier with one output neuron with sigmoid acti-
vation, indicating the activity of the target class. The performance
of the baseline system is evaluated using event-based error rate and

16 November 2017, Munich, Germany

v
[ Sound Event Detection System J

v

Input

—)
08 O
—

'me>

ti
each event with sound class label + onset and offset timestamps

Output

Figure 3: A schematic illustration of sound event detection in real-
life audio addressed in Task 3.

event-based F-score as metrics using development dataset mixtures
(provided training and test sets). Both metrics are calculated as de-
fined in [27], using a collar of 500 ms and taking into account only
the sound event onset. The performance of the baseline system is
reflected in Table 3. The primary evaluation score for this task is
the event-based error rate, and ranking of the systems submitted for
the challenge is done using the average event-based error rate over
the three classes.

5. TASK 3: SOUND EVENT DETECTION IN REAL-LIFE
AUDIO

Task 3 evaluated the performance of sound event detection systems
in multisource conditions similar to our everyday life, where the
sound sources are rarely heard in isolation. A number of predefined
sound event classes were selected, and systems are meant to detect
the presence of these sounds, providing labels and timestamps to
segments of the test audio, as illustrated in Fig. 3. In this task, there
is no control over the number of overlapping sound events at each
time, not in the training, nor in the test audio data.

The dataset used for this task is a subset of TUT Acoustic
Scenes 2017, and is referred to as TUT Sound Events 2017. It con-
sists of recordings of street acoustic scenes (city center and residen-
tial area) with various levels of traffic and other activity. The length
of the audio is 3-5 minutes. The street acoustic scene was selected
as representing an environment of interest for detection of sound
events related to human activities and hazard situations.

Individual sound events in each recording were annotated by
the same person using freely chosen labels for sounds, according
to the annotation procedure described in [26]. Nouns were used to
characterize the sound source, and verbs to characterize the sound
production mechanism, using a noun-verb pair whenever this was
possible. The annotator was instructed to annotate all audible sound
events, decide the start time and end time of the sounds as he sees
fit, and choose event labels freely.

The target sound event classes were selected so as to represent
common sounds related to human presence and traffic. The selected
sound classes for the task are: brakes squeaking, car, children, large
vehicle, people speaking, and people walking. Mapping of the raw
labels was performed, merging sounds into classes described by
their source, for example “car passing by”, “car engine running”,
“car idling”, etc into “car”, sounds produced by buses and trucks

LIS

into “large vehicle”, “children yelling” and “children talking” into
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Table 4: Event instances per class in Task 3

Event label Dev. set  Eval. set
brakes squeaking 52 24
car 304 110
children 44 19
large vehicle 61 24
people speaking 89 47
people walking 109 48
total 659 272

Table 5: Baseline system results for Task 3, segment-based metrics.
Development set Evaluation set

ER  F-score (%) | ER  F-score (%)

Overall 0.69 56.7 0.93 42.8

Class-wise performance

brakes squeaking | 0.98 4.1 0.92 16.5
car 0.57 74.1 0.76 61.5
children 1.35 0.0 2.66 0.0
large vehicle 0.90 50.8 1.44 42.7
people speaking 1.25 18.5 1.29 8.6
people walking 0.84 55.6 1.44 335

“children”, etc. Due to the high level of subjectivity inherent to the
annotation process, a verification of the reference annotation was
done using these mapped classes. Three persons (other than the an-
notator) listened to each audio segment annotated as belonging to
one of these classes, marking agreement about the presence of the
indicated sound within the segment. Event instances that were con-
firmed by at least one person were kept, resulting in elimination of
about 10% of the original event instances.

Partitioning of data into development and evaluation datasets
was done based on the amount of examples available for each sound
event class. Because the event instances belonging to different
classes are distributed unevenly within the recordings, the partition-
ing of individual classes can be controlled only to a certain extent,
but so that the majority of events are in the development set. A
cross-validation setup provided in order to make results reported
with this dataset uniform. The setup consists of four folds contain-
ing training and test subsets, and is made so that each recording is
used exactly once as test data. While creating the cross-validation
folds, the only condition imposed was that the test subset does not
contain classes which are unavailable in the training subset. The
number of instances for each event class in the development set is
presented in Table 4. Evaluation set statistics will be added in the
camera ready version.

The baseline system was tailored to a multi-class multi-label
classification setup, with the network output layer containing sig-
moid units that can be active at the same time. This way, multiple
output units can indicate activity of overlapping sound classes. The
results are evaluated using segment-based error rate and segment-
based F-score as metrics, using a segment length of one second.
The four cross-validation folds are treated as a single experiment:
the metrics are calculated by accumulating error counts (insertions,
deletions, substitutions) over all folds [27], not by averaging the in-
dividual folds nor the individual class performance. This method
of calculating performance gives equal weight to each individual
sound instance in each segment, as opposed to being influenced by
class balance and error types [29]. The system trained and tested
using the provided cross-validation setup obtained an overall error

16 November 2017, Munich, Germany

rate of 0.69 and an overall F-score of 56.7% on the development set,
as shown in Table 5. On the evaluation dataset, the system obtained
an error rate of 0.93 and an F-score of 42.8. For completeness,
individual class performance is presented along the overall perfor-
mance. The primary evaluation score for this task is the overall
segment-based error rate, and ranking of the systems submitted for
the challenge is also done using the same metric, calculated on the
evaluation dataset.

6. TASK 4: LARGE-SCALE WEAKLY SUPERVISED
SOUND EVENT DETECTION FOR SMART CARS

Task 4 evaluated systems for the large-scale detection of sound
events using weakly labeled audio recordings. The audio comes
from YouTube video excerpts related to the topic of transportation
and warnings. The topic was chosen due to its industry relevance
and the under use of audio in this context. The results will help de-
fine new grounds for large-scale sound event detection and show the
benefit of audio for self-driving cars, smart cities and related areas.
The task consisted of detecting sound events within 10-second clips
and it was divided into two subtasks:

e Subtask A: Without timestamps (same as audio tagging, Fig 4)
e Subtask B: With timestamps (similar to Task 3, Fig 3)

The task employed a subset of AudioSet [30]. AudioSet con-
sists of an ontology of 632 sound event classes and a collection of 2
million human-labeled 10-second sound clips drawn from YouTube
videos. The ontology is specified as a hierarchical graph of event
categories, covering a wide range of human and animal sounds, mu-
sical instruments and genres, and common everyday environmental
sounds. To collect the dataset, Google worked with human anno-
tators who listened, analyzed, and verified the sounds they heard
within the YouTube 10-second clips. To facilitate faster accumula-
tion of examples for all classes, Google relied on available YouTube
metadata and content-based search to nominate candidate video
segments that were likely to contain the target sound. Note that Au-
dioSet does not come with precise time boundaries for each sound
class within the 10-second clips and thus annotations are considered
weak labels. Also, one clip may correspond to more than one sound
event class. Task 4 relied on a subset of 17 sound events divided
into two categories: Warning and Vehicle.

e Warning sounds: Train horn, Air horn Truck horn, Car alarm,
Reversing beeps, Ambulance (siren), Police car (siren), Fire
engine fire truck (siren), Civil defense siren, Screaming.

o Vehicle sounds: Bicycle, Skateboard, Car, Car passing by, Bus,
Truck, Motorcycle, Train.

For both subtasks, the data was divided in two main partitions:
development and evaluation. The development data was itself di-
vided into training and test. Training had 51,172 clips, which are
class-unbalanced and had at least 30 clips per sound event. Test had
488 clips, with at least 30 clips per class. A 10-second clip may
have corresponded to more than one sound event class. The evalua-
tion set had 1,103 clips, with at least 60 clips per sound event. The
sets had weak labels denoting the presence of a given sound event
within the audio, but with no timestamp annotations. For test and
evaluation, strong labels (timestamp annotations) were provided for
the purpose of evaluating performance on Subtask B.

The task rules did not allow the use of external data, such as
other datasets. Similarly, it was not allowed to use other elements
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Table 6: Baseline system results for Task 4 - Subtask A, sound

[ Audio Tagging System ] event dptection without timestamps (audio tagging) based on micro-
averaging.
¢ Development set (%)| Evaluation set (%)
[ Car alarm ] F-score Prec. Rec. |F-score Prec. Rec.
- Overall 109 79 17.6| 18.18 15.0 23.07
= [ Police Siren ] )
= Class-wise performance
8 [ Car passing ] Train horn 0.0 0.0 0.0 14.1 100 7.6
Air horn, truck horn| 0.0 0.0 0.0 00 0.0 0.0
[ Bus ] Car alarm 00 00 00| 00 00 00
Reversing beeps 0.0 0.0 0.0 0.0 0.0 0.0

Figure 4: A schematic illustration of audio tagging addressed in
Subtask A of Task 4.

of the video from which the 10-sec clip was extracted, such as the
rest of the video soundtrack, the video frames and the metadata
(e.g. text, views, likes). Moreover, participants were not allowed
to use the embeddings provided by AudioSet or other features that
used external data indirectly, such as the ones derived from Trans-
fer Learning. Additionally, only weak labels and none of the strong
labels (timestamps) could be used for training the submitted system.

The evaluation metric of the two subtasks was different. For
Subtask A, sound event detection without timestamps (audio tag-
ging), we used F-score, precision and recall, where ranking of
submitted systems was based on F-score. For Subtask B, sound
event detection with timestamps, we used segment-based error rate
(SBER) [27] and F-score, where ranking of submitted systems was
based on SBER for segments of length one-second.

The baseline system shares the code base with other tasks, with
detection decision based on the network output layer containing sig-
moid units that can be active at the same time. The system also in-
cludes evaluation of the overall and class-wise results. The baseline
was trained using the training set and tested using the test set and
later also tested on the evaluation set. The results for the testing
and evaluation sets are shown in Tables 6 for Subtask A and 7 for
Subtask B.

7. CONCLUSIONS

The DCASE 2017 Challenge proposed four tasks relevant to current
research in environmental sound classification. Compared to previ-
ous challenge, the current edition tackled two specific situations,
namely detection of sound events that may appear very rarely, and
the problem of using weak labels for training sound event detec-
tion systems. Of the established tasks, acoustic scene classification
and sound event detection in real life audio were seen as important
and yet to be solved research problems, worthy of inclusion in the
ongoing work.

Through its public datasets and reporting of results, the chal-
lenge promotes open research and publications, disseminating the
outcome to a large audience. The provided baseline system also
offered a starting point for further development, along with a set
comparison reference for each task.
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Ambulance (siren) 0.0 0.0 0.0 00 0.0 0.0
Police car (siren) 358 29.1 46.6 | 38.8 32.6 47.8
Fire engine, 227 250 20.8| 19.3 257 155
fire truck (siren)
Civil defense siren 575 477 724 | 479 340 81.0

Screaming 0.0 0.0 0.0 0.0 0.0 0.0
Bicycle 00 00 00 42 100 2.1
Skateboard 00 00 0.0 00 0.0 0.0
Car 113 6.0 983 | 299 179 922
Car passing by 0.0 0.0 0.0 0.0 0.0 0.0
Bus 00 00 0.0 00 0.0 0.0
Truck 00 00 00 00 0.0 0.0
Motorcycle 0.0 0.0 0.0 | 142 100 7.6
Train 45 100 23 7.8 100 4.0

Table 7: Baseline system results for Task 4 - Subtask B, sound event
detection with timestamps, based on segment-based error rate. The
character [-] represents no prediction output by the system.
Development set Evaluation set

ER F-score % | ER  F-score %
Overall 1.02 13.8 0.93 28.4
Class-wise performance
Train horn 1.00 - 0.98 3.9
Air horn, truck horn | 1.00 - 1.0 -
Car alarm 1.00 - 1.0 -
Reversing beeps 1.00 - 1.0 -
Ambulance (siren) 1.00 - 1.0 -
Police car (siren) 1.03 28.7 1.01 34
Fire engine, 1.02 8.4 0.98 16.5

fire truck (siren)
Civil defense siren 0.69 58.2 0.64 67.4

Screaming 1.00 - 1.0 -
Bicycle 1.00 - 0.99 25
Skateboard 1.00 - 1.0 -
Car 5.9 21.1 1.75 46
Car passing by 1.00 - 1.0 -
Bus 1.00 - 1.0 -
Truck 1.00 - 1.0 -
Motorcycle 1.00 - 0.97 6.1
Train 1.00 0.5 0.99 1.8
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