
PolyBench 4.2.1 (pre-release)

Tomofumi Yuki
Inria / LIP / ENS Lyon
tomofumi.yuki@inria.fr

Louis-Noël Pouchet
Ohio State University

pouchet@cse.ohio-state.edu

May 20, 2016

Contents

1 PolyBench 4.2.1 (pre-release) Kernels 2
1.1 Data Mining . 2

covariance . 2
correlation . 2

1.2 BLAS Routines . 3
gemm . 3
gemver . 3
gesummv . 3
symm . 3
syrk . 4
syr2k . 4
trmm . 4

1.3 Linear Algebra Kernels . 5
2mm . 5
3mm . 5
atax . 5
bicg . 5
doitgen . 6
mvt . 6

1.4 Linear Algebra Solvers . 7
cholesky . 7
durbin . 7
gramschmidt . 7
lu . 7
ludcmp . 8
trisolv . 8

1.5 Medley . 9
deriche . 9
floyd-warshall . 10
nussinov . 10

1.6 Stencils . 11
adi . 11
fdtd-2d . 11
heat-3d . 11
jacobi-1d . 11
jacobi-2d . 12
seidel-2d . 12

1

2 C Implementation 12

1 PolyBench 4.2.1 (pre-release) Kernels

This document describes computations performed in PolyBench kernels from mathematical stand point. The
description is detached from implementation decisions to provide a single and consistent point of reference
for implementations in various languages.

1.1 Data Mining

covariance

Computes the covariance, a measure from statistics that show how linearly related two variables are.
It takes the following as input,

• data: N ×M matrix that represents N data points, each with M attributes,

and gives the following as output:

• cov: M × M matrix where the i, j-th element is the covariance between i and j. The matrix is
symmetric.

Covariance is defined to be the mean of the product of deviations for i and j:

cov(i, j) =

N−1∑
k=0

(data(k, i)− mean(i))(data(k, j)− mean(j))

N − 1

where

mean(x) =

N−1∑
k=0

data(k, x)

N

Note that the above computes sample covariance where the denominator is N − 1.

correlation

Correlation computes the correlation coefficients (Pearson’s), which is normalized covariance.
It takes the following as input,

• data: N ×M matrix that represents N data points, each with M attributes,

and gives the following as output:

• corr: M ×M matrix where the i, j-th element is the correlation coefficient between i and j. The
matrix is symmetric.

Correlation is defined as the following,

corr(i, j) =
cov(i, j)

stddev(i)stddev(j)

where

stddev(x) =

√√√√√√
N−1∑
k=0

(data(k, x)− mean(x))
2

N

cov and mean are defined in covariance1.
1However, the denominator when computing covariance is N for correlation.

2

1.2 BLAS Routines

gemm

Generalized Matrix Multiply from BLAS [4].
It takes the following as inputs,

• α, β: scalars

• A: P ×Q matrix

• B: Q×R matrix

• C: P ×R matrix

and gives the following as output:

• Cout: P ×R array, where Cout = αAB + βC

Note that the output Cout is to be stored in place of the input array C. The BLAS parameters used are
TRANSA = TRANSB = ‘N’, meaning both A and B are not transposed.

gemver

Multiple matrix-vector multiplication from updated BLAS [1]. However it is not part of the current BLAS
distribution.

It takes the following as inputs,

• α, β: scalars

• A: N ×N matrix

• u1, u2, v1, v2, y, z: vectors of length N

and gives the following as outputs:

• Â: N ×N matrix, where Â = A+ u1.v1 + u2.v2

• x: vector of length N , where x = βÂT y + z

• w: vector of length N , where w = αÂx

gesummv

Summed matrix-vector multiplications from updated BLAS [1]. However it is not part of the current BLAS
distribution.

It takes the following as inputs,

• α, β: scalars

• A, B: N ×N matrix

• x: vector of length N

and gives the following as outputs:

• y: vector of length N , where y = αAx+ βBx

3

symm

Symmetric matrix matrix multiplication from BLAS [4].
It takes the following as inputs,

• α, β: scalars

• A: M ×M symmetric matrix

• B,C: M ×N matrices

and gives the following as output:

• Cout: M ×N matrix, where Cout = αAB + βC

Note that the output Cout is to be stored in place of the input array C. The matrix A is stored as a trian-
gular matrix in BLAS. The configuration used are SIDE = ‘L’ and UPLO = ‘L’, meaning the multiplication
is from the left, and the symmetric matrix is stored as a lower triangular matrix.

syrk

Symmetric rank k update from updated BLAS [1].
It takes the following as inputs,

• α, β: scalars

• A: N ×M matrix

• C: N ×N symmetric matrix

and gives the following as output:

• Cout: N ×N matrix, where Cout = αAAT + βC

Note that the output Cout is to be stored in place of the input array C. The matrix C is stored as a
triangular matrix in BLAS, and the result is also triangular. The configuration used are TRANS = ‘N’ and
UPLO = ‘L’ meaning the A matrix is not transposed, and C matrix stores the symmetric matrix as lower
triangular matrix.

syr2k

Symmetric rank 2k update from updated BLAS [1].
It takes the following as inputs,

• α, β: scalars

• A,B: N ×M matrices

• C: N ×N symmetric matrix

and gives the following as output:

• Cout: N ×N matrix, where Cout = αABT + αBAT + βC

Note that the output Cout is to be stored in place of the input array C. The matrix C is stored as a
triangular matrix in BLAS, and the result is also triangular. The configuration used are TRANS = ‘N’ and
UPLO = ‘L’ meaning the A matrix is not transposed, and C matrix stores the symmetric matrix as lower
triangular matrix.

4

trmm

Triangular matrix multiplication.
It takes the following as inputs,

• A: N ×N lower triangular matrix

• B: N ×N matrix

and gives the following as output:

• Bout: N ×N matrix, where Bout = AB

Note that the output Bout is to be stored in place of the input array B. The configurations used are SIDE

= ‘L’, UPLO = ‘L’, TRANSA = ‘T’, and DIAG = ‘U’, meaning the multiplication is from the left, the matrix
is lower triangular, untransposed with unit diagonal.

1.3 Linear Algebra Kernels

2mm

Linear algebra kernel that consists of two matrix multiplications.
It takes the following as inputs,

• α, β: scalars

• A: P ×Q matrix

• B: Q×R matrix

• C: R× S matrix

• D: P × S matrix

and gives the following as output:

• E: P × S matrix, where E = αABC + βD

3mm

Linear algebra kernel that consists of three matrix multiplications.
It takes the following as inputs,

• A: P ×Q matrix

• B: Q×R matrix

• C: R× S matrix

• D: S × T matrix

and gives the following as output:

• G: P × T matrix, where G = (A.B).(C.D)

atax

Computes AT times Ax.
It takes the following as inputs,

• A: M ×N matrix

• x: vector of length N

and gives the following as output:

• y: vector of length N , where y = AT (Ax)

5

bicg

Kernel of BiCGSTAB (BiConjugate Gradient STABilized method).
It takes the following as inputs,

• A: N ×M matrix

• p: vector of length M

• r: vector of length N

and gives the following as output:

• q: vector of length N , where q = Ap

• s: vector of length M , where s = AT r

doitgen

Kernel of Multiresolution ADaptive NumErical Scientific Simulation (MADNESS)2. The kernel is taken from
the modified version used by You et al. [7].

It takes the following as inputs,

• A: R×Q× S array

• x: P × S array

and gives the following as output:

• Aout: R×Q× P array

A(r, q, p) =

S−1∑
s=0

A(r, q, s)x(p, s)

Note that the output Aout is to be stored in place of the input array A in the original code. Although it
is not mentioned anywhere, the computation does not make sense if P 6= S.

mvt

Matrix vector multiplication composed with another matrix vector multiplication but with transposed ma-
trix.

It takes the following as inputs,

• A: N ×N matrix

• y1, y2: vectors of length N

and gives the following as outputs:

• x1: vector of length N , where x1 = x1 +Ay1

• x2: vector of length N , where x2 = x2 +AT y2

2http://www.csm.ornl.gov/ccsg/html/projects/madness.html

6

http://www.csm.ornl.gov/ccsg/html/projects/madness.html

1.4 Linear Algebra Solvers

cholesky

Cholesky decomposition, which decomposes a matrix to triangular matrices. Only applicable when the input
matrix is positive-definite.

It takes the following as input,

• A: N ×N positive-definite matrix

and gives the following as output:

• L: N ×N lower triangular matrix such that A = LLT

The C reference implementation uses CholeskyBanachiewicz algorithm. The algorithm computes the
following, where the computation starts from the upper-left corner of L and proceeds row by row.

L(i, j) =



i = j :

√√√√A(i, i)−
i−1∑
k=0

L(i, k)2

i > j :

A(i, j)−
j−1∑
k=0

L(i, k)L(j, k)

L(j, j)

durbin

Durbing is an algorithm for solving Yule-Walker equations, which is a special case of Toelitz systems.
It takes the following as input,

• r: vector of length N .

and gives the following as output:

• y: vector of length N

such that Ty = −r where T is a symmetric, unit-diagonal, Toeplitz matrix defined by the vector
[1, r0, ..., rN−1].

The C reference implementation is a direct implementation of the algorithm described in a book by Golub
and Van Loan [5]. The book mentions that a vector can be removed to use less space, but the implementation
retains this vector.

gramschmidt

QR Decomposition with Modified Gram Schmidt.
It takes the following as input,

• A: M ×N rank N matrix (M > N).

and gives the following as outputs:

• Q: M ×N orthogonal matrix

• R: N ×N upper triangular matrix

such that A = QR.
The algorithm is described in a techreport by Walter Gander: http://www.inf.ethz.ch/personal/

gander/.

7

http://www.inf.ethz.ch/personal/gander/
http://www.inf.ethz.ch/personal/gander/

lu

LU decomposition without pivoting.
It takes the following as input,

• A: N ×N matrix

and gives the following as outputs:

• L: N ×N lower triangular matrix

• U: N ×N upper triangular matrix

such that A = LU .
L and U are computed as follows:

U(i, j) = A(i, j)−
i−1∑
k=0

L(i, k)U(k, j)

L(i, j) =

A(i, j)−
j−1∑
k=0

L(i, k)U(k, j)

U(j, j)

ludcmp

This kernel solves a system of linear equations using LU decomposition followed by forward and backward
substitutions.

It takes the following as inputs,

• A: N ×N matrix

• b: vector of length N

and gives the following as output:

• x: vector of length N , where Ax = b

The matrix A is first decomposed into L and U using the same algorithm as in lu. Then the two
triangular systems are solved to find x as follows:

Ax = b⇒ LUx = b⇒

{
Ly = b

Ux = y

The forward and backward substitutions are as follows:

y(i) =

b(i)−
i−1∑
j=0

L(i, j)y(j)

L(i, i)

x(i) =

y(i)−
i−1∑
j=0

U(i, j)x(j)

U(i, i)

8

trisolv

Triangular matrix solver using forward substitution.
It takes the following as inputs,

• L: N ×N lower triangular matrix

• b: vector of length N

and gives the following as output:

• x: vector of length N , where Lx = b

The forward substitution is as follows:

x(i) =

b(i)−
i−1∑
j=0

L(i, j)x(j)

L(i, i)

1.5 Medley

deriche

deriche implements the Deriche recursive filter, which is a generic filter that can be used for both edge
detection and smoothing [2, 3]. The 2D version take advantage of the separability and is implemented as
horizontal passes followed by vertical passes over an image.

It takes the following as input,

• x: W ×H image.

• α: A parameter of the filter that is related to the size of the convolution.

• a1, . . . , a8, b1, b2, c1, c2: Coefficients of the filter that determine the behavior of the filter.

and gives the following as output:

• y: The processed image. How the image is processed depends on the coefficients used.

The generic 2D implementation reproduced from the original article [3] is as follows:

Horizontal Pass

y1(i, j) = a1x(i, j) + a2x(i, j − 1) + b1y1(i, j − 1) + b2y1(i, j − 2)

y2(i, j) = a3x(i, j + 1) + a4x(i, j + 2) + b1y2(i, j + 1) + b2y2(i, j + 2)

r(i, j) = c1 (y1(i, j) + y2(i, j))

Vertical Pass
z1(i, j) = a5r(i, j) + a6r(i− 1, j) + b1y1(i− 1, j) + b2y1(i− 2, j)

z2(i, j) = a7r(i+ 1, j) + a8r(i+ 2, j) + b1y1(i+ 1, j) + b2y1(i+ 2, j)

y(i, j) = c2 (z1(i, j) + z2(i, j))

The C implementation in PolyBench use the following parameters for the filter:

• α = 0.25

• a1 = a5 = k

• a2 = a6 = ke−α(α− 1)

9

• a3 = a7 = ke−α(α+ 1)

• a4 = a8 = −ke−2α

• b1 = 2e−α

• b2 = −e−2α

• c1 = c2 = 1

where k is computed as

k =
(1− e−α)2

1 + 2αe−α − e−2α

which implements the smoothing filter.

floyd-warshall

Floyd-Warshall computes the shortest paths between each pair of nodes in a graph. The following only
computes the shortest path lengths, which is a typical use of this method.

It takes the following as input,

• w: N×N matrix, where the i, jth entry represents the cost of taking an edge from i to j. Set to infinity
if there is no edge connecting i to j.

and gives the following as output:

• paths: N ×N matrix, where the i, jth entry represents the shortest path length from i to j.

The shortest path lengths are computed recursively as follows:

p(k, i, j) =

{
k = −1 : w(i, j)

0 ≤ k < N : min(p(k − 1, i, j), p(k − 1, i, k) + p(k − 1, k, j)

where the final output paths(i, j) = p(N − 1, i, j).

nussinov

Nussinov is an algorithm for predicting RNA folding, and is an instance of dynamic programming.
It takes the following as input,

• seq: RNA sequence of length N . The valid entries are one of ‘A’ ‘G’ ‘C’ ‘T’. (or ‘U’ in place of ‘T’).

and gives the following as output:

• table: N ×N triangular matrix, which is the dynamic programming table.

The table is filled using the following formula:

table(i, j) = max


table(i+ 1, j)
table(i, j − 1)

table(i+ 1, j − 1) + w(i, j)
max i<k<j (table(i, k) + table(k + 1, j))


where w is the scoring function that evaluate the pair of sequences seq[i] and seq[j]. For Nussinov algorithm,
the scoring function returns 1 if the sequences are complementary (either ‘A’ with ‘T’ or ‘G’ with ‘C’), and
0 otherwise.

10

1.6 Stencils

Stencil computations iteratively update a grid of data using the same pattern of computation. For stencil
computations, we denote the time step of the iterative process as super scripts to simplify the description.

In the reference implementations, boundary conditions are simplified by not updating them. The updates
are only performed when all of its operands are available (i.e., no out-of-bounds accesses).

adi

Alternating Direction Implicit method for 2D heat diffusion. The main strength of ADI over other methods
is that it decomposes a 2D problem to two 1D problems, allowing direct solutions to the sub-problems with
lower cost. For 2D heat equations, each sub-problem becomes a tridiagonal system of equations.

From a “stencil” point of view, this can be seen as taking the heat equation of the form:

ut+1 = f

 uti,j+1,
uti+1,j , uti,j , uti−1,j

uti,j−1


and splitting it two two steps:

ut+
1
2 = g

(
uti+1,j , u

t
i,j , u

t
i−1,j

)
ut+1 = h

(
u
t+ 1

2
i,j+1, u

t+ 1
2

i,j , u
t+ 1

2
i,j−1

)
The C reference implementation is based on a Fortran code in a paper by Li and Kedem [6]. In this

implementation, the coefficients are also computed since the parameters configure the resolution and not the
size of the space/time domain.

fdtd-2d

Simplified Finite-Difference Time-Domain method for 2D data, which models electric and magnetic fields
based on Maxwell’s equations. In particular, the polarization used here is TEz; Transverse Electric in z
direction. It is a stencil involving three variables, Ex, Ey, and Hz. Ex and Ey are electric fields varying in x
and y axes, where Hz is the magnetic field along z axis. Fields along other axes are either zero or static, and
are not modeled.

Hzt(i,j) = ChzhHz
t−1
(i,j) + Chze(Ex

t−1
(i,j+1) − Ext−1

(i,j) − Eyt−1
(i+1,j) − Eyt−1

(i,j))

Ext(i,j) = CexeEx
t−1
(i,j) + Cexh(Hzt(i,j) − Hzt(i,j−1))

Eyt(i,j) = CeyeEy
t−1
(i,j) + Ceyh(Hzt(i,j) − Hzt(i−1,j))

Variables Cxxx are coefficients that may be different depending on the location within the descretized
space. In PolyBench, it is simplified as scalar coefficients.

heat-3d

Heat Equation over 3D space. The main update is as follows:

datat(i,j,k) = datat−1
(i,j,k) +


0.125

(
datat−1

(i+1,j,k) − 2datat−1
(i,j,k) + datat−1

(i−1,j,k)

)
+

0.125
(
datat−1

(i,j+1,k) − 2datat−1
(i,j,k) + datat−1

(i,j−1,k)

)
+

0.125
(
datat−1

(i,j,k+1) − 2datat−1
(i,j,k) + datat−1

(i,j,k−1)

)


The C reference implementation is originally from Pochoir distribution.

11

jacobi-1d

Jacobi style stencil computation over 1D data with 3-point stencil pattern. It originally comes from the
Jacobi method for solving system of equations. However, Jacobi-style stencils may refer to computations
with some stencil pattern that use values computed in the previous time step, which is a characteristic of
Jacobi method. The computation in PolyBench is simplified as simply taking the average of three points.

datat(i) = 0.33333 ∗
(
datat−1

(i) + datat−1
(i−1) + datat−1

(i+1)

)
jacobi-2d

Jacobi-style stencil computation over 2D data with 5-point stencil pattern. The computation is simplified
as simply taking the average of five points.

datat(i,j) = 0.2 ∗
(
datat−1

(i,j) + datat−1
(i−1,j) + datat−1

(i+1,j) + datat−1
(i,j−1) + datat−1

(i,j+1)

)
seidel-2d

Gauss-Seidel style stencil computation over 2D data with 9-point stencil pattern. Similar to Jacobi style
stencils, Gauss-Seidel style stencil comes from Gauss-Seidel method for solving systems of linear equations.
The main difference is that values computed at the same time step is used, which changes its convergence and
other properties. The computation in PolyBench is simplified as simply taking the average of nine points.

datat(i,j) =

 datat−1
(i−1,j−1) + datat−1

(i−1,j) + datat−1
(i−1,j+1)+

datat−1
(i,j−1) + datat−1

(i,j) + datat−1
(i−1,j+1)+

datat−1
(i+1,j−1) + datat−1

(i+1,j) + datat−1
(i+1,j+1)

 /9

2 C Implementation

The C implementation follows the algorithms described in this document. There are many different ways
to implement each of them, and some guidelines used when selecting the implementation details are given
below.

• The general principle is to make the kernels as simple as possible for research compilers to handle.
In 3.3, one exception is made and reverse loops are now included in some of the kernels. The main
motivation is that reverting these loops makes the kernels much more unnatural and complicated
to understand. The dataflow analysis implemented in Integer Set Library allow reverse loops to be
handled very easily.

• For BLAS kernels, it is kept as close to the original Fortran implementation as possible. However, they
are not identical in most cases due to the difference in array layout. Some BLAS kernels use scalars
preventing loops to be parallelized unless the scalars are privatized.

• The memory allocations used in the implementation is intended to be a natural allocation for each
kernel. As a rule of thumb, the arrays are made as compact as possible, while keeping them rectangular.
Most dense linear algebra kernels performs in-place computation when applicable.

Known Issues

• correlation output is all 1 due to the property of correlation combined with the input generation.
(Values become very regular since they are computed as a function of loop indices.)

• gramschmidt large part of the output matrix R become 0 (even considering it is triangular). The
output can contain NaN, which also has to do with how the inputs are generated.

12

Pre-defined Problem Sizes

PolyBench/C 4.2.1 (pre-release) comes with 5 pre-defined problem sizes. The problem sizes are primarily
derived from the memory requirements such that different levels of the memory hierarchy are exercised.

• MINI: Less than 16KB of memory. The problem may fit within the L1 (last level) cache.

• SMALL: Around 128KB of memory. The problem should not fit within the L1 cache, but may fit L2.

• MEDIUM: Around 1MB of memory. The problem should not fit within the L2 cache, but may fit L3.

• LARGE: Around 25MB of memory. The problem should not fit within the L3 cache.

• EXTRALARGE: Around 120MB of memory.

Additional remarks:

• The default problem size is LARGE.

• It is recommended to revise your problem sizes when the data types are changed.

• Different parameters are given different values by default.

• Sizes for deriche are taken from commonly used image resolutions.

• Two kernels (durbin and jacobi-1d) have O(n) memory requirement, and thus the above rules do
not apply. The problem sizes for these kernels match those of other solvers (e.g., cholesky).

Summary of Characteristics

Table 1 summarizes the number of operations and memory usage of each kernel. Although PolyBench
discourages evaluations using subsets of its kernels, some kernels may not be relevant in some contexts. One
possible use of these characteristics are in helping the explanation of the selection (of subsets), in combination
with the categorization.

References

[1] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, et al. An updated set of basic linear algebra subprograms (blas). ACM
Transactions on Mathematical Software, 28(2):135–151, 2002.

[2] R. Deriche. Using canny’s criteria to derive a recursively implemented optimal edge detector. Interna-
tional Journal of Computer Vision, 1(2):167–187, 1987.

[3] R. Deriche. Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(1):78–87, Jan 1990.

[4] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of level 3 basic linear algebra subpro-
grams. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. Johns Hopkins University Press,
2012.

[6] P. Lee and Z. M. Kedem. Automatic data and computation decomposition on distributed memory parallel
computers. ACM Transactions on Programming Languages and Systems, 24(1):1–50, Jan. 2002.

[7] H. You, K. Seymour, J. Dongarra, and S. Moore. Empirical tuning of a multiresolution analysis kernel
using a specialized code generator. Technical report, ICL-UT-07-02, March 2007.

13

Table 1: Table of kernel characteristics. The problem size parameters are assumed to take the same value
n. Calls to math functions (e.g., sqrt) are also consider to be one operation. For kernels that use integers
as the default datatype (nussinov, floyd-warshall), the number of operations only count those related to
the main computation, and do not include those for iterating over loops.

kernel Operations Memory O(Ops) O(Mem)

correlation n3 + 8n2 + 3n 2n2 + 2n O(n3) O(n2)

covariance n3 + 4n2 + 2n 2n2 + n O(n3) O(n2)

2mm 5n3 + n2 4n2 O(n3) O(n2)

3mm 6n3 4n2 O(n3) O(n2)

atax 4n2 n2 + 3n O(n2) O(n2)

bicg 4n2 n2 + 4n O(n2) O(n2)

doitgen 2n4 n3 + n2 + n O(n4) O(n3)

mvt 4n2 n2 + 4n O(n2) O(n2)

gemm 3n3 + n2 3n2 O(n3) O(n2)

gemver 10n2 + n n2 + 8n O(n2) O(n2)

gesummv 4n2 + 3n 2n2 + 3n O(n2) O(n2)

symm 5
2n

3 + 5
2n

2 3n2 O(n3) O(n2)

syr2k 3n3 + 7
2n

2 + 1
2n 3n2 O(n3) O(n2)

syrk 3
2n

3 + 2n2 + 1
2n 3n2 O(n3) O(n2)

trmm n3 3n2 O(n3) O(n2)

cholesky 1
3n

3 + 1
2n

2 + 1
6n n2 O(n3) O(n2)

durbin 2n2 + 3n− 5 2n O(n2) O(n)

gramschmidt 2n3 + n2 + n 3n2 O(n3) O(n2)

lu 4
3n

3 − 3
2n

2 + 1
6n n2 O(n3) O(n2)

ludcmp 4
3n

3 + 1
2n

2 − 5
6n n2 + 3n O(n3) O(n2)

trisolv n2 n2 + 2n O(n2) O(n2)

deriche 32n2 4n2 O(n2) O(n2)

floyd-warshall 2n3 n2 O(n3) O(n2)

nussinov 1
6n

3 − 1
2n

2 + 1
3n n2 + n O(n3) O(n2)

adi 30n3 4n2 O(n3) O(n2)

fdtd-2d 11n3 3n2 + n O(n3) O(n2)

heat-3d 30n4 2n3 O(n4) O(n3)

jacobi-1d 6n2 2n O(n2) O(n)

jacobi-2d 10n3 2n2 O(n3) O(n2)

seidel-2d 9n3 n2 O(n3) O(n2)

14

	PolyBench 4.2.1 (pre-release) Kernels
	Data Mining
	covariance
	correlation

	BLAS Routines
	gemm
	gemver
	gesummv
	symm
	syrk
	syr2k
	trmm

	Linear Algebra Kernels
	2mm
	3mm
	atax
	bicg
	doitgen
	mvt

	Linear Algebra Solvers
	cholesky
	durbin
	gramschmidt
	lu
	ludcmp
	trisolv

	Medley
	deriche
	floyd-warshall
	nussinov

	Stencils
	adi
	fdtd-2d
	heat-3d
	jacobi-1d
	jacobi-2d
	seidel-2d

	C Implementation

