Modelling of Machine-Aided Human Group Motion

Thomas Given-Wilson 1 Axel Legay 1 Sean Sedwards 1 Olivier Zendra 1
1 TAMIS - Threat Analysis and Mitigation for Information Security
Inria Rennes – Bretagne Atlantique , IRISA_D4 - LANGAGE ET GÉNIE LOGICIEL
Abstract : The ACANTO project is developing robotic assistants to aid the mobility and recovery of mobility-impaired and older adults. One key feature of the project's robotic assistants is aiding with navigation in chaotic environments. Prior work has solved this for a single user with a single robot, however for therapeutic outcomes ACANTO supports social groups and group activities. Thus these robotic assistants must be able to efficiently support groups of users walking together. This requires an efficient navigation solution that can handle large numbers of users, maintain (de-facto) group cohesion despite unpredictable behaviours, and operate rapidly on embedded devices. We address these challenges by: using sensor information to develop behavioural traces, clustering traces to determine groups, modeling the groups using the social force model, and finding an optimal navigation solution using statistical model checking. The new components of this solution are validated on the ETH Zürich dataset of pedestrians in an open environment.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01629137
Contributeur : Thomas Given-Wilson <>
Soumis le : lundi 6 novembre 2017 - 11:56:18
Dernière modification le : mercredi 21 février 2018 - 01:26:31
Document(s) archivé(s) le : mercredi 7 février 2018 - 13:25:04

Fichier

main-with-authors (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01629137, version 1

Citation

Thomas Given-Wilson, Axel Legay, Sean Sedwards, Olivier Zendra. Modelling of Machine-Aided Human Group Motion. 2017. 〈hal-01629137〉

Partager

Métriques

Consultations de la notice

168

Téléchargements de fichiers

35