MAP Estimator for Target Tracking in Wireless Sensor Networks for Unknown Transmit Power

Abstract : This paper addresses the target tracking problem, by extracting received signal strength (RSS) and angle of arrival (AoA) information from the received radio signal, in the case where the target transmit power is considered unknown. By combining the radio observations with prior knowledge given by the target transition state model, we apply the maximum a posteriori (MAP) criterion to the marginal posterior distribution function (PDF). However, the derived MAP estimator cannot be solved directly, so we tightly approximate it for small noise power. The target state estimate is then easily obtained at any time step by employing a recursive approach, typical for Bayesian methods. Our simulations confirm the effectiveness of the proposed algorithm, offering good estimation accuracy in all considered scenarios.
Type de document :
Communication dans un congrès
Luis M. Camarinha-Matos; Mafalda Parreira-Rocha; Javaneh Ramezani. 8th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), May 2017, Costa de Caparica, Portugal. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-499, pp.325-334, 2017, Technological Innovation for Smart Systems. 〈10.1007/978-3-319-56077-9_32〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01629571
Contributeur : Hal Ifip <>
Soumis le : lundi 6 novembre 2017 - 15:29:03
Dernière modification le : lundi 6 novembre 2017 - 15:32:16

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Slavisa Tomic, Marko Beko, Rui Dinis, Milan Tuba, Nebojsa Bacanin. MAP Estimator for Target Tracking in Wireless Sensor Networks for Unknown Transmit Power. Luis M. Camarinha-Matos; Mafalda Parreira-Rocha; Javaneh Ramezani. 8th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), May 2017, Costa de Caparica, Portugal. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-499, pp.325-334, 2017, Technological Innovation for Smart Systems. 〈10.1007/978-3-319-56077-9_32〉. 〈hal-01629571〉

Partager

Métriques

Consultations de la notice

21