Cyclic Isogenies for Abelian Varieties with Real Multiplication

Abstract : We study quotients of principally polarized abelian varieties with real multiplication by Galois-stable finite subgroups and describe when these quotients are principally polarizable. We use this characterization to provide an algorithm to compute explicit cyclic isogenies from kernel for abelian varieties with real multiplication over finite fields. Our algorithm is polynomial in the size of the finite field as well as in the degree of the isogeny and is based on Mumford's theory of theta functions and theta embeddings. Recently, the algorithm has been successfully applied to obtain new results on the discrete logarithm problem in genus 2 as well as to study the discrete logarithm problem in genus 3.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01629829
Contributeur : Damien Robert <>
Soumis le : lundi 6 novembre 2017 - 19:06:52
Dernière modification le : mardi 17 avril 2018 - 09:04:43

Fichier

journal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01629829, version 1

Collections

Citation

Alina Dudeanu, Dimitar Jetchev, Damien Robert, Marius Vuille. Cyclic Isogenies for Abelian Varieties with Real Multiplication. 2017. 〈hal-01629829〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

29