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Large scale ows under location uncertainty: a consistent
stochastic framework
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Using a classical example, the Lorenz-63 model, an original stochastic framework is
applied to represent large-scale geophysical ow dynamics. Rigorously derived from

a reformulated material derivative, the proposed framework encompasses several
meaningful mechanisms to model geophysical ows. The slightly compressible set-
up, as treated in the Boussinesq approximation, brings up a stochastic transport
equation for the density and other related thermo-dynamical variables. Coupled to the
momentum equation through a forcing term, a resulting stochastic Lorenz-63 model is
consistently derived. Based on such a reformulated model, the pertinence of this large-
scale stochastic approach is demonstrated over classical eddy-viscosity based large-scale
representations.

Key Words: Large scale ow modeling, Stochastic parameterization, Modeling under location uncertainty, Stochastic

Lorenz model,Stochastic transport

Received ...

1. Introduction

Today, in their most common expression, large-scale geophysical ow representations rely on the Reynolds decomposition and the
inclusion of a subgrid dissipative model to represent the action of numerically non-resolved components over the resolved scales. Mos
used subgrid models heavily bank on #dly viscositgoncept — also called Boussinesg assumption (Boussinesq 1877) — built upon a
straight analogy with the molecular dissipation mechanism. The celebrated Smagorinsky model (Smagorinsky 1963) is one of the mos
representative instance of such models. &tidy viscositgoncept is essential to achieve a numerical stability in draining the energy
accumulated at the cutoff resolution through the direct energy cascade process. Its pure dissipative behavior further prevent to take int

account local backscattered energy or inhomogeneous turbulence.
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Large scale ows under location uncertainty 2

To represent the large-scale evolution of turbulent uid ows, a different strategy can be envisaged, considering the decomposition of
the ow into a large-scale smooth component and a fast oscillating velocity component modeled as a random eld (seen as decorrelatec
at large scales). Yet, such a decomposition requires to modify the material derivative through the introduction of a stochastic transpor
operator (Mmin 2014; Resseguiet al.2017a).

One advantage of this framework over the Reynolds decomposition lies in its ability to deal with non-smooth expressions of
the small-scale component at the resolved time scale. It further introduces, without any supplementary assumption, the following
mechanisms:i) a dissipative operator directly related to the mixing effect of the large-scale components by the small-scale velocity;
(ii) a multiplicative noise representing small-scale energy backscatteringiiigradriodi ed advection term related to the so-called
turbophoresiphenomena, associated to the migration of inertial particles in regions of lower turbulent diffusivity (Reeks 1983). Those
properties have already been used to de ne data-driven inhomogeneous subgrid models to stabilize reduced order ow models ir
capturing the principal local dissipation directions and the small-scale induced advection eld (Ressegju2f17d). Corresponding
eddy-viscosity models are not any more constant, but adapted to the dynamics. This random framework also enables to derive stochast
dynamics from the very same physical conservation principles as in the deterministic case and is amenable to the usual geophysic:
scaling approximations (Resseguétral. 2017b,c).

In this work, this representation is applied to the famous Lorenz-63 model to illustrate the pertinence of such a consistent stochastic
representation over a classical eddy diffusivity model. In particular, it is shown for the Lorenz-63 that a classical eddy-viscosity

modelling strongly slows down the exploration of the attractor, while the stochastic approach provides a much faster exploration.
2. Stochastic representation of the Lorenz-63 model

The celebrated Lorenz-63 model (Lorenz 1963) corresponds to the description of an incompressible ow undergoing a Reydedyh-B
convection caused by a temperature gradient between the bottom and the top of the uid domain. It aims at representing atmospheri
convection in a 2D simpli ed way.

The Lorenz-63 model is formally derived from the Boussinesq approximation — i.e. small density variations — of the Navier-Stokes
equations. Its complete derivation is described in Lorenz original paper (Lorenz 1963) or given in greater details in the book Berge
et al. (1987). To derive its stochastic representation, we closely follow the same derivation. Yet, we start from a stochastic Boussinesq
system, derived itself from physical conservation principles and a stochastic representation of the ow. Such representation, termed a
modeling under location uncertainty, has been recently proposeé@iniiv(2014); Resseguiet al. (2017a), and is hereafter outlined.

Note that similar models could be derived from Hamiltonian principles as described in Holm (2015).
2.1. Flow modeling under location uncertainty

In the modeling under uncertainty the model errors are introduced at the lowest level of the dynamics. The basic idea is built on the
assumption that the Lagrangian uid particles displacemxnt, results from a smooth velocity componewnt,and a fast oscillating
random eld uncorrelated in time. At time the location of a uid particle initially located & ¢, is:

Z Z

Xt= X+  v(Xs;s)ds+ (Xs;s)dBs; 1)
to t0

which reads also in a more compact differential form as:
dX = v(X ¢;t)dt+ (X ¢;t)dB¢: (2)
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Large scale ows under location uncertainty 3

The solenoidal (possibly inhomogeneous) random eld, representing the small-scale velocity component, is build through the
application of a linear operator,, to a space-time white noisdB . It is explicitly de ned on a spatial domain from a kernel,
, as: 7
(x;t)dB ¢ = (x;y;t)dB ¢(y)dy: 3)

The kernel, , (or the operator ) encodes the random eld spatial correlations, whereas the white noise function speci es its temporally

decorrelated character.

Decomposition (2) leads to a stochastic representation of both the Reynolds transport theorem (RTT) and the material Derivative,
(derivative along the ow). When the material derivative of a quantity is deterministic, (such as in the case of a conservation constraint,

for instance) this derivative coincides with the stochastic transport opeatate ned for any eld as:
Di =d ¢ + v’dt+ dB{ r r Zar dt (4)

involving the time increment termy = ( x;t+dt) ( x;t),as isanon differentiable random function. This function depends
among other things on the particles driven by the Brownian component owing through a given point. The diffusionanétriglely
de ned by the one-point one-time covariance of the unresolved displacement per unit of time:

E  (x;t)dB¢( (x;)dBy)"
dt ' ©)

a(x;t)=  (x;t) (x;0)" =

This quantity corresponds to the diagonal of the covariance tensor and has the dimension of an eddy viscosity term (with units in
m?s 1). The modi ed drift is given by
vi=v }(r a)': (6)
2
As derived, both the stochastic RTT and material derivative involve a diffusive subgrid term, a multiplicative noise and a modi ed

advection drift induced by the small-scale inhomogeneity. This material derivative has the remarkable property to conserve the energy

of any randomly transported tracer realization (Resseauial 2017a):
= Dy ?=0: @)

Given the RTT, the classical conservation laws of mechanics (linear momentum, energy, mass) can be expressed within a stochastic ov
of form (2). It should be noted that an incompressible homogeneous neiseth a divergence-free diffusion tensor  (x;t) =0,
de ned over a periodic domain for simplicity, leads to a constant diffusion matrix. In that case, the effective advection reduces to the

large-scale drift component, and the diffusive subgrid term boils down to weighted second order partial derivatives.

The modeling under location uncertainty thus conveys a practical alternative to the design of stochastic representations
for geophysical ows. Various techniques have already been considered such as homogeneization, stochastic modes reductior
renormalization closure, a posteriori random forcing, or parameter random perturbation (seeeBexin¢2017); Franzkeet al.

(2015) and references therein for a review). However, the modeling under location uncertainty unambiguously provides a rigorous

physical derivation of the stochastic system that directly stems from the conservation principles. It then facilitates the set-up of classica
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Large scale ows under location uncertainty 4

scaling procedures to include all the ingredients needed for a large scale representation, e.g. subgrid diffusion, modi ed advection akir
to turbophoresigphenomenon and backscattering. To obtain similar stochastic Eulerian equations, Holm (2015) relies on geometric
mechanics and a variational principle to propose an alternative construction. This latter formulation is helicity preserving, whereas the
modeling under uncertainty conserves the energy. Those stochastic models have been recently justi ed through the homogeneization
multiscale Lagrangian dynamics Cotedral. (2017), and when restricted to a 3D (energy conserving) Euler model, @tisér{2017)

demonstrates that analytical properties of the 3D deterministic Euler equations are also preserved by such stochastic representations

2.2. Boussinesq system under location uncertainty

Following the location uncertainty principle, stochastic Navier-Stokes and Boussinesq models have been derarechi{2014) and
Resseguieet al. (2017a), respectively. In a 2D inertial frame of reference indexed by the horizontal and vertical coordaradesan
incompressible anisotropic homogeneous random et yith r (x x9=0)is characterized by a constant diagonal diffusion

tensora = diag(a x; az). Accordingly, the momentum equation of the large scale velacity( u;w)" reads:

X
@v+(v r v % ad@v = g r P+ r 2y (8)
[
where with usual notations denotes the dynamic viscosi#y, is the pressure, angl the gravity force. Thanks to the homogeneous
structure of the noise component, these equations closely resemble a large-scale model with proper constant eddy viscosity coef cient
along the horizontal and vertical directions. Yet, this system is complemented by a stochastic thermo-dynamical equation describing
the temperature evolution:

DiT = Dy Tdt ©)

As previously discussed (7), when the thermal diffusion coef ciert is negligible, the temperature is transported and its norm is
preserved. In the steady non-convective state (when the uid is at rest), the temperature varies linearly with the domain depth
T(x;z;t)= Ty F#T,whereT =T, Ty is positive as the bottom temperat(igis higher than the temperature at the Top The

deviation from this linear model is:

(xz;t) = T(x;z;t) Tp+ %T; (10)
and its evolution obeys the following stochastic evolution law:
Dt W%dt %( dB{); = Dyr 2 dt: (11)

This latter model introduces a random transport of the temperature uctuation, together with deterministic and random forcing of the
vertical velocity component. Writing the density variations in power of temperature uctuélionTy), to leading order we may
write (T)= o o £T+ ,where o= (Tp) and the thermal expansion coef cient is= %@QT. Under the assumption
of negligible compressibility, the Boussinesq approximation states that the density variations can be ignored in the momentum equatior
(8) and only kept within the gravity term. This system further simpli es through the hydrostatic equilibrium, which holds for the uid
atrest:

@v+(v r )v %X ai@v= g ior P+ r 2v; (12)

[
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Large scale ows under location uncertainty 5

where denotes the kinematic viscosity. First, the formulation is adimensionalized with respect to the time \tg.lia%ét, where

h?=Dt corresponds to the typical time of a thermal diffusion dveand the spatial variableg®= x=h, z°= z=h. The uncertainty

ratio , characterizing the order of magnitude of the horizontal turbulent diﬁLﬁon ax, ag = agz, isthen introduced, together
with the temperature deviatio? = =t . Multiplying the system b;{% and nally incorporating the dimensionless Prandtl number

Ra= 5, ratio of the kinematic viscosity to the thermal diffusivity, the Rayleigh nunitaer TghT > and the dimensionless pressure

variable = % %@OPO, the following 2D system is obtained (where the prime index has been dropped for sake of clarity):

X
%@vﬂv rov Zi a@v = r + r2v; (13)

D wdt =20 4By)z=r? dt:
102 Sincev(x;z) = (u(x;z); w(x;z)) is divergence-free, the 2D momentum equations can be written in a vorticity stream function form:

X
17 a@r? =r@ + r*; (14)

®
=
N
+
o
—
=
N}
-
NI -

?

103 where denotes the stream function asfl ;! )=r ° r ! = v r ! denotes the Jacobian of the transformation ( ; !)"

104 withthe 2D vorticity! =r ° v = @u+ @w . This equation together with the thermal equation describes the whole dynamics of

?

105 the ow. As for the divergence-free random eld, we similarly consider a stream function vector formulatiBn = r © " dB.

106 Note that the kernel, , of the linear operator is a vector of two components:

Z x
( TdB)(x)= dz (X;2) | ([dBt(2))y: (15)

107 2.3. Fourier modes projection and simpli ed solution

108 The Lorenz model corresponds to a simpli ed solution of this system, considering a Galerkin projection onto the rst Fourier modes
109 coupled with suited boundary conditions. The boundary conditions aré atz = 0; 1 to get the appropriate xed temperature on the

110 domain frontiers an@u = 0 andw =0 atz = 0; 1, i.e. neglecting the shear forces on the boundary. For the random term, we assume
11 periodic boundary conditions for simplicity. Indeed, it is a necessary condition for homogeneity, and thus for a constant diagonal
112 diffusion tensor. These speci ¢ boundary conditions may be understood as a random forcing at the domain boundary, and are satis ec

113 by the following ansatz for the streamfunction and the temperature deviation:

(x;z;t)

|Tl(t)sin({; )cos(‘xg | Tz(t)gn(z z g; (16)

1 2

( x;z;t) (t)sin( z )sin("x): a7)

114 The two parts, 1 and ; of the temperature uctuation are random (throughandT,) and provide the temperature deviation on the

115 Uid parcel boundary and at the parcel center, respectively. To ensure a diagonal diffusion tensor as previously speci ed, the random
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Large scale ows under location uncertainty 6

116 stream function term is de ned on the two rst Fourier modes and their conjugates :

X
TdBt:

—I= cosgj d{+sin g d{ ; (18)

i =1

17 where the phases are givenggs= ( 1)) z (1) x and the modulus are de ned from the constant'=2 and eight independent
118 scalar Brownian variables t” . i) =1, 2g. It may be checked that this representation ts the homogeneity condition:

X

E  "(x1;22)dBt " (x2;22)dB¢ = ] cos (1) (z ) ( 1)'(xa xz) dt (19)
ihj =1

119 The small-scale random velocity becomes:

22 gBy=r 7 " (x;z)d]E_at (20)

X g 1) ; ,
= %) . % sin(gj ) { cos@j) { ;
=1 (1

120 which can be developed in factorsafs sin, cos cos andsin sin. We may check that the diffusion tensor is then given by

0 1 0 1
i )(2 %( 1)2i 2 ( l)i+j ~ g _ i% 2 0X
W= (DT (A 0

a= (21)

121 This choice, though simple, remains suf ciently general for our purpose. Factoriziemy ) sin("x) thebaretrepic dynamics (14),
122 we immediately infer that the stream function temporal modg), has to satisfy the following differential equation

@ ()= RaRaTy (1) ( 2+ °?) Ra+ ii (t): (22)

(Z+ 2 (Z+77) M7
123 This equation includes a random forcing term coming from the temperature variation. As for the thermo-dynamical equation, removing
124 the high-order frequency terms, gathering on the one hand the tesimg in) cos('x) and in the other hand the termssin(2 z ), and
P -

125 introducing a new scalar Brownian moti&i = % |2J o ('l ¢ (for which it can be easily veri ed that the quadratic variation
126 ISt), we get:

aTi+ 2+ 2+ 222 mdt Cdt —dBo= T ot —2dBy; (23)

127 and

—
=

dT, 1+ 2.2, 2Todt= =0 T qdt

1=0 dBt X (24)

NI =
’

1
2

128 respectively.
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Large scale ows under location uncertainty 7

2.4. Lorenz system under uncertainty

To get to the nal simpli ed system, we nally consider the time scafe= ( 2 + *?)t, the change of variables:

X(t) = m () (25)
r
Y() = pSTa); (26)
Z(t)= rT 2(t); (27)
and the reduced Rayleigh number
Ra'2

r= m (28)

With this time renormalized, the new Brownian variabl®is = P— + “2B:. We also note
1 2 : . 29
~1=2 1=29\2+ Zpé' (29)

Those changes of variables, with the paraméterd ?=( 2+ *2), lead to the nal system of equations where, for the sake of

readability, we kept the notation instead of~ and dropped the prime index on time:

dxX _ 4

dy= (r 2)X Y Ziv dt+ - 1:3 dBy; (30b)
8 Y

dz= XY bz Z—Z dt+ — 5 dBy: (30c)

This model constitutes a stochastic version of the Lorenz model. It is composed of a deterministic differential equation on the velocity
variable together with two coupled stochastic differential equations associated with the temperature uctuations. For a negligible noise
( '1 ), werecover the original model. Besides, in thendZ equations, the noise terms involve the same factors as the advection
terms in factor of the velocity variable< ). Hence, they both correspond to the advection of temperature variables by the small-scale
velocity. An additive noise component, weighted by the Rayleigh coef cient, is obtained ¥h dogiation. It corresponds to the random
interaction between the small-scale velocity and the strati cafforappearing in (11). This term and its in uence on the buoyancy

variations has been detailed in Ressegetel. (2017a).

It should be noticed that in this stochastic Lorenz system, the velocity variable is driven by an ordinary differential equation. This
is in the rst place due to our assumption of a smooth-in-time large-scale velocity. Relaxing this assumption (i.e. considering that the
large-scale velocity component depends also on a Brownian variable, which is allowed by our derivation) the expression of the velocity
for the Lorenz 63 system would however remains deterministic. As a matter of fact, the multiplicative noise is antisymmetric, and thus
described (in an orthonormal basis) by an antisymmetric matrix with a null diagonal. Consequently, the noise would have no effect, as
only one Fourier mode is kept in the Lorenz-63 model to represent the velocity. In other words, the noise transfers energy from one
mode to the other. If only one mode is considered, the noise has no effect. Nevertheless, the turbulent diffusion is still present as it take

out energy from the resolved mode to transfer it to the truncated modes.
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Large scale ows under location uncertainty 8

In the three equations and as compared to the original Lorenz system, the diffusion terms are increased by a factor that depends on tl
noise variance scale. Due to the scale truncation, the energy los¥ dfy turbulent diffusion ist times larger than the multiplicative
noise intake. It i times larger foiZz . The stochastic system exhibits a symmetry(fok; Y;Z; B). Thus, the law of the solution

is symmetric fo X; Y;Z).

To infer the different physical mechanisms, it is usefull to rewrite system (30) with Stratonovich notations (Oksendal 1998):

0 1
Y _ -
d%) K=Fdt+ 2GdB =F dt+ G dBy: (31)
z
whereF = F Zi(G r vz)G; (32)
0 10 1 0 10 1
1 0 Y 13 O Y
) %)O bX %)ZE 27%0 7g E.DZE
Large-scale
advection | {z } | {z }
Molecular Turbulent diffusion due
diffusion to scale truncation
010 10 1 0 1
G =

%r£+%)o 1&%)\(&; andr yz = ?@@ g: (33)
0 1 0 z @

SinceG represents an advection term, its linear part is antisymmetric and thus has no effect either on the temperatixé engfgy
or on the dilation or contraction of the state spacg{ G = 0). However, according to the system's ow Jacobian (Ressegiial.
2017a), the drift termk , uniformly shrinks the state space volume:

Z,
V(t) = V(0)exp @X+ryz F dt+ryz GdB: ;
0

- V(O)exp  Ra+tl+ b+ © t - (34)

Note that the noise term increases the shrinking rate through the turbulent diffusion term induced by the spatial scale truncation. In
addition, the random terms are volume-preserving since they have an antisymmetric multiplicative structure as stated by the transpor
operator (4). More arbitrary choices of multiplicative random Lorenz systems studied in the literature do not necessarily keep such
properties Chekroust al. (2011). This key difference between stochastic systems build from a stochastic transport operator and the
multiplicative stochastic system studied in Chekretal.(2011) has also been put forward through the Lyapunov exponents in Geurts

et al. (2017). While obtained from a different derivation, the stochastic system with noise transport studied ineGalu(017) is

close to the system derived from the modeling under location uncertainty.

Additive noise terms in the sytems (Dor e and Graham 1983) have also been considered. However, those latter models do not
correspond to the observed small-scale tracers, which are non-Gaussian and intermittent. Such phenomena are well described in simy

scalar advection models with multiplicative random processes (Kraichnan 1968, 1994; Majda and Kramer 19%3120@5).

The system expectation (conditionally to the velocity) corresponds to a Lorenz model with an augmented diffusion and hence
constitutes a damped version of the deterministic version of the original model. There are still three equilibrium pointsifor
. 2 4y 11=2. 4y 11=2. ; — 2 2 ; i
located at(0;0;0) ( [(1+ =)(b+ =) 7% [(b+ =) 7% ) with =(r (1+ £)1+ —&)). For a small noise variance, we
¢ 0000 Royal Meteorological Society
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Large scale ows under location uncertainty 9

recover to leading order the usual equilibrium points, but for strong noise, there is a shift due to the large-scale diffusion engenderec

by the noise.

The classical Lorenz system corresponds to a description of the ow in which the small-scale velocity uctuations are simply ignored
through a truncation on the Fourier space. The diffusions introduced are then only related to the kinematic viscosity and to the therma
diffusivity. The modeling of the small-scale effects as purely dissipative processes, as this is done in Large Eddies Simulation (LES),

would introduce stronger diffusions through eddy viscosity and eddy diffusivity coef cients.

The Lorenz system under location uncertainty can thus be interpreted as a coarse time-scale description of the dynamical systel
in which the intrinsic Lagrangian velocity anomaly is encoded through a temporally uncorrelated random variable. Here, the latter
is encoded as a scalar white noise variable depicting an uncertainty on the temporal evolution of the two rst Fourier modes of the
ow velocity. The velocity anomalies have a characteristic time that is much smaller than the resolved (differentiable) velocity. At the
resolution characteristic time, these velocities anomalies can thus be considered as fully decorrelated. One crucial property of suc
large scale representations concerns the rate at which they tend to the ” nest” original system when the noise tends to zero (e.g. whe

11 ). We will show in the following section that the proposed stochastic system includes the property to approach the original
system for moderates values ofand to provide reasonable coarse descriptions for smatlues. This ability constitute the most
striking difference with a diffusive "eddy-viscosity” model, which has a good convergence behavior but yields a wrong representation
at high eddy-viscosity value, or with ad hocstochastic multiplicative forcing approach that appears to have a poor representation

property even for low noise.

3. Numerical simulations of large-scale representations

In the following, we consider several simulations of this stochastic Lorenz system. The gold standard to which this system should be
compared with, would ideally consist to reconstruct an ensemble of trajectories of an equivalent reduced order model built from a full
direct numerical simulation of a Raleigh-Benard convection (with a large number of different initial conditions). This solution would
constitute a huge computational effort. Instead of doing that, we will compare the performances of different representations of the
Lorenz-63 system with the original system. The deterministic Lorenz system does not constitute per se a gold standard in the sens
that it corresponds to a reduced order model that represents the evolution of only the rst Fourier modes (one mode for the velocity,
two modes for the temperature) with no model for the truncated modes. However these modes capture well — in an ideal setting — the
recurrent pattern of the metastable Raleigh-Benard convection cells. A representation of the small-scale effects will not considerably
affect the representation of these large scale effects at least in average. Obviously, intermittency and small-scale perturbations will likely
modify an instantaneous picture of these cells and of their motion. As a consequence, any Lorenz systems with a representation of th
truncated modes should statistically not differ too much from the original Lorenz system. All of them should statistically represent the
same large-scale physics. In particular the pdf or the mean spectrum of the system variables at large scale should be close to tho
of the deterministic Lorenz-63 system. Furthermore beyond its relation with the Raleigh-Benard convection, the Lorenz-63 model is
a toy model that reproduces qualitatively essential mechanisms of geophysical dynamics: a temperature advection and a non linearit
with a velocity forced by temperature. It is interesting to observe how different modi cations introducing multiplicative noise and

eddy-diffusion mechanisms depart from the original deterministic system.

We consider the original Lorenz system for the usual chaotic paramBtersi0;r = 28; b= 8=3). Its small dimension enables to

easily visualize the solution attractor and to obtain empirical probability density function of the phase space. The Lorenz-63 system
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(a) (b)

20 —20 y 0 20 —20 y

Figure 1. Trajectory of the Lorenz system under location uncertainty (a) and the Basic stochastic Lorenz systems (b) in a strong neisEOcaje (

will be termed with the LZ acronym. For the parameter values investigated here, LZ admits an invariant set, over which almost all
initial conditions are attracted.

The second system we will consider corresponds to the dissipative system without the noise terms. This latter system can be
interpreted as a damped version of LZ. The temporal modes are further damped from a supplementary diffusion term, akin to classica
large eddies representations of the dynamics through eddy viscosity subgrid models. Expressed as a spatial diffusion in the physic:
domain, these subgrid effects are represented by a damping term on the Fourier temporal modes. The action of the unresolved variabl
on the resolved variables solely results from the dissipative subgrid operator. This system will be denoted LES-LZ.

The third model corresponds to the proposed stochastic model. It includes the previous dissipative terms, but also the multiplicative
noise terms borne by the location uncertainty formulation. This system is referred to LUS-LZ — for Location Uncertainty Stochastic
Lorenz-63.

A fourth system is empirically de ned by adding to LZ, multiplicative noise varialtbesZdB ¢ andl= Y dBt onZ andY variables,
respectively. Hence the noise has a diagonal structure and there is here no additional diffusion. This basic stochastic model is terme
BS-LZ.

A rst remark on the different systems can immediately be done. The stochastic and diffusive systems straightforwardly tend to LZ
when the noise (or the diffusion) tend to zero. Yet, the rate at which those modi ed systems tend to the deterministic system is crucial.
In particular, for very small noise condition, it is not desirable to greatly differ from LZ.

For those four systems, simulations with different initial conditions have been carried out. For the two deterministic systems, LZ
and the diffusive LES-LZ, an ensemble is engendered by random perturbations of the initial condition. The same point is used to
initiate the realizations of the stochastic systems. The noise amplitude and the initial perturbation have been xed through the scaling

. Numerically, the four systems have been set on equal footing. We employed a simple Euler-Maruyama integration for the stochastic
differential equations associated with a tiny time st&p €). To obtain comparable results, an Euler scheme has been used with the
same value for the deterministic systems. Several simulations with 100 particles have been run with different noise levels and initial
conditions. An example of the trajectories of one realization of the two stochastic systems with the same initial condition and the same
level of noise are displayed on Figure 1. The BS-LZ trajectory is rough while the smoother LUS-LZ trajectory is more akin to that of
the deterministic LZ.

The curves plotted in Figure (2,3 and 4) show, for two different noise levels, the empirical (marginal) probability distribution and
the power spectrum of the variabl¥s Y andz, respectively. As immediately noticed, the diffusive Lorenz system for a strong noise
( =10 ) strongly modi es the empirical pdf. Two peaks are now observed at the equilibrium points, located at the center of the attractor
wings. The trajectories are more easily trapped in the attraction bassin of these points. Yet, the eddy viscosity coef cient is smaller
than one, 1/5 and 2/5 ox andZ, respectively. The spectrum for long time-scale is also modi ed for the three variables, especially

theZz variable. For small diffusion,= 100 , and eddy viscosity coef cients df=50, 1=50 and1=25for X Y andZ, respectively, the
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Figure 2. Velocity (X ) empirical Pdf (left column) and power spectrum (right column) computed for 10,000 realizations in a strong noise case ( rst row) and small noise
case (second row) respectively. The black line stands for the deterministic Lorenz system, the red line for the Lorenz model under location uncertainty, the green one for ¢
diffusive large scale Lorenz system and the blue one for the basic stochastic system.

pdfs and the power spectra superimpose almost perfectly with pdfs and spectra of the deterministic system. This model converges t
the deterministic system for small diffusion. Note, we recover here the common practice in computer uid dynamics that limits the use
of diffusive LES to resolutions quite close to high resolution simulations. At variance, the random empirically forced system (BS-LZ)
performs quite badly. Even for small noise, it leads to signi cant changes for the pdf shapes of the three variables. Strong discrepancie:
can be observed in the spectrum of thevariable in the transition regions between frequency peaks ( g. 4). The BS-LZ thus badly
converge toward the deterministic system. It constitutes a bad random representation of the original system. Compared to the others, tt
LUS-LZ still holds well for high noise. Though slightly smoothed, the shapes of the marginal pdf and of the spectra are well preserved

at large time scale. Some discrepancies only appear at high frequency where the noise impact is clearly visible.

To quantify the exploration of the Lorenz attractor, we rely on a discrete covering of the usual deterministic attractor made of 611550
cubic boxes of radius = 0:15625 computed with the GAIO software Dellni&t al. (2001). Figures 5 and 6 depict for the LZ, LES-
LZ and LUS-LZ systems examples of the attractor's discrete covering visited by an ensemble of realizations started from an initial
condition on the attractor. Those maps exemplify the differences between the three systems for a strong h0ise((g. 5) and
a small noise (= 100 ) ( g. 6), respectively. In the strong noise case, the diffusive system ( g. 5b) remains stuck in the basin of an
equilibrium point. This explains the pdf peaks observed in the upper left panels of gures (2,3 and 4), and also highlights a problematic
systematic bias of diffusive large-scale systems toward system's stable states. On the contrary, LUS-LZ ( g. 5c¢) visits a much larger
part of the attractor. The shape of the visited part of the attractor is similar to the set of points explored by LZ ( g. 5a), though the
stochastic system seems to visit the attractor in a faster way. At small noise, the three maps are similar ( g. 6). However, surprisingly
enough, the stochastic system still seems to visit more rapidly the attractor. It rapidly escapes the equilibrium basin, whereas the LES
LZ (g. 6b) remains near the equilibrium point. The LZ ( g. 6a) succeeds to visit both attractor wings, but in a less ef cient way than

the stochastic system does.

Those experiments have been generalized for 100 random different initial conditions (still on the attractor) of the 100-particles

ensemble (which amounts to 10,000 realizations). The results are displayed g. 7 in the strong and low noise case, respectively. for the
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Figure 3. Velocity (Y ) empirical Pdf (left column) and power spectrum (right column) computed for 10,000 realizations in a strong noise case ( rst row) and small noise
case (second row) respectively. The black line stands for the deterministic Lorenz system, the red line for the Lorenz model under location uncertainty, the green one for ¢
diffusive large scale Lorenz system and the blue one for the basic stochastic system.
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Figure 4. Velocity (Z) empirical Pdf (left column) and power spectrum (right column) computed for 10,000 realizations in a strong noise case ( rst row) and small noise
case (second row) respectively. The black line stands for the deterministic Lorenz system, the red line for the Lorenz model under location uncertainty, the green one for ¢
diffusive large scale Lorenz system and the blue one for the basic stochastic system.

average visit rate, computed over 100 ensembles, of the attractor. For a given ensemble of 100 particles, the ratasohisiiction

of timet is de ned as:
()= # boxes visited byL0O particles over timé0; t]
- # boxes covering the attractor

(35)

In the strong noise case, the visiting rate signi cantly differs for the three systems. As previously observed, the LES-LZ shows some

dif culties to ef ciently explore the attractor. A signi cant part of the trajectories remains close to the equilibrium points. On average,
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Figure 5. Attractor's points visited by 100-particles ensembles initialized with the same random initial condition (strong noise tése) for t 2 [0; 40] for the
deterministic Lorenz system (a), the diffusive "LES-LZ" Lorenz system (b) and the "LUS-LZ" stochastic Lorenz system under location uncertainty " (c). The color
encodes the time necessary to reach a given point of the attractor for the rst time.

Figure 6. Attractor's points visited by 100-particles ensembles initialized with the same random initial condition (strong noise té8e ) for t 2 [0; 40] for the
deterministic Lorenz system (a), the diffusive "LES-LZ" Lorenz system (b) and the "LUS-LZ" stochastic Lorenz system under location uncertainty (c). The color encodes
the time necessary to reach a given point of the attractor for the rst time.

Figure 7. Mean attractor visiting rate (see text) upgte 40 computed for 10,000 realizations (100 ensembles of 100 particles) for the deterministic Lorenz system (black);
the diffusive "LES-LZ” Lorenz system (green) and the "LUS-LZ" stochastic Lorenz under location uncertainty ” (red); stendard deviations are superimposed in
lighter color: (a) strong noise case; (b) small noise case.

less tharb% of the attractor has been visited at titree 40 . The LZ system certainly performs better, but several con gurations remains

in the equilibrium basin. On average, ab@@t of the attractor have been explored in the same lapse of time. The stochastic system
provides much better results. It enables to explore a much greater part of the attractords#dryaverage) for the same number of
realizations. In the small noise case, as could have been anticipated, the LES-LZ results are much closer to the LZ one. It can be note
that almost the same portion of the attractor, as in the strongly perturbed case, have been explored by both LES-LZ and LZ. Therefor:
a stronger perturbation of the initial condition of the classical Lorenz system only results in a small increase of the attractor visit. The
standard deviation associated to the deterministic systems (LES-LZ and LZ) is not signi cantly strengthened by a strong perturbation
of the initial condition. The LUS-LZ, even in a small noise con guration, shows a remarkable ability to visit a larger portion of the

attractor ¢ 10%).
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It can be noticed that for LUS-LZ and LZ the variance of the visiting rate grows rapidly at short time while it strongly decreases at
the end of the temporal window. The large variance increase at the beginning is connected to the different initial conditions (randomly
drawn on the attractor). Some ensembles will reach the regions of bifurcation of the attractor more rapidly than others, depending or
where they have been started. When visiting these regions, particles of a given ensemble are sent to very different trajectories. Therefor
for such ensembles, the visiting rate increases rapidly at short time. Other ensembles will take longer to reach the bifurcations, thei
particles stay close together for a longer time and the visiting rate increases slowly. But, given enough time and for both models, mos
ensembles go through the bifurcations, spread and explore a similar amount of the attractor — the initial condition has been forgotten -
and the variance of the visiting rate decreases. The stochastic model is advantaged by the noise and continues to explore faster than
deterministic one even in a low noise context (the mean visit rate for LUS-LZ increases faster than that of LZ at T = 40). At the end of
temporal window, the variance of LUS-LZ remains also higher than the variance of LZ, especially for strong noise. For high diffusion

the LES-LZ keeps a high variance as some trajectories remain stuck in the attraction bassin of the equilibrium points.

Conclusion

As considered for this reduced system, the proposed stochastic strategy demonstrates great potential to model geophysical ows. TF
resulting stochastic system helps to very ef ciently explore the entire dynamical landscape of the ows. Without considering a large

computational load, a traditional diffusive setting appears more hazardous to use. This is especially true when a signi cant diffusion is
studied. In that case, a purely diffusive subgrid model shows limited performances, and implies supplementary computational efforts.
It rapidly reaches the burdens of almost fully resolved systems ! As rigorously derived, the stochastic strategy helps to avoid eventua
pitfalls leading to strongly biased scenarios from insuf cient exploration of the phase space dynamics. As also tested, the addition of an
empirical stochastic forcing barely constitutes an acceptable solution, as possibly leading to a bad representation of the target syster
From these results, it thus appears mandatory to more systematically promote the derivation of proper stochastic representations
the classical geophysical systems for climatic analysis of geophysical ows, following geometric mechanics and variational principle

Holm (2015), or the location uncertainty formalism as developed here above.
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