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GENERICITY OF THE STRONG OBSERVABILITY FOR SAMPLED
SYSTEMS.

SABEUR AMMAR?*, MAJID MASSAOUD', AND JEAN-CLAUDE VIVALDA ¥

Abstract. In this paper we prove that, generically, a sampled data system is observable provided
that the number of outputs is greater than the number of inputs plus 1.
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1. Introduction. In this paper we deal with the genericity of the observability
of sampled data systems. Consider a controlled continuous time system written as

&= f(x,u)
S { y = h(x).

Given a time T', to system (1), we relate the following continuous-discrete-time system
o #(t) = F@(t), up),t € BT, (k + 1)T)
yr = h(z(kT))

where the control u is maintained constant on the intervals [kT, (k + 1)T) and the
measurements of the state are made only at each of the times 0,7, 27, ... System (2)
is called the sampled data system related to (1).

Many physical processes or industrial devices can be modeled by a system of
continuous-time differential equations as (1). From a mathematical viewpoint, the
time and the state of this system can vary continuously but in practice, a controlled
process is regulated by a digital computer which is not able to record a continuum
of data. This is why control decisions are restricted to be taken at fixed times
0,7,2T,...; here T is called the sampling time and is a (generally small) parame-
ter which depends on the instrumentation of the process, on the computing power
and other parameters. For a continuous time system, the resulting situation can be
modeled through the restriction that the applied inputs are constant on the inter-
vals [0,T), [T,2T), ...and the state is (partially) measured only at those fixed times
0,7,2T, ..., that is to say we access to the values of the observation function only at
times 0,7,...

For the sake of clarity, the precise assumptions that we make on these systems
are stated in section 1.1 but we recall here the notion of observability. Regarding
system (2), an input u° is a sequence (uy),~, with u, € U (U, the input space). An
input u" being given, we denote by x(t) and Z(t) the solutions of (2) starting from
xo and T respectively; we say that system (2) is observable for u® if for every pair of
initial conditions (xg,Zo), there exists an integer k such that h(z(kT)) # h(z(kT)).
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The aim of this paper is to prove that, under some conditions on the respective
dimensions of the inputs and the output, generically, the sampled system obtained
from a continuous time system is observable.

Two questions can be investigated about observability and sampled systems. The
first one is the problem of the preservation of the observability: if the continuous time
system (1) is observable for any inputs, is it also the case for the sampled system (2)?
The second question is the subject of this paper: given a sampling time 7', how many
are the continuous time systems (1) such that the sampled system (2) is observable?

Concerning the first question, the answer for linear systems is well known (see
e.g. [18] and also [14] when the sampling time is not constant). If we deal with
nonlinear systems, one would think that the observability of the continuous time
system involves the observability of the sampled one, at least if the sampling time
is chosen small enough. Surprisingly, this is not the case: a counter-example can
be found in [6]; in order to get the observability of the sampled system, to this
natural condition (the observability of the continuous time system), we have to add the
condition of infinitesimal observability (see [11]) together with a technical condition
bearing on the sequence of controls ug, u1, ...

The aim of this paper lies on a more “philosophical plane”. Due to the importance
of the notion of observability, it is of interest to know “how many” continuous time
systems give rise to observable sampled data systems. To be more precise, in [6]
(systems given on a compact manifold) and in [3, 5] (systems given on R"™), we
gave some natural sufficient conditions bearing on the continuous time system and
under which the sampled system is observable. So, these works have a practical
interest: for a class of continuous time systems our result allows us to decide on
the observability of the sampled system. The present paper intends to prove that
the set of continuous time systems which admit an observable sampled system is
everywhere dense. Knowing that the set of rational numbers is dense in the set of
real numbers does not permit us to decide if a particular given number is rational; in
the same way, the result proven in this paper does not permit to decide if a particular
sampled system is observable. Moreover, this result cannot be deduced from the
abovementioned papers because, while the observability of the continuous time system
is generic (see [11]) the additional conditions in [6, 3, 5] are not; also, in these papers,
the observability is ensured only for sufficiently small sampling time 7'

The genericity of the observability has been the subject of some researches in the
last decades. As regards continuous-time systems, the first paper on the subject was
about the genericity of the observability for uncontrolled systems [9]; this work was
generalized to controlled systems by J.-P. Gauthier and I. Kupka, in [10] these authors
proved the genericity of differential observability for systems with more outputs than
inputs. A reference book on this subject is [11]. A related issue is the problem of the
identifiability, in [8], the authors deal with general nonlinear systems which contain
an unknown function, they prove that these (uncontrolled) systems are generically
identifiable if the number of observations is at least three. Regarding the discrete-
time systems, the first paper on the subject was from Aeyels [2], we can cite also [20]
for the uncontrolled case and [7, 4] for the controlled case. In all of these papers,
it is proved that the observability is a generic property provided that the number of
outputs is greater than the number of inputs. Surprisingly, this result is no more valid
for the systems considered in this paper: in the next sections, we shall prove that if
the number of inputs is one and the number of outputs is two, the set of pairs (f, h)
such that system (2) is observable is not dense. Concerning the subject of this paper,
we have also to cite [13], in this paper the authors prove also a result of genericity of
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the observability for sampled data systems; the systems considered in this paper are
uncontrolled and the sampling time is not constant but depends on the sate of the
system.

The tools used to prove our main result are essentially the same (but applied to
different situations) as the ones used in the above-mentioned papers, that is to say
the major theorem of the transversality theory.

The paper is organized as follows: in the next section, we state the precise formula-
tion of the problem we deal with and we recall some useful facts from the transversality
theory. In section 2, we state the main result of the paper and we introduce the lists
Lo, and Lo, which are built from two initial conditions zy and Z, and their images
under the iterates of f; we then introduce five possible configurations fore these lists
(cf section 2.1). We then prove our main theorem for each of these configurations: the
corresponding results are stated in the three propositions 5, 9 and 10; the conjunc-
tion of these propositions give the main result. Finally, we give a counter-example in
order to prove that the observability of the sampled system is not generic in the case
dy =dy, + 1 (c¢f. section 5).

1.1. Problem formulation. We consider two compact manifolds X and U; we
let n = dim X and d, = dimU. As usual we denote by T, X the tangent space to
X at x, and by TX the tangent bundle. A parametrized vector field will be a C'*°
mapping defined from X x U into TX such that, for every u € U, f(-,u) is a vector
field defined on X. The set of parametrized vector fields defined on X will be denoted
by I'y (X). If f belongs to I'y (X)), we denote by ¢} the flow generated by the vector
field f(-,u) (the parameter u being fixed); so for every z € X, every u € U, and every
t > 0, we have

dei' ()
¢i(e) =z  and TRl ACONDR
Let ug,u1,... be a sequence of controls (i.e. a sequence of elements of U), for k > 1,
we denote by uj the finite sequence ux = (uo, . .., ug—1).

Let ¢ : M — N be a differentiable mapping between two manifolds M and N,
the notation di(x) will stand for the differential of ¢ at x; let £ € T, M be a tangent
vector, di(x) - € will denote the image of £ under dy(z).

Hereafter, together with a parametrized vector field, we consider a C*° mapping
h from X to R% and, given a sampling time T' > 0, we consider the mapping @T’h
defined as
5 Or": X x U — REHLA 2
( ) (J’J,M) — (h(l’o),h(l’l),...,h(l‘gn),u@)

where the sequence (zg,x1,...,T2,) is defined recursively by zo = = and zp41 =
o7 (x)). Also, we denote by y; and ¥;, the values at x; and Z; under h: y; = h(x;)
and :lji = h(i‘l)

DEFINITION 1. We shall say that the sampled data system (2) is strongly observ-
able if the mapping @é’h defined above is one-to-one.

We shall show that, generically, system (2) is strongly observable, to be more
precise, we endow I'yy(X) x C*(X,R%) with the Whitney topology and we shall
prove that the set of pairs (f, h) such that the mapping G?h is injective is a residual
subset of 'y (X) x C*(X,R%) provided that d, > d, + 2 (case d,, > 0) or d, > 1
(case d, = 0). The tools used in this paper come from the transversality theory,
hereafter, we recall the notion of transversality as well as the Abraham’s theorem of
density [1] which will be intensively in the proof of our main result.
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DEFINITION 2 (Transversality). Let f be a smooth mapping between two smooth
manifolds X and Y, W a submanifold of Y and x a point in X. We shall say that f
is transversal to W at x if either

o« f(@) W, or

(] f(.l?) e W and Tf(z)Y = Tf(I)W + dfg;(Ta;X) .
We shall say that f is transversal to W if it is transversal to W at every x € X. We
shall use the symbol M to denote the transversality.

Concerning this definition, some elementary conditions show that the second
equality cannot be satisfied if codim W > dim X. Therefore if codim W > dim X,
transversality means non membership: in this case saying that f is transverse to W
amounts to saying that f(z) ¢ W for every x € X. This trick will be used later in
the proofs of propositions 9 and 10.

We recall also the notion of representation: let </, X and Y be C" manifolds
and p a map from & to C"(X,Y). For a € &, p, : X — Y is the map defined as
pa(x) = p(a)(x). We say that p is a C" representation if the evaluation map:

evy:d x X — Y
(a,z) +—  pa(x) = pla)(z)

isa C" map from & x X to Y.

THEOREM 3 (Transversal density theorem). Let o/, X,Y be C" manifolds, p :
o — C"(X,Y) a C” representation, W C'Y a submanifold (not necessarily closed),
andev, : o x X =Y the evaluation map. Define ety C o by:

gy ={a€ | p, MW}

Assume that:
1. X has a finite dimension n and W has a finite codimension q in'Y;
2. o/ and X are second countable;
3. r > max(0,n — q);
4. ev, M W.
Then <ty is residual in & .

Notice that manifold <7 is not necessarily finite dimensional; it may be a Banach
space or an open subset of a Banach space.

2. Main result.

THEOREM 4. Assume that dy, > d,, + 2 or that d, =0 and dy, > 1, and let T > 0
a given sampling time. Then the set of pairs (f,h) such that system (2) is strongly
observable is a residual subset of Ty (X) x C®(X,R%).

In order to prove this theorem, we need some preliminary results, namely the
propositions 5, 9 and 10 stated in sections 3 and 4.3—4.4. In these propositions,
different possible configurations, denoted hereafter by Cqg through C,4, of the lists
(xo,21,...,%2,) and (Zg, Z1,...,Ta,) are considered (the Z,s are defined as the x;’s,
¢f- (3)). For each of this configuration Cy (k = 0,...,4), we prove that, generically
G%h(x,uﬂ) # @é’h(f,uﬂ) if (z,u2n), (T, u2,) is under Cy configuration.

To be more precise, given two different initial conditions x and Z and an integer
s < 2n, we shall consider the two lists

(4) Ls = (zg,...,zs) and L, = (zg,...,Ts),

4
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where the Z;’s are defined as the z;’s. Concerning the two lists Lg, and Ls,, we
shall examine all the possible situations: the elements of these lists can be pairwise
distinct, some equalities can occur among the elements of the first list while the ones
of the second are pairwise distinct, etc. In the following section, we define five possible
configurations and we prove that, necessarily the above-mentioned lists belong to one
of five configurations.

2.1. The different configurations. Hereafter we shall give an exhaustive list
of all the possibilities concerning the equalities between the elements of the lists Lo,
and Lo,; in the sequel, we shall say that the equalities z; = Z; and x;; = ;s between
elements of Ly, and elements of Lo, are in the same direction if the differences i — j
and ¢’ — j’ have the same sign. Take x # T € X, even if we have to invert the roles of
Lo, and l_/gn, the possible configurations for these lists are:

Co The elements of Lo, are pairwise different; moreover the only possible equalities
between elements of Lo, and elements of Lo, are all in the “same direction”.
That is to say, let

I={0<i<2n|3je{0,....2n},2; =z, },

fori e I,let E; = {0<j <2n |z, =2;}, then either for every i € I, for
every j € E;, j < i or for every i € I, for every j € E;, j > 1.
C;1 There exist some subscripts 0 < i < p < 2n and 0 < j,m < 2n such that
o z,=2x; and T, = T;;
e there is no equality between the elements of L,_1;
e letting ¢ = max(j,p, m), there is no equality between the elements of
qul ; _
o the equalities between elements of L, ; and L,_; have the same direc-
tion.
C2 There exist some subscripts 0 < i < p < 2n,and 0 < 7 <m < 2n, with m > p
and such that
oz, =%y andz; =7; withp—i#m—j;
o there is no equalities between the elements of L, nor between the ele-
ments of Ly, ;
e the only possible equalities between elements of L,,_1 and L,,_; are all
in the same direction; moreover if these equalities write z;, = Z;,,...,
x;, = Z;, the differences 41 — j1,...,%, — j, are equal;
o if x; = Z; with ¢/, j' <m, then ¢’ > ¢ and j' > j.
C3 There exist some subscripts 0 < i <p <2n,and 0 < m < j < 2n with p < j and
such that
oz, =2y and x; =T;;
e there is no equalities between the elements of L, nor between the ele-
ments of I_/j ;
e the only possible equalities between elements of L;_; and ij,l are
all in the same direction; moreover, if these equalities write x;, =
Zj,...,%;, = Z;, the differences i; — j1,...,%, — j, are equal;
o if 2y = z; with ¢/, j' < j, then ¢’ > p and j' > m.
C,4 There exist some subscripts 0 < ¢ < p < 2n,and 0 < j <m < 2n withm > p
and such that
o x,=2x;and T, = T;;
e there is no equality between one element of L,,_; and one element of
Ly 1.
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Denote by e, the number of equalities between the elements of L, U Ly, if €3, = 0
or 1, then we are under the Cqg configuration.

Now, assume that es, > 2; if we go from Ly U L, to Ly_1 U Ly_1 we lose 0, 1 or
2 equalities. Thus if e, > 2, there exists a subscript m < 2n such that there exist
exactly two or exactly three equalities between the elements of L,, U L,,; we denote by
s the minimal subscript with this property. Notice that, if e, is exactly three, x5 and
Z, must be equal to some elements of Ly 1 UL, _; (because we always have x4 # Z,).

Assume first that e, = 3 and denote by xs = 21, Ts = 22 and z3 = z4 the three
equalities, then

o if 21 € L, and 23,24 € Ly, then L,_; and L, are under C;y (if 25 € L) or
C4 configuration (if zo € L);
o if 2 € Ly, 23 € Ly, and 24 € Ly, then L, and L,_; are under C; configura-
tion;
o if 2y € Ly, 23 € Ly, and z4 € L, then L, and L,_; are under Cy4 configura-
tion;
e if z; ¢ L, then L, and L,_; are under Cy, Cg or Cs configuration (we could
have to invert the roles of L, and L,).
If e, = 2 and if the lists L, and L, are not under C;—-Cy configurations, we have two
cases to consider.

In the first case, there exists some subscripts 0 < ¢t < s and 0 < t’ < s’ such
that v; = x5 and oy = xy; if 8 < sweseti=1¢ and p = ¢, if s = s, we set
i = min(t,t') and p = max(t,t). As noticed above, when we go from lists L, and
L, to the lists Lsy1 and Lgyy we gain 0, 1 or two equalities. Denote by o the least
subscript greater than s such that there exist 3 or 4 equalities among the elements
of L, and L, if such a subscript fails to exist, the lists Lo, and La, are under Cq
configuration. Otherwise, assume that there exists exactly three equalities between
the elements of L, U L, this additional equality can be one of the followings

e T, = z; (with j < ), the lists Ly, and Ly, are then under C; configuration;
T, = Z; (with j < o), the lists L, and L, are under Cy4 configuration;
To = Ty (With m < o), the lists Lgn and Lo, are then under C; configuration;
Z, = x; in this case we seek for the least subscript ¢’ > o (if any) such that
one get 1 or 2 additional equalities by going from Ly U Ly to Ly U Ly
If we are in the case where there exist exactly 4 equalities between the elements of
L, U L, these equalities can be

o z, =z and Z, = xj, (with ji, jo < o), in this case the lists Lo, and Lo, are

then under C; configuration;

e z, =z and T, = T;,, the lists L, and L, are then under C4 configuration;

e 2, = 7;,and T, = x;,, the lists L, and L;, are then under C; configuration;

e v, =;and T, = T;,, the lists L, and L, are then under Cy configuration.
In the second case there exist some subscripts 0 < ¢ < s and 0 < t/ < s’ < s such that
s—t=s—t,z; =73 and xy = Ty (without loss of generality, we can exchange the
roles of z and ). Proceeding as in the first case, we prove that either the lists Lo,
and Lo, are under Cq configuration or there exists a subscript s < o < 2n such that
L, and L, are under one of the configurations Cy, Cg or Cg.

Let the pair (f,h) € Ty(X) x C*(X,RP) be fixed; hereafter, we shall say that
the configuration of the triplet (z,Z,us,) (x # Z) is C; if the configuration of the

lists La,, and Loy, related to z and Z is C;. In the sequel, we shall assume that all the
function spaces (such that C*°(X,RP),...) as well as the spaces I'(X), T'y(X) and
%Y (a) are endowed with the C” topology, where r € N*.

6
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2.2. Outline of the proof of Theorem 4. Without going into the tech-
nique details, we shall explain our strategy for the proof. Take (f,h) € T'y(X) X
C>(X,R%), let z9 # Zo be two different initial conditions and wus, 1 a sequence

of controls. The equality @%h(wo,UQn_i_l) = @{F’h(io,ugnﬂ) can be formulated in
geometric terms. To show where are the difficulties, we make a first attempt by con-
sidering the simplest way to make this formulation. Consider the mapping, denoted
by r¢ 4, related to the pair (f,h) and defined as

e X2 % U2n R(2n+1)dy
(@, Z,u2n41) — (Yo — Yo, ---+Y2n — Yon)

where y; = h(x;), y; = f(Z;) and the z;’s and the Z;’s defined as in (3). The
equality @%h(xo,u%ﬂ) = @gﬂ’h(fo,ugnﬂ) means that r¢ (o, Zo, u2n) belongs to
the submanifold W = {0} ¢ R®**D4)_ Notice that the codimension of W is equal
to (2n + 1)dy and is greater than 2n(d, + 1) the dimension of the domain of ryj. If
¢, is transverse to W, this inequality on codim W implies that r¢ 5 (2o, Zo, t2,) does

not belong to W and therefore that @fp’h(wo, Usnt1) # @l}’h(i‘o, Usnt1). Assume now
that we are able to prove that, generically, 7fj is transversal to W, that is to say
assume that there exists a residual set % such that 7y} is transversal to W whenever

(f, h) belongs to £, we then have proved that, generically, @g’h is one-to-one. In order
to prove that, generically, 7 j is transversal to W, we could try to apply Theorem 3
by proving that the evaluation map related to the representation r from I'y(X) X
C>®(X,R%) to C"(X® x U?", RZn+D4) ig transversal to W. This evaluation map
ev, is defined as ev,(f, h,x, %, u2,) = 7¢n(x, T, u2,), as it is linear with respect to
h, its differential with respect to h is given by n — (n(zo) — n(Zo), ..., n(x2m) —
n(Z2n)), if we were able to show that there exists 7 in C*° (X, R%) such that n(z;) —
n(z;) = 2, for arbitrary vectors 2, . ..,2s, of R%, then we would be done. The
existence of such an 7 is generally not ensured but is certainly true if the elements
Ty, Ton, Lo, -, Loy are all different or, more generally, if the two lists Lo, and
Lo, are under Cy configuration. In this case, modifying r¢,p and the definition of W
as explained in the next section, we can prove that, generically 7 is transversal to
W. Now the two lists are not always under such a configuration, the points =y and
could be located on a periodic trajectory of f or could be singular points. The case of
singular points shows that we cannot disregard the cases where the two lists Lo, and
Lo, are not under configuration Cg. Assume that z and Z( are singular points for the
vector field f(-,up) and take a sequence of identical controls: uy = u; = ..., = ugy,
then we cannot argue as in the case of Cg configuration: a mapping n as above fails
to exist because g = --- = x9, and Ty = ...Zs,. Notice that this situation is
unavoidable: on some manifolds, every vector field has at least one singular point;
this means that the particular configurations C;—C4 cannot be eliminated by using
an argument of density.

The outline of the rest of this section will be the following: for each configuration
CoC4 , we shall prove that there exists a residual subset of I'ty(X) x C(X, R%)
(endowed with the C” topology), denoted by ¢ (k =0,...,4), such that if (f,h) €
¢y and if (xg,Zo,u2n) is in configuration Cy, then GQh(xo,%) # 6§’h(f0,%).
Consider the intersection € = 63 N --- N €7, which also is a residual subset, and
take a pair (f,h) in €"; let o # Zo be two different initial conditions and us,, a finite
sequence of controls, as (2o, Zo, u2,) must be in one of the Co—Cy4 configurations, we
have @#h(xo,uﬁ) # @%h(i’o,%). Now taking the intersections of the sets €" for

7
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r=1,2..., we obtain a residual Z of I'yy(X) x C"(X,R%) endowed with the C>
topology; this residual is such that if (f, h) belongs to %, then @g’h is one-to-one.

In the following section, the existence of the residual sets 6%, is stated in
propositions 5, 9 and 10. For the proofs of these propositions, our strategy will be the
following: we shall consider some submanifold W together with some representation
p; the choice of W and p being related to the considered configuration of the lists Lo,
and Ly,. Concerning W and p, we shall prove the following results:

e by applying the Transversal density theorem [1], we shall see that the set of
pairs (f,h) € Ty(X) x C°(X,R%) which are transversal to W is dense;

e we shall prove also that the codimension of W is greater than the dimension
of the domain of py¢ 5, which implies that the range of ps 5 does not intersect
W

e due to our choice of W saying that psn(z,Z,u2,) ¢ W will imply that
OF" (2, uzn) # OF" (2, uzn).

We shall provide a detailed proof for the Co and C; configurations, the proofs
for the Co and C3 configurations will be omitted because they are very similar to the
previous ones. Concerning the configurations Cg—Cg, we only need the assumption
dy > d,, +1 to prove the existence of the residual subsets ¢,—%3. We have to consider
apart the case of C4 configuration because to prove the existence of the residual subset
€4 we need the assumption d,, > d,, + 2.

3. The triplet (x,Z,us2,) is under configuration Cgy. In this section, we
deal first with the simplest case: the Cg configuration.

PROPOSITION 5. Assume that dy, > d,, (the number of observations is greater than
the number of controls). Denote by €7 the set of pairs (f,h) € T'yy(X) x C=(X, R%)
such that @é’h(x, Uopt1) 7 @é’h(i, Uon41) whenever the triplet (x, T, usyn) (with x # )
is in configuration Cqo. Then € contains a residual for the C” topology.

Proof. We consider the representation

p: Tu(X)x C®(X,Rb) — Cr(X@ x U, (X212 x RErHD)
(f,h) — Pfh

where py,p, is the mapping

Prh X(2) x [J2n X2n+1l o x2n+1 R(2n+1)dy
(xa‘faUQn) — (x(b~"7$2n7‘%07~~'7i’2n7y0_g(]w"?yZn_an);

and where y; = h(z;) and y; = h(Z;), the x;’s and the Z;’s being defined above. We
consider the submanifold Wy included in (X 2”“‘1)2 x R4y defined as follows.
Submanifold Wy is the set of those elements (aq,...,az2,,ao,-..,a2,,0,...,0) such
that

e the elements aq, ..., as, are pairwise distinct;

e we have ay # a; if k > 1.

Notice that the codimension of Wy is equal to (2n + 1)d,, as dy > d,,, we have
(2n 4+ 1)d, > (2n + 1)d, + 2n + 1, so the codimension of Wy is greater than the
dimension of X2 x U2"*+! the domain of Pfh-

Recall that the evaluation map ev, is defined as:

eVp(f,h,IL’,f,Uﬂ) = pf,h(xaf’uﬂ) .
8
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We shall see that ev, is transversal to Wy at every given point
XA (f hyx, % us,) € Tp(X) x OT(X,R%) x X®) x U,

Consider a point 2~ such that ev,(2) € W, and a vector (X, X,9)) that is tangent
to the codomain of ev,, with X; € T,, X, X; € Tz X, and 9; € R (i=0,...,2n);
we have to prove that there exist ¢ € I'y(X), n € C°(X,R%), £ € T, X, € € Tz X,
v; € T,,U (for i = 0,...,2n) and a vector ¢ in the tangent space to Wy at ev,(Z")
such that

(5) (X,X,9) = d(evp)(2) - (6,1, 6,&v) +C.
We shall prove this relation with ¢ =0, £ =0, £ = 0 and v = 0. We denote by
ao,...,agn,&o,...,dgn,O,...,O

the components of ¢. In the right-hand member of (5), the 2(2n+ 1) first components
are equal to ag, ..., Q2,, g, ..., Qa,, and can be chosen such that o; = X; and a; = X;
(1=0,...,2n). The 2n + 1 last equations in (5) are

(6) Tlo _ﬁO :@07 ey 77271_77]271 :2)2n

where we let 1; £ n(z;) and 7; = n(#;). We consider this system as a linear system
whose unknown are ng,...,%2n,70,.-.,%2n. If ev,(Z) belongs to the submanifold
Wy, the points zg,...,Ts, are pairwise distinct, so the unknown 7o, ..., 72, can be
arbitrarily and independently chosen. There could be some equalities between the
elements of the list Lo, and between an element of Lo, and an element of Lo,. If an
equality such that x, = Z; exists, then, as ev,(2") € Wy, we necessarily have k < [
and 7, = 7;. The matrix of system (6) is then

M= (A | ~Igntiya, +B)

Where I(2,41)q, is the (2n+1)d, dimensional identity matrix and matrix B is a block
matrix, whose blocks are 0 or d, dimensional identity matrices. Moreover, matrix B
is upper triangular: if we have an equality like x; = z;, then we find in B the block
I3, (identity matrix) at position (k,l) with [ > k. From the form of matrix B, we can
conclude that the rank of M is equal to (2n + 1)d, which implies that we can find
70, - -+ M2, 10 - - - 2n Such that system (6) has a solution. Denote by zy,,...,zk,
the list of the elements of Ls,, which are not equal to an element of Lo,. It is possible
to find a solution of (6) such that 7, =--- =, = 0, for such a solution, it is then
possible to find a mapping 7 such that n(z;) =n; and n(z;) =7 (i =0,...,2n).

We have shown that ev, is transversal to Wy. The conclusion of the proposition
now follows from the application of the Transversal density theorem [1]: the set Of
of pairs (f,h) € Ty (X) x C°(X,R%) such that ps, is transversal to Wy is open
and dense in the C" topology (for every r > 0). Take now a pair (f,h) in this set
0} and take two initial conditions x # Z, and a finite sequence of controls ua, such
that the triplet (z,Z,u2,) is in configuration Cg, the mapping py,p is transversal to
Wy at (z,7,uz,) but as codim Wy > dim(X®) x U?"), transversality means that
prn(x, T, u,) ¢ Wo, which implies that at least one of the equalities y; = y; is not
satisfied and so @%h(w,%) # @%h(i,%). d

9
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4. The case of the C;—C4 configurations. In the proofs of the next propo-
sitions 9 and 10, we shall have to consider the derivative of o (z) with respect to the
vector field f (we are no more able to take ¢ = 0 as in the proof of Proposition 5).
This is why we ned to state a technical lemma, which bears on the computation of
these derivatives. To prove this lemma, we have to take into account the periodic
trajectories of a vector field; these trajectories have some generic properties—which
we intend to use in the proof of Lemma 8—, which are stated in the Kupka-Smale
theorem. Now the Kupka-Smale theorem has not been stated for parametrized vector
fields, so we will show that it can be generalized to those vector fields.

4.1. Periodic trajectories and the Kupka-Smale theorem. Take a param-
etrized vector field f € Ty(X), u € U, x € X, and assume that x belongs to a periodic
trajectory of the vector field f(-,u). Then there exists mo > 0 such that o} (v) = =,
this implies that de¥ (z) - f(z,u) = f(z,u), so 1 is an eigenvalue of A £ dp¥ (z). In
the sequel we shall have to consider expressions like Id+A + --- + A* and we shall
need that this sum of linear mappings be invertible; this is certainly true if, apart
from 1, the other eigenvalues have modulus different from 1. The theorem of Kupka-
Smale [15, 17] asserts that this is generically the case for a vector field. Let a > 0,
hereafter, we denote by %(a) the subset of I'(X) of those vector fields f such that

e if z is a singular point of f (i.e f(x) = 0), then for every ¢t # 0, dp:(x) :
T,X — T, X has no complex eigenvalue of modulus 1;

e if x belongs to a periodic trajectory of f with period 0 < my < a, then,
denoting by 1, As,..., A, the eigenvalues of dyr,(x), we have |A;| # 1 for
1=2,...,n.

Hereafter, recall that the manifolds X and U are assumed to be compact. We
have

THEOREM 6 (Kupka-Smale). Let a > 0, the set % (a) is residual; moreover for
the C" topology (r < +00), %a(a) is open and dense.

This theorem can be generalized to parametrized vector fields, namely we have.

THEOREM 7. Let a > 0, the set 9 (a) of parametrized vector fields such that
f(-,u) € G(a) for every u € U is a residual; moreover 97 (a) is open and dense for
the C" topology.

This theorem can be proved by adapting the steps of the proof of the Kupka-
Smale’s theorem which can be found in [1]. Owing to lack of space, we do not write
here the proof of Theorem 7 but we give a sketch of this proof in Appendix A;
moreover, the reader is referred to [19] where this result is proved in the case where
the dimension of U is 1.

4.2. Technical lemma. The proofs of propositions 9 and 10 below will follow
the same scheme as the proof of Prop. 5. Nevertheless, in the following propositions,
in order to prove that the mapping ev, is transversal to some submanifold W, we
shall have to consider the derivative of the flow with respect to a vector field. Thus,
before going further, we recall a result which will be used in the proof of Lemma 8
and propositions 9 and 10. Take two vector fields f and ¢ defined on X and denote by
@¢ and 0} (A € R) the flows related to f and f + \¢ respectively. In [1, Perturbation
theorem], the following formula is proved: for every x € X, we have

@ Soda)

t
— [ dpsos0 ().
A=0 0

10
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Obviously, this formula can be extended to the case of parametrized vector fields.
Consider f and ¢ in I'yy(X) and denote by gal“‘ the flow generated by the vector field
fGu) + Ao(-,u) (with u fixed). Starting from an initial condition zg, consider now
the sequence z(}, 27, ... defined recursively as 23 = zo and z},, = (p%"’)‘(xf‘), then
applying formula (7), we deduce easily that

d

i =Ji+6i(Ji—1) + -+ d1(Jo)

A=0

where .
Jp = / o (02 (7)) - S (21), u)dor;
0

the integral Ji belongs to the tangent space of X at @7 (x) = xk11. Moreover the
0r’s are the mappings defined as

0k = d(py o0 pgf)(zk)

We state now a preliminary result which will be used in the proofs of propositions 9
and 10. We shall say that these lists are under Cj (resp. C}) configuration if
e they are under C3 (resp. C4) configuration and if
e there exists a subscript & € {i,...,p—1}U{m,...,j—1} (vesp. k € {4,...,p—
1} U{j,...,m —1}) such that uy # up_1 .
The proof of the following lemma is postponed in Appendix B.

LEMMA 8. Let X, € T,, X be an arbitrary tangent vector to X at x,. Assume

that the lists Lo, and Lo, are under Cy configuration, then one can find a vector field
¢ € Ty (X) such that we have

diCA d;yA
1 [ -
N |y,

If these lists are under Ca, Cjy or C} configuration, then one can find a vector field
¢ € Ty(X) such that we have

dz) dz dz? dz?
' =X, i =0, L =0, 7 =0.
dA \—o dA |, o A oo dA \—o

4.3. The triplet (x, Z, u2,) is under one of the configurations C;, C; or
Cs.

PROPOSITION 9. Assume that d, > d, (the number of observations is greater
than the number of controls). For k =1,2,3, denote by €] the subset of pairs (f, h) €
Ty (X) x C*(X,RP) such that @%’h(x,u%ﬂ) # @%h(j,UanJrl) whenever the triplet
(,Z,u2n) (with © # Z) is in configuration Cr. Then each subset €] contains a
residual for the C" topology.

Hereafter, we write the proof of this proposition only in the case of C; configuration,
the case proofs for the other configurations being very similar.

4.3.1. Proof of the proposition in the case of C; configuration. If the
triplet (x,,u9,) is in the Cy configuration, there exist subscripts i, j, p, m such that
zp = x; and Ty, = ;.

11
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We choose four subscripts 0 < 4,7,p,m < 2n such that ¢ < p; letting ¢ =
max(i, j, p,m), we consider the representation p

p: GY(a) x C"(X,R¥) — CT(X® x U1, X+ x X1 x R1v)
(f,h) > Pfh

defined through the mapping ps n

pra: XA xUT — X9l x X9l x R1d
(x7£7ﬂ) — (x()?"')xqaa_:()w"vi‘qayo_g(]a"'ayq—l_gq—l)-

We fix two lists of subscripts (possibly empty) i1 < -+ <4, < gand j; < - - < j, <gq
such that the signs of i; — j1,...,4, — j, are the same ; if j,m < ¢, one has i, = j
and ji = m for some subscript k. We consider also the submanifold

Ve — xatl o xatl ¢ R(2nt1)dy
m

defined as follows: V24P is the set of those elements

(ao,...,aq7&07...7&q,0,...,O)
such that
e we have the equalities a,, = a; and a; = ap;
e the elements of {ao,...,a,—1} are pairwise different;

o ay #ajy if (¢,7) # (i, ji) (', j <q, k=1,...,7).
Notice that the number of submanifold having the above properties is finite, moreover
the codimension of V,7:*? is equal to 2n+q d, and is greater or equal to 2n+g¢(d,+1) >
2n + q d.; so the codimension of V,7:*P is greater than the dimension of the domain of
Pf.h-

We shall show that ev, is transversal to VIiiP o Let X £ (fyh,z,Z,uy) be a
point such that ev,(2") € VP and take a vector (X,X,9) which is tangent to the
codomain of ev, at ev,(2"), with X, € T, X, X3, € T5, X (k=0,...,q) and Y € R
(k=0,...,¢ — 1). We have to prove that there exist ¢ € I'yy/(X), n € C"(X,R%),
£e€T,X,E€TsX, v €Ty,U (for | =0,...,m —1) and a vector ¢ in the tangent
space to VL"P at ev,(2") such that

(8) (X,%,9) = d(ev,)(2) - (6.1, & v) +C.
We shall prove this relation with £ = 0 and v = 0. We denote by
Oéo,...,O{q7@0,...,&q,ﬂo,...,o,...,o

the components of (.

Among the 2¢ + 2 first equations in (8), the ones corresponding to subscripts
different from j, ¢ and p (first ¢ + 1 equations) or m (last ¢ + 1 equations) are trivial
because the corresponding tangent vectors oy, (k # j,4,p) and ai (k # m) can be
arbitrarily chosen. Thus we focus on the following four equations

(9) Oéj+Aj:x]', az+A1:f£u Oép+Ap:$p, O_ém‘i’Am‘i’gm:%m

Here A; (vesp. 4;),1=0,... ,q, denotes the derivative of z (resp. ;) with respect
to A evaluated at A = 0 while ; is defined recursively as

(10) & =¢, f_k+1:d<,0¥wk(fk)'§_k, k=0,....2n—1.
12
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Notice also that, as ¢ is a tangent vector to W7'*?, necessarily, a; = a, and aj = @yy,.
As we are under C; configuration, we can apply the preliminary lemma 8, thus we
can find a vector field ¢ such that A; = 0 while A, is equal to an arbitrary tangent
vector in T, X (notice that we cannot guarantee that A; = 0 because we do not
know the position of j with respect to ¢ and p). Taking into account that «, = «;
and &,, = «a;, the equations (9) then rewrite

(11) a; +A; = X5, o; = Xy, a; +Ap =X, @+ A+ &m =X,

a solution to system (11) is then

=%, A=X-X, q=%X-4;, &i=Xn-An-X+4;

Notice that, once A, has been chosen, A; and A,, are fixed (they depend on X, — %),
moreover ¢ can be chosen in such a way that &,, is equal to an arbitrary tangent
vector.

As for the last 2¢g equations, they can be written

(12) o — Mo — Xo = Do, RN Ng—1 — Ng—1 = Xq-1 = Vg1

where G = dh(z) - €, e = n(zx), and 7, = (@) (k = 0,...,q — 1). We regard
this system as a linear system. As Z,, = x; is the only equality between the x}’s

and the Zj’s, we can consider that the unknowns for this system are ng,...,n,—1 and
70, - - -, flg—1; the matrix of this system then writes
(A | -1 d, T B)

here 1,4, denotes the gd, dimensional identity matrix while B is a d, X d, block
matrix which is a strictly upper or strictly lower triangular matrix. Thus I, 4, — B is
an upper or lower-triangular block matrix, the elements of the diagonal being equal
to the dy x d, identity matrix, hence —I;q4, + B is non singular, which proves that
system (12) admits a solution.

This proves that ev, is transversal to V,2"P; we achieve the proof of Proposition 9
as the one of Proposition 5.

4.4. The triplet (x,Z,us2,) is under one configuration C4. We examine
now the case of C4 configuration, in this case, the assumption d,, > d,, 41 is no more
sufficient.

ProprosITION 10. Assume that d, = 0 and dy > 1, or d, > 0 and dy, > d, + 2
(the number of observations is greater than the number of controls plus one). Denote
by €y the set of pairs (f,h) € Ty(X) x C®(X,RP) such that @%’h(aj,umﬂ) #
@f}’h(a’:,wnﬂ) whenever the triplet (x,Z,us,) (with x # Z) is in configuration Cy.
Then 64 contains a residual for the C” topology.

Proof of Proposition 10. In the sequel, we shall say that the lists Lo, and Loy,
are under C) configuration if they are under C,4 configuration but not under C/
configuration. We shall consider these two subcases separately.

Configuration C}. In this case there exist subscripts 0 < i < p < 2n and 0 <
j < m < 2n such that z; = z, and ; = Z,,; moreover there exists a subscripts
ked{i,...,p—1}U{j,...,m — 1} such that uy # u,_1. Without loss of generality,
we can assume that m > p.

13
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565 We choose four subscripts 0 <i < p <2nand 0 < j <m < 2n (m > p), as well
566 as a subscript ko € {,...,p— 1} U{j,...,m — 1}. We consider the representation p
567 defined on 47 (a) x C"(X,R%) through the mapping py.p, as
L P X xug ) = XM X R
568

(x7j7u7’m) — ($07"'axm7i‘07"'ajmay0_g07"'aym71_g'mfl)-
569 Together with p, we consider the submanifold

570 Zih C X X R

571 defined as the set of those elements

572 (agy .-y Qm, oy -+« Gy, 0,...,0)
3 such that
4 e we have the equalities a; = a, and a; = am; -
5 e the above equalities are the only ones between the elements of L, U L, .

6 Notice first that the codimension of Z;:f’n is equal to 2n + md, and is greater than
7 2n + md, which is greater than the dimension of the domain of py .

8 We shall show that ev, is transversal to Z;ﬂl Let 2 2 (f, h,z,Z,um) be a
579 point such that ev,(Z") € Z;fn and take a tangent vector (X, X,9)) with X, € T, X,

550 X € T, X (K =0,...,m), and Y € R% (k = 0,...,m —1). We have to prove
581 that there exist ¢ € I'y(X), n € C"(X,R%), £ € T, X, £ € Tz X, vy, € T, U (for
582 j=0,...,m—1) and a vector ¢ in the tangent space to Z;7 at ev,(2") such that

583 (13) (%,.’%,2]) :d(evp)(f,h,x,i,uﬂ)~(¢,n,§,§,1/)+g.
581 We shall prove this relation with £ =0, £ = 0 and v = 0. We denote by
585 QQy ey Oy OOy - ooy Oy, 0,0

586 the components of (; notice that, as  is a tangent vector to Z'P we have a; = oy

gymo
587  and &; = Q.
588 To prove that Equation (13) admits a solution, the reasoning is analogous to the
589 one made in the proofs of the previous propositions but here, we have to apply twice
500 Lemma 8. Hereafter, given a vector field ¢ we denote by xf"¢, the sequence defined
591 recursively as follows
563 zp? = o, iy = oM@ ?)

594  where @?M denotes the flow related to the vector field f(-,u;) + Ap. According to
595 Lemma 8, there exist a vector field ¢y such that the derivatives of xf"‘bo, :E;"d’o and
506 zhn%0 with respect to A are all zero while the derivative of :v;"‘bo can be arbitrarily
597 chosen. As there exists ko such that uy, # u,—1, we can also apply this lemma by
598 replacing up—1 by ug, in the lemma. For example, if j < kg < m, and, assuming
599  without loss of generality, that kg is the greatest subscript less than m such that
600 Uk, 7# up—1, we deduce from Lemma 8 that there exists a vector field ¢ such that the

’¢1, x?m and f;"d’l with respect to A are all zero while the derivative

14
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of 7!y can be arbitrarily chosen. Noticing that

o oy if ko=m—1,
P HPL

Tm™ = Up—1 (f/\,¢1) if ko <m—1:
Pm—ko)T\Lko o <m—1;

we see that the derivative of ):®1 with respect to A can be arbitrarily chosen.
We chose now the vector field ¢ € I'y (X)) as follows
® ¢(- up—1) = ¢o and (-, uk,) = é1;
o (-, up) =0if up & {up—1,Up,} -
Clearly the derivatives of mf"d’ and 50;"(75 with respect to A are zero while the derivatives
of x;‘*d) and z¥ can be arbitrarily chosen.
As in the previous configurations, as regard the first 2m + 2 equations in (13), we
have to consider only the four following ones

(14) Ozi—i-Ai:xi, ap—i—Ap:%p, 64]+A] :'%jv Oém—i-zim:%m

where the Ay’s (resp. the A;’s) denote the derivatives of the x2’¢ (resp. of the gfzd’)

with respect to \; so we have A; = 0 and Aj = 0. Notice also that, from the definition
of Z;7,, it follows that o; = o, and &; = ay,. Taking into account these equalities,

the solution to the equations (14) is then
Oéi:xi, Ap:%p—%j, @j:%j’ Amzim—.%j.

As regard the last m equalities in (13), the proof is the same as the one of
Proposition 9: the two lists L,,_1 and L,,_; are disjoint and the elements of L., 1
are pairwise distinct, so one can find a function n € C*°(X, R%) such that n(z;) =0

for k = 0,...,m — 1 while the values of n at Z (kK = 0,...,m — 1) can be chosen
arbitrarily.
Configuration Cj. In this case, we have u; = ... up_1 = u; = ...Up_1; the

equalities z; = x, and Z; = Ty, then imply that the trajectories of the vector field
f(-,up—1) are periodic.

We choose some subscripts 0 < ¢ < p < 2n and 0 < 57 < m < 2n, without loss
of generality, we assume that m > p. We consider first t representation p defined on
4 (a) x C"(X,R) through the mapping py  defined as

. (2) m * m-+1 m-+1 md
pru: X xUR oy xR — X x X Z< R %
= P
(x,x,um,t) — ('/I"Oa"wxpflv@t 1(mi)amp+17"'7xma
Zos -3 Tm> Y0 — Y0, - -5 Ym—1 _ym—l)'

where U (’Z% 5m) is the submanifold of U™ defined as the set of those u, such that
Up= = Uy | =Uj == Uy 1.

Together with p, we consider the submanifold Z;’fn defined as in the previous
case. We shall prove that ev, is transversal to Z;fn Let 2~ £ (f, h,z,Z,um,t) be a
point such that ev, (%) € Z;gl and take a tangent vector (X, X,9)) with X, € T, X,
ke {0,....m}~{p}), X, € T, X, X,€ Tz, X, k=0,...,mand Q) € R, k =
0,...,m — 1. Notice that ev,(2") € Z;fn implies that x; and Z; belong to periodic
trajectories of the vector field f(-, up—1).

We have to prove that there exist ¢ € I'y(X), n € C"(X,R%), ¢ € T, X,

£€TzX, v € T, U, 7 € R, and a vector ¢ in the tangent space to Wb at ev,(2))
15
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such that

(15) (X, X.9) = d(ev,)(2) - (61,6, v.7) +C.

We shall prove this relation with v = 0 and & = 0. We denote by
QQy e vy Oy QO - e s Oy, Oy 00, 0

the components of (; notice that, as { is a tangent vector to Z;:ﬁl, we have o = o
and o = Q.

As in the previous cases, in order to prove that the first 2m + 2 equations in (15)
can be satisfied, it is sufficient to focus our attention to the four following equations

o + &+ A =X, ap + &+ Ap + 7f (i, up—1) = Xp,
@j—i-;lj:f%j, @m+f‘im:£m7

the notations are the same as in the previous cases except for A, and &p:

d upfl,)\ Ii w s
Ay = %T() ) §p =do "7 (@) - &

A=0

We can apply Lemma 8: there exists ¢ such that flj = 0 while A,, can be arbitrarily
chosen. Here we cannot ensure that we also have A, = A, = 0 because z; could
belong to the periodic trajectory of f(-,u,—1) passing through z;, so we first choose
a; = ij and A, = X,, — .';Ej. Now as ¢,” ' (z;) = x;, we have t = gmy where
denotes the prime period of the periodic trajectory of f(-,u,—1) passing through z;;
thus de, " (z;) = (dex2 " (2;))?. As before, due to the fact that f belongs to 4 (a),
the linear mapping

(&, 7) = ((deh, (22))" = 1d) - & + 7f (23, v)
is onto. Thus we can find §; and 7 such that
((dehy (@) =1d) - & + Tf (i, v) = Xp = Xi + Ay — A;.

we take also a; = X; — A;, with these choices of oy, &; and 7, we see that the two first
equations are also satisfied.

As regards the last m equations in (15), we argue as in the previous case.

At this point, the application of the Transversal Density Theorem, shows that %,
the set of pairs (f, ) in Y (a) x C"(X,R%) such that py is transversal to the finite

set of submanifolds Z;f;l, is a residual. Now, we have to compute the codimension of

Z;fm it is equal to 2n+md, and is greater or equal to 2n+m d, +m ; this codimension
is greater than the dimension of the domain of psj if m > 2 or d, > d,, + 2. In this
case, to be transversal to Z;fn means non membership and we can conclude the proof
of Proposition 10 as for the previous propositions. If m =1, d, = 0 and d, > 1, ev, is
still transversal to submanifold Z;fn but codim(Zg”l1 ) is then equal to the dimension
of the domain of psj, so we need an additional argument to conclude in this case.
Hereafter, we shall see that, in this particular case, although the codimension of Zg:ll is
equal to the dimension of the domain of p; j, transversality implies non membership.
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Case where m =1, d,, =0 and d, > 1. Take (f,h) € %}, then p;, is transversal
to W&’ll. Assume that z¢ # Z( are two points of X such that
e there exists some ¢ > 0 such that ¢;(z0) = x0, ¥$(To) = Zo;
[ h(l‘o) = h(.fo); _
then there exist & € T,, X, & € Tz, X, 7 € R, ap and &9 in the tangent spaces to
X at xp and xg such that the following equations are satisfied

ag+ & = Xo, ag+dpi(zo) - &o + 7f (w0, u) = X1,
(16) ao + & = X, ao + dor(Zo) - &0 = X1
dh(z) - & — dh(Zo) - &0 = D

whatever Xo, X1, ¥o, X1 and ) tangent vectors to the appropriate spaces. Clearly
the four first equations in this system are equivalent to the two following ones

(dpi(wo) —1d) - &o + 7f (20, u) = X1 — Xo,
(ngT(.i’()) — Id) . éo = :%1 - il .

As 1 is an eigenvalue of the linear mapping dyr (o), clearly the second equation of
this system cannot be satisfied. This implies that if pr(xg) = 9 and @7 (Zo) = Zo,
the point py (0, Zo) cannot belong to Wg”ll , which means that we must have h(zg) #
h(Zp). This achieve the proof of Proposition 10. d

5. The case d,, > 1 and dy = d,, + 1. Counterexample. We shall exhibit
here a simple counterexample which shows that if d, = 2 and d, = 1, then the
conclusion of our main result (Theorem 4) is no more true. That it to say, we exhibit
a pair (fo, ho) such that for every (f, h) in some neighborhood of (fo, ho), the related
mapping @é’h is not injective. We recall hereafter, the isotopy theorem [1] which will
be used to prove some optimality of our main result.

THEOREM 11 (Transversal isotopy theorem). Let </, Z andY be C™1 manifolds
(r>1),p: 9 — CHYZ)Y) a C"t representation, W C Y a submanifold and
ag € & a point. For a € o let W, = p,1(W). Assume that

1. W is closed in'Y;

2. Z is compact and C"3;

3. Pay s transversal to W.
Then there is an open neighborhood N of ag in < such that, for a € N, there is a C”
diffeomorphism F, : Z — Z such that Fo(Wg,) = W, and Fy, is C isotopic to the
identity.

We shall apply the transversal isotopy theorem 11 to the following situation: we

take

o o =Ty(X)xC®(X,R%), where X and U are compact manifolds, dim U =

dy, >0 with dy = d, +1;

e Z7=X2xUx8';

oY =X3xR%W.
We consider also a representation p which is slightly different from the one which has
been used in the proof of Proposition 10; we define this representation through p¢
as

Pfh - X2xUxSt — X3><Rdy
(2.2,u,5)  — (z,00(@), ¢, (@), hlz) — h(@))
17
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here v € C*°(SY, R).
The submanifold W c X3 x R% is then defined as

W:{(21,227213,0) €X3 XRdy ‘ 21 222:223}.

Consider a pair (fo, ho) such that pg, pn, is transversal to W and such that Wy, 5,
is nonempty. Applying the Transversal isotopy theorem 11, we deduce that there
exists a neighborhood N of (fo, ho) such that if (f,h) € N, Wy = F(Wy, p,) with F
a diffeomorphism from Z to Z. Thus W;} is nonempty; notice that we can assume
that p;j, is transversal to W for every pair (f,h) € N, this is a direct consequence of
the Openness of Transversal Intersection Theorem [1] applied to this situation with
K =Z. Let (z,Z,u, s) be an element of Wy j, we shall show that « # Z: arguing by
contradiction, we shall see that if we have the equality + = z, then py; cannot be
transversal to W at (x,Z,u, s). We introduce some notations

A = dyiy(z), A =dgl ) (2),

_ 9ph(x) 5 _ 095(@)
B= o | b= v 7
C = dh(a), C = dn(z).

Consider now the following “matrix” M

A-1d 0 B 0
M=\ —-1Id A B f(z,u)
C -C 0 0

Arguing as in the proof of Proposition 10, we see that the transversality of ps; to
W at (z,Z,u,s) is equivalent to the invertibility of the square matrix M. Since we

assume that £ = z, we have C' = C, which implies that the determinant of M is equal
to the one of the following matrix M':

Now as f(z,u) belongs to the kernels of A —1Id and A —1Id (because @5 1)(@) = ), the

vector (f(z,u),0,0, O)T belongs to the kernel of M’ which implies that the determinant
of M’ is zero : we have reached a contradiction. As a consequence, if (f,h) € N, there
exists x # T, u and s such that h(xz) = h(Z); moreover, the trajectory of f(-, u) passing
through z is periodic and Z belongs to this trajectory, so we have ¢{r.(x) = = and
Pur(@) =7

We give now an explicit example of a pair (fo, ho) such that py, , is transversal
to W. In what follows, for the sake of simplicity and without loss of generality, we
assume that T = 27. The manifold X will be equal to the circle S* and the set of
controls U will also be equal to the circle S. We denote by u; and ug (resp. s; and
s9) the components of u (resp. of s) and we consider the following vector field:

folz,u) =Ry -z +u; Re - x
18
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with Ry and Rs the following skew-symmetric matrices

(0 -1 (0 =P
(D) ()
with 8 € (0,1).

Mapping hgq is defined by:

ho: X — R?
x — (x1,7122),

while function ~y is defined by:

~v(s) = <; + i51> 27 .

The set Wiy po- Let @ = (z1,22) and T = (Z1,Z2) be two points in S*, and
u = (u1,uz) € S a control and s € S'; assume that py, p, (2, Z,u,s) € W. Letting
z =1 +ixg € C, the equality i (z) = z is equivalent to e?1+"18)27 2 — 2 which is
equivalent to 14+ u18 = k with k € Z. Now, as § € (0,1), we have |u1 8| < 1 and so
the equality u16 =k — 1 € Z is possible if and only if u; = 0. From the definition of
h, we can easily see that the equality h(z) = h(Z) amounts to x = Z or 1 = 71 = 0.
If x = z, as u; = 0, the equality gafy‘(s)(;i) = z is possible only if v(s) € Z, but from the
definition of v, we have v(s) € [-3/4,—1/4]. Thus z # z and z1 = Z; = 0, so, taking
into account that u; = 0, the equality 4,0:(5)(;%) = x is equivalent to the following ones

—sin(vy(s))zZ2 = 0, cos(Y(s))Za = g = — 2.
These two equalities are true iff v(s) = (2k 4+ 1)7 with k& € Z, which is equivalent to
s1 =4k + 4, as |s1]| < 1, this is possible only if s = 0.
In conclusion, Wy, 5, is the set consisting of the following eight elements

Wfo,ho = {((0’ 50)7 (07 _50)’ (07 El)’ (Oa 52))} .

where g, 1,692 € {*1, 1}
The transversality of pfy,ne- Take (z,Z,u,s) € X x X x U x S* an element such
that ps, n,(z,Z,u,s) belongs to W. Thus we have

(17) xTr = (0,80), T = (0, —60), u = (0761), s = (0,82)

with g; € {—1,1} (i = 0,1,2). Let (X1, X2,X3,2) be a tangent vector to X3 x R? at
Pfoho (T, Z,u, s). Thus, X1, X2 and X3 are tangent to S* at (0,£0) while 9) is a vector
in R%. We write a tangent vector to submanifold W as ¢ = (, a, a, 0) where « is a
tangent vector to S' at (0,e0). We have to prove that there exists & (resp. &) in the
tangent space to St at (0,gg) (resp. (0, —¢g)) as well as v a vector in the tangent space
to S at (0,¢1) and o a vector tangent to S at s such that the following equalities

are satisfied

(18) X1=¢(+a,
(19) %2:d<p%(z)-§+as’§7u(x)~u+a,
LN O (s
(20) Xy = dgl,) (@) - €+ %(gqj(m>~v+ 2o ta,
(21) 9 =dh(z)- & —dh(z)-£.

19
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We examine first the fourth equation (21), taking into account that & = (&1,0)"
and ¢ = (él,o)T, it writes

(0 (6)- (5 9 (6)-(5)

Clearly, the solution of this equation is

:502]24-2]1 —:502]2—2]1'

(22) b =S b=

Taking into account that X; = (f{g70)T and o = (a1,0)", the solution of the first
equation (18) is then given by (22) and by the equality

02+
—

Concerning the second equation (19), we notice that de¥(x) = Id and that

Opit(x)  [(—2mBey O
ou 0 0

(23) a1 = X} —

so the solution of equation (19) is given by (22), (23) and by

}:1 _ xl
(24) v =——2_—1,
27 ﬂ €0
So far, the values of £, £ and v are fixed, therefore showing that equation (20)
comes down showing that the third term in the right-hand member of (20) can take
arbitrary value. This third term writes

9+ (s) 7T u T €0
s 7~ §Ulf(80'y(s)(x)> =3% o)

obviously, thanks to a suitable choice of oy, this expression can be made equal to an
arbitrary tangent vector X3 of S! at z.
This achieves the proof of the transversality of pg, n, to W.

Appendix A. Proof of Theorem 7. The proof of the Kupka-Smale theorem
can obviously be found in the original papers [15, 16] and [17] but the reader can also
find a very detailed proof of this result in [1]. For the proof of the generalization of
this theorem, we shall follow closely the arguments given in this book.

A.1. The different sets in the theorem of Kupka-Smale.
G1 Set ¥ is the set of vector fields whose critical points are elementary. A point x
is critical for the vector field f if f(z) = 0, it is elementary if the differential

do(z) : T, X — T, X

has no complex eigenvalue of modulus 1 for every ¢t # 0.

GA Let a be a positive number, set ¥A(a) is the set of vector fields f such that if O
is a closed orbit of f with period 0 < 7 < a, then this period is transversal,
that is to say, the eigenvalue 1 of the differential

do,(z) : T, X — T, X

has an algebraic multiplicity equal to 1 (notice that, in this case, f(x) is an
eigenvector of dp,(x)).

20
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G3/2 Set ¥55(a) is defined as %3/5(a) £ 9 NG A(a).

G2 Set %(a) is the set of vector fields included in ¢ and whose periods 0 < 7 < a
of closed orbits are elementary. A period is elementary if the modulus of
eigenvalues of do,(x) that are distinct from 1, are different from 1.

A consequence of the Kupka-Smale theorem is that all of these sets are open and
dense for the C" topology in I'(X).

We recall that I'y(X) denotes the set of parametrized vector fields over X; we
define the sets ¢, 4{, ... as the sets of vector fields belonging to one of the above
categories for every u € U. For instance we define 4 as the set of parametrized vector
fields f such that f(-,u) € 4 for every u € U. Notice that every vector field f € I'(X)
can be regarded as a parametrized vector field, so we can write I'(X) C I'y(X),
G C Y, ete.

The tangent bundle T(X x U) is diffeomorphic to the cartesian product TX x TU,
so a vector field f defined on X x U can be regarded as a pair (f1, f2) of two vector
fields defined respectively on X and U. We have then the following result.

LEMMA 12. The mapping 11 defined as

I: T(XxU) — Ty(X)
(fi,f2) — fi

is open for the C" topology (for any r > 0).

Proof. The set C>°(X x U, TX x TU) is diffeomorphic to C®(X x U, TX) x
C>(X xU,TU) (see [12, Prop. 3.6]); we deduce easily that I'(X x U) is diffeomorphic
to 'y (X) xT'x (U). On the other hand the first projection map from I'yy (X) x I'x (U)
to 'y (X) is an open and continuous mapping, it follows that II is continuous and open
as a composite mapping of an open and continuous mapping with a diffeomorphism.0

As a consequence of this lemma, the direct image of an open and dense subset of
I'(X x U) is an open and dense subset of I'y(X).

We recall also that a mapping f : E — F between topological spaces is called
quasi-open if, for every open subset O C E, f(O) has a non empty interior.

We shall need also, the following lemma.

LEMMA 13. The mapping ® defined as
» Ty(X)xU — TI(X)
(fruw)  — fu
is continuous. Here f, denotes the vector field defined on X by f.(z) = f(x,u).

A.2. The set 4V is open and dense in I'yy(X). The proof of the Kupka-
Smale theorem 6 as made in [1] needs seven steps. Beforehand, one proves that ¢ is
open and dense for the C" topology. The proof follows closely the one provided in [1,
page 98ff], in this book, the authors introduce a submanifold W of the 1-jet bundles
JY(X, TX) as follows. Consider a chart (P, ) of X, to this chart we relate, as usual,
the chart (Q, ) of TX, where Q = 7~ 1(P) (here 7 : TX — X denotes the canonical
projection) and ¢ (v) = (w(v),v) with v the local expression of v € TX in the chart
(P, ). Define then the chart 7p g as

g JYP,Q) — P xQ xL(R",R")
o (2,90 fop (), A)

where P' = ¢(P), Q' = ¢¥(Q) and z is the source of the 1-jet 0. The submanifold
W is defined as the set of 1-jets such that 1 o f o o~ !(z) = 0 and A has at least
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one eigenvalue with real part zero (clearly, this definition does not depend on the
particular choice of charts). To W, one relates the subset M of L(R™, R™) of linear
maps having an eigenvalue with real part zero. In [1], the proof of the density of
@1(X) relies on the fact that M is closed and is a finite union of submanifolds of
codimension > 1, which implies that codim W > n + 1. In our case, we consider the
same 1-jet bundle but we replace X by X x U, so we can see A as a linear map from
R"*t9e to R™"t% we can identify A with its matrix written in the canonical basis
of R*tdv and we write A as a block matrix A = (ﬁ;i ‘2;) with 417 € R™*™ and
Az € R% x R%. We modify the definition of W as follows: W is the set of 1-jets
such that A;; has at least one eigenvalue with real part zero. In a similar way as
above, we can prove that W has a codimension > n + d,, + 1. Consider now the set
4/ (X xU) of vector fields f defined on X x U such that the 1-jet of f does not belong
to W; arguing as in [1], the fact that codim W > n+d,, +1, proves that the set is open
and dense. As II is an open mapping (c¢f Lemma 12), and as II(4/(X x U)) = 4V,
we have proved that 4U is also open and dense.

A.3. The seven steps of the proof.

Step 1: for every a > 0, the set 47 (a) is open . First notice that 4V (a) # @
because % (a) C 9 (a); moreover, we shall use the fact that %(a) is open (proven
in [1]).

Let f € 97 (a) and u € U be fixed, denote by £, the vector fields in T'(X) defined
by fu(z) = f(x,u); f, belongs to %(a), hence there exists .4;, a neighborhood of f, in
I'(X) with A, C %(a). As the mapping @ is continuous (¢f Lemma 13), there exists
.V aneighborhood of f in T'yy(X) and ¥, neighborhood of u such that ®(g,v) € .4,
for every (g,v) € A,V x ¥,. The neighborhoods ¥, cover U, as U is compact, there
exists a finite subcover: U C Uf\;l Vsy let SV = ﬂf\le NV, AU is a neighborhood
of fin Ty (X). Let (g,v) € #Y x U, there exists 1 <4 < N such that v € %,,, on
the other hand g € AV C AU, therefore ®(g,v) = g, belongs to %(a).

In conclusion, every element g of .4V is such that g, € %/(a) for every v in U,
therefore f € 4V C 4Y(a), we have showed that 4 (a) is open.

Step 2: for every a > 0, the set %3% is open . The proof is very similar to the
previous one.

Step 3: if f € 9V, there exists a neighborhood N of f with A C 4 and there
exists ag > 0 such that 97 (ag) N AN = AN . . Let f € 4V, for every u € U, f, € %,
so there exists a neighborhood 4, C 4 of f, in %(a) (f, € A C %) and there
exists a,, > 0 such that A4, C %/(a,). As in step 1, as ® is continuous, we construct
a family of neighborhoods A,V of f in I'yy(X) and a family %, of neighborhoods of
u such that for every (g,v) € AV x ¥, the vector field g, belongs to .4, C % and
No C %(ay,). Notice that, since %Y is open, we can assume that 4,V C 4U.

Due to the compactness of U, we have U C Ufil Vs let

N
,/V:ﬂ%[j, ap = min a,, .
i=1

1<i<N

Let (g,v) € 4V x U,there exists 1 < i < N such that v € ¥,, and we have g € .4 C
AU, therefore ®(g,v) = g, € Ay, and Ay, C %a(ay,), but, clearly, % (a.,) C % (ao)
since ag < a,,. Thus, we have showed that

feNcaVng? ),

which achieves the proof.
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Step 4: if ¥ C 4V is open and Y (a)N A is dense in A then %3[;2(% a)NAN s
dense in A .. This step is based on lemmas 31.7 and 31.8 in [1, p. 102]. Lemma 30.7
asserts that if = is a point located on a closed orbit of a vector field f € T'(X), given
a tangent vector v € T, X, there exists a vector field g € I'(X) such that, denoting
by 7 the prime period of the closed trajectory and by ¢} the flow related to f + Ag,

we have
dpp ()| _
R P
As pointed out in section 4.2, Lemma 31.7 is still true for parametrized vector fields.
Moreover, Lemma 31.8 can be proved in exactly the same way for parametrized vec-
tor fields, the representation p being modified as follows (we define it through the
evaluation map):

ev,: T'y(X)xUxX xRl — XxRixX

(25) (fﬂj,,(t,t) — (1’#;,@?(%))

Finally, we can prove that ev, is transverse to A on % (a) x X x U x [0,2 +¢) in
the same way as for the proof written in [1] because X x U is compact; we can then
conclude exactly as in [1].

Step 5: if ¥ C 97 is open and if %372(@ NN is dense in N then 47 (a) NN
is dense in A .. In [1], the proof of this step is needs four lemmas. We shall briefly
indicate how they can be extended to the case of parametrized vector fields. In the
sequel, we shall identify the tangent bundle T(X x U) with the product TX x TU.
Take a parametrized vector field, f € T'y(X) and consider the related vector field
f defined on X x U as fi(z,u) = f(x,u) and fo(z,u) = 0. Assume that = € X
belongs to a periodic trajectory, denoted by ~, of f(-,u), then (z,u) belongs to the
periodic trajectory 7 £ v x {u} of f. We can apply the tangent perturbation lemma
(Lemma 32.4 in [1]), to f and 4: we then obtain a vector field § defined on X x U
that is zero on 4 and zero outside some neighborhood of 4. Moreover if we denote by
@* the flow of f + Aj, we have %{dcpf(:c, u)}‘ = A where A is endomorphism of

A=0
T,X x T,U that vanishes at (f(z,u),0)T. In particular, if we choose A such that its
second component is zero, then looking at the proof of Lemma 32.4, we see that, go,
the second component of g, is zero. This lemma is therefore still valid for parametrized
vector fields.

Consider now a parametrized vector field f € %%(a) and assume that xy be a
point on a periodic trajectory v of f(-,up), if u is closed to ug, then the vector field
f(-,u) is closed to f(-,up). Invoking Lemma 24.4 in [1], we know that there exists
some neighborhood of z such that the vector field f(-,u) admits a unique periodic
trajectory in this neighborhood if u is closed enough to ug. We can be more specific
by using the implicit function theorem. Take a submanifold Y C X of codimension
1, passing through zg and which intersects v transversally at zo. We consider the
Poincaré map P, related to the vector field f(-,up), defined in a neighborhood of xg
in Y. This map is also defined for u closed enough to wug, that is to say, there exists
neighborhoods Ny C Y of 2y in Y and Ny of wg such that if (z,u) € N1 x Na, there
exists a first time 7, > 0 such that ¢ (z,u) € Ni. Now, P(x¢,ug) = x¢ and we can
invoke the implicit function theorem to prove the existence of z, and 7, defined for
u in some neighborhood of wg included in Ny and such that P(x,,u) = x, (as well
as @Y (z,) = x,). To see why we can use this theorem, we use the assumption that
fe %3% (a). We know that 1 is an eigenvalue of de?o (z0) with multiplicity one and
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that the other eigenvalues of dp?o (x0) are different from 1. The vector space Ty, X
can then be written as T,, X = Rf(zo,u0) ® E where E is the n — 1 dimensional
subspace of T,, X generated by the eigenvectors of dcp’jgo (o) that are different from
1. If we choose the submanifold Y such as its tangent space at x( is equal to E, we
then see that the eigenvalues of the differential of P with respect to the first variable
x are the n—1 eigenvalues (counted with multiplicities) of depzo. (o) that are different
from 1. In conclusion, there exists z, € X, 7, > 0 defined in a neighborhood of wy,
which depend smoothly on u and which satisfy ¢} (z.,u) = .
Now the M-structure lemma (Lemma 31.10 in [1]) can be generalized as follows.

LEMMA 14. Let E be a finite dimensional Banach space. Consider u — L, a
smooth mapping defined from a neighborhood N of ug € U to L(E,E), and u +— v,
a smooth mapping défined from N to E ~\ {0}. Assume that L, is transversal for vy,
(i.e. Lyv, = vy, and the algebraic multiplicity of the eigenvalue 1 is equal to 1). Then
for every uw € N, there exists A, € L(E, E) such that

1. Ayv, =0;
2. for every mapping £ : I xU — L(E, E) (I denotes the interval (0,b),b > 0)
satisfying the three conditions

(a‘) z(ovu) = Ly;
0) L Zsu)| = Au

(c) for every s e IO, Z(s,u) is transversal for v,
there exists € > 0 and N' C N (with N’ open neighborhood of ug) such that £ (s, u)
is elementary for v, for every (s,u) € (0,e) x N’ (i.e. ZL(s,u) is transversal for vy,
and has no complez eigenvalue of modulus 1, except 1). Moreover u — A, is smooth.

We sketch a proof of this lemma.
Proof. We consider the set, denoted by W, defined as follows

W ={(B,u) € L(E,E)x N | Bu, = v, }.

It is not difficult to see that W is a submanifold of L(E, E) x N of codimension dim E
(the mapping (B, u) — Bv, — v, is a submersion).

Then, consider M the subset of L(E, E) defined as in the proof of Lemma 31.10
in [1]. Recall that M is a finite union of submanifolds of L(E, E) (M = Ule M;),
hence, M £ M x N is a finite union of submanifolds of L(E, E) x N (M = Ule M; x
N); moreover every M; x N has a codimension > 1 in W.

Denoting by X, the point (L., u) of W, there exists a tangent vector £, € Tx, W
but &, ¢ Tx, M; x N (i = 1,...,k); moreover &, depends smoothly on w. This is
possible because each M; x N has a codimension > 1 in W. The tangent vector &,
may be written &, = (A,,v), where A, can be regarded as an element of L(E, FE)
(and v € T,U). Now, due to the property of A,, we can conclude that there exist
€ > 0 such that Z(s,u) ¢ M x N assoon as 0 < s < €. d

Returning to the vector field f € %sUQ (a), we argue now as in Lemma 31.12, in
order to prove the existence of a neighborhood N; of v, and a neighborhood N3 of ug
such that, for every u € Na, the vector field f(-,u) admits a unique periodic trajectory
~u located in Ny. Moreover, there exists a parametrized vector field g € I'y (X)) such
that g(~,u)|% =0, g(,u)|x\n, =0, g(-,u) =0 for u € U\ N2, and v, is an elementary
periodic orbit for f(-,u) + Ag(-,u) for sufficiently small A € R*. We can find such a
vector field g for every periodic trajectory of f(-,ug) (the number of these trajectories
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is finite), and so, we can conclude as in lemma 31.13 in [1], that there exists a vector
field g such that the critical elements of f(-,u)+ Ag(+,u) of period < a are exactly the
same as the critical elements of f(-,u) of period < a for every u € No. Moreover the
periodic trajectories of f(-,u) + Ag(-,u) are elementary for u € Nj.

Now, the open neighborhoods N> cover U, which is compact. So there exist a

finite set of elements wuo, ..., us together with neighborhoods NY, ..., N§ of the u;’s,
there exist vector fields go, ..., gs as in the above lemma. Take py, ..., ps a partition
of unity of U subordinated to the covering NY, ..., N and consider the vector field

g = pogo + - + prgs, we claim that f 4+ Ag belong to 4V (a) for every positive A
sufficiently small.

We conclude this step as in [1].

Step 6: If & C 47 is an open set, and 95 (a) N A is dense, then 9¢ (3a) C N
is dense.. This step results trivially from steps 4 and 5.

Step 7: If f € GV, there exists an open neighborhood N of f in 4V such that
GV (a) N A C AN is dense.. From step 3, if f € 94U, there exists ag > 0 and a
neighborhood .4 of f in 4V such that 4 (ag).#" = .#". In particular, this implies

that 4Y (ag).#" is dense in .#". Hence iterating step 5 k times, one has that %U(g—Zao)ﬁ
A is dense in 4. As one can find k such that g—iao > a, we are done.

Appendix B. Proof of Lemma 8.

The derivative of xl’} with respect to A can be written as

d

(26) e

=A,+B,,
A=0
where A, is zero or a sum of terms of the form &7, (J;,), with J;, is an integral that
can be written as

T
(27) 7 = / g1 (97 (25,)) - S0 (5, ), wp1)dor

where the subscripts j;, in A, are less or equal to p — 1 and are such that u;, = up_1;
moreover 55—1 is the mapping defined as

. _Jud ifj=p—1,
Jk d(so;p—lO...o<p;jk+1)(xjk+1) ifjk<p—1.

As for the term By, it is zero or the sum of terms 47 (J7 ), where the J; are
integrals that we write

T
lek = 0 d(pajk (@ijg(xjk)) . ¢(90T]—ko(‘rjk)a Ujk)dO',

with uj, # up—1.

We write the derivative of 27 and, if we are under Cg, Cj or C/; configurations,
the ones of :i? and 7, in the same way; we denote by jjk and jj’»k the integrals
appearing in the derivatives of :ij)‘ and z)),. We shall see that ¢ can be chosen such
that

e the terms B, B;, Bj and B,, are zero;

e all the integrals J;, that occur in the terms A; and A,, are zero;

e all the integrals J;, are zero but the one corresponding to the subscript j; =
p — 1, which can be arbitrarily chosen.
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To this end, the perturbation ¢ that we shall consider will be zero outside some
neighborhood of u,_1; to be more precise, given ¢y a vector field defined on X, it is
possible to find ¢ € I'y(X) such that

® ¢(,up—1) = ¢o;

o for j=0,...,2n, ¢(-,u;) =0 as soon as u; 7 Up_1.
With this choice of ¢, we have B, = 0, and B; = 0 as well as Bj =0, and B,, =0 if
we are under Cz, Cj or C/ configuration.

We split the points x;, (resp. Z;,) that appear under the integrals J;, (resp.
jjk) into two classes: the first class, denoted by &1, contains the points x;, and Z;,
that belong to the trajectory of the vector field f(-,u,_1) passing through x,_; (and
so &y contains the point z,_; itself), the second class, denoted by #,, contains the
points z;, and z; that do not belong to this trajectory. Denote by 77 and % the
union of these trajectories restricted to the interval [0, 7], namely

Ti={p" ()| t€[0,T),z€ &} i=1.2.

The sets .77 and %% being disjoint and compact, let % and % be two open sets
of X such that 7 C % (i = 1,2) and 21 N % = &. In the sequel, we shall
assume that the vector field ¢y is zero when restricted to %; this implies that the
integrals J;, (vesp. J;) such that z;, (resp. Z;,) belongs to & are zero. Denote
by ji,..-,Ja (0 < j1 < --- < j, = p — 1) the subscripts such that z;, belongs to
21 and let t1, ..., 1, be such that zj, = ¢,;” " (z,-1) (k =1,...,a). Denote also by
li <--- <l <max(m,j) the subscripts such that z;, belongs to &, and let t/,...,t}
be such that z;, = cp:;z’_l(:rp,l) (k=1,...,b).

Notice that, excepted when j, = j,, we cannot have t;, = 0 since this would imply
that ,_1 = x;, with j, < p — 1, which is not possible under C;-C4 configuration.
Also, all the ¢} (k = 1,...,b) are non zero, because, if there existed a subscript k
such that tj, = 0, then, as w;,, = up_1, we would have Z;, 1 = xp, which implies
that we are under Cy or Cj configuration and that I + 1 = m. Thus we have
Tm—1 = Tp_1, if we are under C} configuration this implies (m —1) —(p—1) =i —j
and so m — p =i — j, which contradicts the definition of the Cq configuration. If we
are under Cj configuration, we found a pair (i, j') £ (p—1,m—1) such that z;; = z/
with ¢/ — 5/ = p—m and ¢’ < p, which contradicts the definition of C3 configuration.

The trajectory related to the vector field f(-,u,_1) passing through z,_; may be
periodic or aperiodic, we have to distinguish between these two cases.

The trajectory passing through xp_1 is not periodic. Assume that the trajectory
of the vector field f(-, u,—1) passing through z,_ is not periodic. Taking into account
that, with our notations, ¢(-, up—1) = o, the terms J;, appearing in A, and (possibly)
in A; can also be written as

T—ty
T = gl (z) - / o1 0 o 0 G (2p_1)do .

—tr

In the same way the integrals jlk appearing (possibly) in A,, and flj write

_ T—t),
T = dipy ™ () - / dpir=" o ¢g 0 oy’ (xp-1)do.
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We set
Twin =min({tx | k=1,...,a}U{t}, | k=1,...,b})
Tmax =max({T+tx | k=1,...,a}U{T+1t}, | k=1,...,b})

and we introduce the set T = { ;" " (7p—1) | Tiin <t < Thnax }- For z = 0,7 (2,—1)
in T, we define ¢g(z) as

Po(2) = ult) do "7 (wp) - Xy
where p is a smooth function defined on [Tiin, Tmax] and X, is an arbitrary vector
tangent to X at x,. As the trajectory passing through x,_; is not periodic, ¢g is
unambiguously defined on 7, moreover ¢g extends to a smooth vector field defined on
the whole manifold X (and which is zero on %). With this choice of ¢, the integrals
occurring in A; and A, write

T—ty, Ttk
T = </ T o) d“) Ay () - X, = (/ He d“) Ay () - Xy

—tr tr

while the integrals occurring in the terms Aj and A,, write

B T—t) T+t
T, = ( / w(T — o) da> do ™ (ap) - Xp = ( / (o) da> dep,” ™" (2p) - Xy

—th t,

here all the t;’s are non-zero but t,, and all the t;c’s are non zero. Choose now a
smooth function M defined on [Tinin, Tmax) and such that
e M(T) = M(2T) = --- = M(cT) = 1; here ¢ denotes the integer part of
Tnax /T
o M(T+ty) = M(ty) = M(T+t,) = M(t,) =0,k =1,...,a~1,K =1,....b
where tg,t), #aT, a=1,...,¢
e and M(0) =0;

M
We take now u(t) = d dt(t)

zero except Jp_1 which is equal to X,,.

Point x,_1 is singular.. In this case, we have x,_1 = x,, so necessarily we are
under C; or C, configuration. The vector field ¢q is then chosen such that ¢y is zero
outside an open neighborhood N of z,_1, this neighborhood being chosen so small
that the trajectories of f(-,u,—1) passing through the points x;, (jx # p—1) and Z;,
do not cross . With this choice of ¢y all the integrals J;, and .Jj, are zero but the
one which correspond to ji = p — 1 which is equal to

, with this choice of u, all the integrals J;, and Jj, are

T
Ty = / A" (1) - o(p_1) ds
0

Now dps” ' (zp—1) = e** where A is the differential of f at z,_1; notice that, as
f € 9Y(a), A does not have any purely imaginary eigenvalue (and so is invertible).
Hence we can compute explicitly integral J,_:

Jy1 = AT ™A —1d) - po(xp_1);

as €74 does not admit 1 as an eigenvalue, 74 — Id is invertible, which proves that
Jp—1 can be made equal to any tangent vector of T}, _, thanks to an appropriate
choice of ¢o(xp—1).

1
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The trajectory passing through x,_1 is periodic . We shall show now the same
result in the case when the trajectory passing through x,_; is periodic; in other words,
we assume that the mapping ¢t — cp?”_l(xp,l) is periodic and we denote by g its
prime period. In this case, the function p which appears in the definition of ¢y must
be periodic. Writing T' = gmo + 7 with ¢ € N and 0 < 7 < 7y, we have

T
Tj = /0 dpgr=" 0 ¢o 0 @77, (), )do

qg—1 T

(I+1)mo
/ deplir=t 0 ¢g 0 @y (w5, )do + / dpr= o ¢y 0 @yt (), )do
l

™o qmo

=0
qg—1

o
Aplr 1 (2 (25,)) - / A1 0 g 0 G (2, )do

0
(29) + gl (6 wa)) [ Aot o dno el a5,)do
0

Now the z;,’s in the above integrals are such that z;, = goff}f’l(a:p_l). Notice
that, due to the periodicity of the trajectory passing through z,_1, we can assume
that 0 < ¢, < mo. Writing the x;,’s in terms of z,_1, the above integrals between 0
and my can be re-written as.

To—tk

™o
/ depr=t o ¢g 0y (w5, )do = dep” " (a) - / dpir=1 o ¢ 0 0y ) (wp—1)do .
0

—tp
In the same way, the integral between 0 and 7 in (28) can be written

T*tk

/ dpgr 0 ¢y 0 oy, (x5, )do = dp; " (ap) / degr=" 0 go 0 g7, (xp-1)do .
0

—tk

It follows from these considerations and from the equality ;7" (z,-1) = @, that we
can write Jj, under the form

Q
|
—

To—tk
T =S dein o (1) / g1 0 g 0 " (2,)do
1=0 —tk

T—tk
g, (2) - / o1 0 gy 0 0" (2,)do

—tk

To—1tk
= d‘PZf_l (xp) : (Q : / dpgr=t o ¢g o ﬁpil;_l (xp)da

—tg
T—1g
(29) 4+ 59. / dp»=1 o ¢g o gpu”g_l(;vp)da) :
—t5

where we let

g—1
(30) § = dppr='(zp) and Q= Z ot

1=0

We introduce also the following notation, let ¢ € [0, 7] and denote by I; the integral

t
f= / dpr1 0 g 0 " (2,)dor
0
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We now rewrite J;, in terms of integrals I;, from (29), we get
o ifty, <,

(31) Jj, =dey” (xp) - (Qod ™t + 6171 Iy — 671 Ing—y, + 67 Iy,) .
o if 7 f;tk
(32) ij = d(ptu:_l(xp) : (Q o 6_1 : I‘ﬂ'o - 5_1 . Iﬂ'o*tk + 6q_1 : I7To+‘r7tk) )

notice that, in each case, mo — ty and w9 + 7 — t, belong to [0, 7] ;
As regards the integrals jlk (k=1,...,b), analogous computations lead to the same
above formulas (31) and (32).
We choose now ¢y as follows, for z = "7 (x,) with o € [0, 7], we define ¢o(z)
as

(33) $o(2) = dp" " (z) - (o)

where ¥ : R — T, X is a mp-periodic mapping to be determined; notice first that, as
we want ¢g to be C", we must have 9(0) = 9(mp) = 0 as well as 91 (0) = 9O (ry) = 0
forl=1,...,r.

We deal first with the special case 7 = 0, in this case T = gmy and we have
T,_1 = Tp, so the lists L, and L,, must be in the C; or C/ configuration. If we are
under C/; configuration and if there exists a subscript j1 < p—1 such that u;, = up_1
and x;, = ;7 ' (xp_1), then zj, = x;, 41 which is impossible from the definition of
the C} configuration. If there exists a subscript i < m such that w;, = u,_; and
Zy, = 90?,11”1 (zp—1), then we would have Z;, = Z;,41; as the lists L, and L,, are in the
C4 configuration, this implies that [y = m—1 and u;,—1 = u,—1 which is incompatible
with the definition of the C/ configuration. We conclude that the terms A, 1, A;
and A,, are zero in this case and that Ap is equal to @Q - Ir,; so, with our choice of
¢o, we have

T
A, =Q- Y(o)do
0

and it is obviously possible to find a periodic function 9 satisfying the above con-
straints and whose integral over the interval [0, 7] is equal to @' - X,,; clearly this
choice of ¥ is also possible if we are under C; configuration.

We assume now that 7 # 0; we deal first with the case of Cq configuration. We
introduce the following sets.

T,={tg, k=1,...,a—1|t,y = —a7 (mod mp) }.

If Ty = @, we set ag = 0, if not, we denote by aq the largest integer o such that
T, #£0, Ty #3,..., Ty # 2. If oy # 0, we introduce the integers v, = [a7/mo] + 1
(where [z] denotes the integer part of z); so if ¢, € Ty, we have t, = yom9 — @ 7.

It could happen that g is divisible by 7; hereafter, we distinguish two cases.

First we assume that there does not exist any o < ag such that (« + 1)7 = 0
(mod mp); this assumption implies that, for every pair 0 < a < o/ < ap we have
o'T —ar #0 (mod mp). Thus, there exists a mapping V' : R — T, X such that

e V is m-periodic and V(0) =0, VW (0)=0for I =1,...,7 + 1;
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071 V(r) ifmo <27
0-7-V(r) if mp > 27,

—q—1 . .
V(oo + 1)) = {i_q ” Viaor) if Yago < (a0 + 1)7
- V(apT) if om0 > (o + 1)75
o V(mg —tr) =0, V(r —tr) =0 (case t, < 7) or V(mg + 7 — 1) = 0 (case
T <ty)ifty ¢ TiU---UT,, (notice that, for such a t, mg —ty and mo+7 —tx
do no more belong to Ty U --- U Ty, ).

We take then the mapping 9 equal to the derivative of V', with this choice, all the
integrals J;, are zero but J,_; which is equal to X,; this implies that A, is equal to
X, while we have 4; = 0.

Case where T divides my. Assume now that there exists o < o such that («a +
1)7 =0 (mod 7g), then necessarily a = a (if @ < ap, the time ¢, = 0 would belong
to Taq1 ). There exists a subscript ji such that @, = "% (zp,_1) = 77 (2p_1) =
Zp, as Jr < p, from this equality and from the definition of configuration C;, we
deduce that j, = ¢ and that u; = u,—1. Arguing by induction, assume that, for some

oug 7"1 <p—1—1, wehave u; =+ =i, =up_1 and x; = cpi‘;_%(aclp,l),...,xiﬂ =

@_?;O_T)T(xp,l). There exists a subscript ji such that z;, = (p_p(;o_r_l)T(xp,l) =
PN @iar) = Titri1, as above, this equality implies that w; 1,411 = u,_1. We have

' + +r+1, ’ q y p +r+ P

proved that u; = u;41 =--- =up_q1 and that g =p—i—1. Asz, = @?;:;)T(xi), we

re-write A, as follows:

(p—9)T
Ap = /0 dpgr=toggo Saiip;l (xp) do + d@?;:;)T(zp) <A

As (g + 1)7 = 0 (mod 7p), there exists » € N such that (p — )T = ¢'mo, thus the
first term in this new expression of A, can be re-written as

(p—9)T
/ dpgr=t 0 g 0 9% (wp) do = Q' - I,
0

where Q' = Id+6 + ...67~1 We shall see that ¢o can be chosen such that A; =0
and A, equal to any tangent vector field. Hereafter, we call chain of length ¢ (¢ > 2)
a sequence of ¢ pairs ((zj,,,tk,),- -, (¥, ,tk,)) such that
e the points z;, ,...,z; belong to 27 and the subscripts ji, , . .. ji. are pair-
wise distinct;
e the times t,,..., %, belong to T; U---U Ty, U{0} and are such that

k

thy, =tk, +7 (mod mg), ... ,tg, =tg, +(c—1)7 (mod m).
Notice that two chains are either disjoint or equal. The chain
o = (4, 7), (Xi41,27), -, (Tp—1, (g + 1)7))

has a length equal to agy + 1; the lengths of all the other chains are less than ay + 1
because otherwise, we could find at least two equalities between the elements of L.

30

This manuscript is for review purposes only.



1230
1231
1232
1233
1234
1235
1236
1237

1238

1239

1240

1260
1261
1262
1263

1264

1265

1266

1267

1268

We choose vector field ¢y as in the case where (ag + 1)7 # 0 (mod mp), but the
mappings ¥ and V are chosen as follows:
o ¥(t) = V'(t) and V(t) = Vo(t) + tvp where Vy is mp-periodic with Vo(mp) =
Vo(0) = 0; notice that this choice of ¥ implies I; = Vy(¢) + tvo ;
e VJ(0) = V{§(m) = —vp and Vo(k) = Vo(k)(ﬂ'o) =0withk=2,...,r+1;
o vo =0 (Q)7'%y;
o if (@), tky)s- -+, (), tk.)) is a chain of maximal length distinct from the
chain ¢y, we must have

(34) (Qod t+697 1) Iy =61 - Inyyy + 09Iy, =0, ifty, <7,
Qod 1 I, —61- Loty + §a—1 Lrggr—t,, =0, if 7 <tg,.

These equalities can also be written as

Qoo™ +097 1) Iy =671+ (Vo(—t,) + (o — tk, )vo)
+ 09 - (‘/O(T *tks) + (’7' - tks)vo) =0, if tp, <7,
Qod Iy =671 (Vo(—t,) + (mo — ti.)vo)
+ 8971 (Vo(r — tx,) + (o + 7 — tg, )vo = 0, if 7 <ty,.

As ¢ < ap+1, the numbers 7 —tg,, —tg,,..., —tg, — (c—1)7 are pairwise dis-
tinct modulo 7y, the values of Vj at these points can be chosen independently
from each other; this proves that the above equalities can be achieved.
e If ¢, does not belong to a chain, nor is the case for 7 — ¢, so equality (34)
can be satisfied thanks to an appropriate choice of V(—t) and V(7 — t1).
With this choice of ¢, taking into account the formulas (31) and (32), we see that we
have A, = X, and A4; = 0.
If we are under the configurations Ca, Cj or Cj, the sets T, are defined as
follows.

Ta:{tk’k:17~-~,a—1‘tkE—aT (mOde'())}
U{t;c7k:17)b|t;€5_a7 (I'IlOdﬂ'O)}7

the integer o being defined as above. If there does not exist any a < «q such that
(a4 1)7 =0 (mod mp), the reasoning is exactly the same than in the the case of Cq
configuration: choosing ¢q as explained above, we get A; = 0, A,, = 0 and /_1]- =0
while A, can be arbitrarily chosen.

Assume now that there exists o such that («+1)7 =0 (mod 7g), then, as above,
necessarily & = ag. As we are under Ca, Cj or C/ configuration, the definition of
a chain takes into account the elements of La,: we call chain of length ¢ a sequence
((#1,tky )y - - -5 (2¢, tg.))such that

e the points z1, ..., z. belong to # ;
e the times t,,...,t;, belong to T; U---UT,, U{0} and are such that

th, =tp, +7 (mod m), ... ,tk, =tk + (c—1)7 (mod mp);
o if t; = t) (resp. tx = t}), then 2z, = xz;, (resp. 2z, = Z;,); moreover the
subscripts ji (resp. li) related to those z;, (resp. Z;,) are pairwise distinct.

If we are under configuration C/, the only possible chain of length ag + 1 is either

Co = ((zi77—)7 sy (xp—h (a() + 1)7—))3
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or
¢ = ((‘ijﬂ—)a sy (‘im—la (aO + 1)7_)) :

Notice that, from the definition of C configuration, these two chains, ¢y and ¢,
cannot coexist. All the other chains have a length less than ag + 1. To show this
fact, let ((21,tk,), ---, (¢, tk,)) be a chain such that ¢ = ag + 1. All the elements
(21, ..., 2:) belong either to L,_; or to L,,_; (if not, we could find an equality between
an element of L, ; and an element of im_l). If all the z;’s belong to L,_1, then
we have z.41 = z1; from the definition of C) configuration, it follows that 23 = z;
and ze41 = zp. If all the z’s are in Em,l, we obtain that z; = Z;, zcy1 = T, and
Uj = -+ = Um—1 = Up—1. As all the chain but ¢y have a length less than o + 1, we
can conclude, as for Cy configuration, that there exists a function ¥ defining a vector
field ¢y which ensures that A; = 0, Aj =0, and A,, = 0 while Ay, can be arbitrarily
chosen.

We shall see that a chain of length o9 + 1 is not possible under Cq or Cj config-
uration. Assume that we are not under C4 configuration and denote by

o = ((z1,t1), .-+, (Zag+1s tag+1))

a chain with length ag + 1; notice that, from the definition of a chain, we have

(35) Zr1 = @i (2k) = o (2k) -
There exists 0 < a; < ag such that ty, = —a;7 (mod 7g) so, from the definition of a
chain, we have
ty, = —aq7  (mod mp), tk, = —(a1 — 1)1 (mod mp), ...,
thpesn = —(1 —ap)T  (mod 7o)

therefore t;, ,, =0 (mod 7o) and zq,+1 = Tp—1. If a1 < ag, this equality implies
Zar+2 = Tp; if a1 = ag, we have 21 = ¢ (xp-1) = @7 (@p—1) = . Thus,
in chain cp, there exists an element z; equal to x,, this implies that we cannot be
under Cz configuration because, in this case we can neither have z; = z;, because
Jk < pnor z;, = T, = Ty, = Iy, because [, < m. Thus we are under Cj configuration,
reordering the elements of the chain, we can assume that

ty, = —ap7  (mod mo),ty, = —(ao —1)7 (mod mo), ..., tx, ., =0 (mod m).

We have 21 = ¢! (zp-1) = ©7" " (¥p—1) = Tp, 50, as all the subscripts ji are less

than p, we have z; = x,, € Lo, . Let r be the greatest subscript such that z; ..., 2, €
.Z/Qn; from (35), we have 2, = Zm4r—1 and z,41 = x;, for some subscript ji < p, so
Zj, = Tmr; from the definition of configuration Cj this implies that we cannot have
m+r <j,som+r =jand z.41 = x;. Let s be the greatest subscript greatest
than or equal to 7 + 1 such that z,41,...,2s € La,. We have z, = 54,1 and we
claim that z, is the last element of ¢y because if there exist z441 € Egn, then we have
Zoyl = Qa7 7" (2s) = Tspi_r; from the definition of configuration Cj this implies that
s+1—1r=pand zs41 = T,, which contradicts the definition of a chain. The element
zs being the last element of the chain, we have zs = alr' (21) = 2 () = Tp_1,
therefore chain ¢g can be written

0 = (T, —0T),s ..., (Tj—1, — (g — j+m+1)7), (x5, — (g — j+m)7), ..., (zp=1,0))

from which we deduce that u; = -+ = up_1 = Uy, = - -+ = u;_1 which contradicts the
definition of Cj.
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