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Abstract: In this report, we review several formulations of the discrete frictional contact prob-
lem that arises in space and time discretized mechanical systems with unilateral contact and
three-dimensional Coulomb’s friction. Most of these formulations are well–known concepts in the
optimization community, or more generally, in the mathematical programming community. To
cite a few, the discrete frictional contact problem can be formulated as variational inequalities,
generalized or semi–smooth equations, second–order cone complementarity problems, or as opti-
mization problems such as quadratic programming problems over second-order cones. Thanks to
these multiple formulations, various numerical methods emerge naturally for solving the problem.
We review the main numerical techniques that are well-known in the literature and we also propose
new applications of methods such as the fixed point and extra-gradient methods with self-adaptive
step rules for variational inequalities or the proximal point algorithm for generalized equations.
All these numerical techniques are compared over a large set of test examples using performance
profiles. One of the main conclusion is that there is no universal solver. Nevertheless, we are able
to give some hints to choose a solver with respect to the main characteristics of the set of tests

Key-words: Multibody systems, nonsmooth Mechanics, unilateral constraints, Coulomb fric-
tion, impact, numerical methods



Sur la résolution du problème de frottement tridimensionnel.
Formulations and comparaisons des méthodes numériques.

Résumé : Dans ce rapport, plusieurs formulations du problème discret de contact frottant qui apparaît
dans les systèmes mécaniques avec du contact unilatéral et du frottement de Coulomb, sont présentées.
La plupart de ces formulations sont des objets bien connus dans la communauté de l’optimisation, et
plus généralement, de la programmation mathématique. Pour en citer quelques uns, le probléme de
contact frottant peut être formulé comme une inégalité variationnelle, comme une équation non-régulière
ou semi–lisse, comme un problème de complémentarité sur des cônes, ou encore comme des problèmes
d’optimisation par exemple des problèmes quadratiques sur des cônes du second ordre. Grâce à ces
multiples formulations, de nombreuses méthodes numériques de résolutions émergent naturellement. On
détaille dans ce rapport les principales techniques numériques bien connues dans la litérature et nous
proposons aussi des nouvelles méthodes comme les méthodes de point fixe et d’extra-gradient pour les
inégalités variationnelles avec une règle d’adaptation automatique du pas, ainsi que l’application de
l’algorithme du point optimal pour les équations généralisées. Toutes ces techniques sont comparées sur
un grand ensemble de problème–tests en utilisant des profils de performance. Une des conlusions est qu’il
n’existe pas de méthode universelle. Néanmoins, on peut donner des conseils pour choisir une méthode
particulière la mieux adaptée aux caractéristiques d’un problème donné.

Mots-clés : Systèmes multi–corps, Mécanique non régulière, contraintes unilatérales, frottement de
Coulomb, impact, Schémas numériques de résolution
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1 Introduction

More than thirty years after the pioneering work of [Panagiotopoulos, 1975], [Nečas et al., 1980], [Haslinger,
1983, 1984, Haslinger and Panagiotopoulos, 1984], [Del Piero and Maceri, 1983, 1985], [Katona, 1983], [Chaud-
hary and Bathe, 1986], [Jean and Moreau, 1987], [Mitsopoulou and Doudoumis, 1988] on numerically
solving mechanical problems with contact and friction, there are still active research on this subject in
the computational mechanics and applied mathematics communities. This can be explained by the fact
that problems from mechanical systems with unilateral contact and Coulomb friction are difficult to
numerically solve and the mathematical results of convergence of the numerical algorithms are rare and
most of these require rather strong assumptions. In this report, we want to give some insights of the
advantages and weaknesses of standard solvers found in the literature by comparing them on large sets
of examples coming from the simulation of a wide range of mechanical systems. Some new numerical
schemes are also introduced, mainly based on general solvers for variational inequalities and the proximal
point algorithms.

1.1 Problem statement

In this section, we formulate an abstract, algebraic finite–dimensional frictional contact problem. We cast
this problem as a complementarity problem over cones, and discuss the properties of the latter. We end
by presenting some instances with contact and friction phenomenon that fits our problem description.

Abstract problem We want to discuss possible numerical solution procedures for the following three–
dimensional finite–dimensional frictional contact problem and some of its variants. Let nc ∈ IN be the
number of contact points and n ∈ IN the number of degrees of freedom of a discrete mechanical system.

The problem data are: a positive definite matrix M ∈ IRn×n, a vector f ∈ IRn, a matrix H ∈ IRn×m

with m = 3nc, a vector w ∈ IRm and a vector of coefficients of friction µ ∈ IRnc . The unknowns are two
vectors v ∈ IRn, a velocity–like vector and r ∈ IRm, a contact reaction or impulse, solution toMv = Hr + f

K? 3 û ⊥ r ∈ K
with

u := H>v + w

û := u+ g(u),
(1)

where the set K is the cartesian product of Coulomb’s friction cone at each contact, that is

K =
∏

α=1...nc

Kα =
∏

α=1...nc

{rα, ‖rαT‖ 6 µα|rαN |} (2)

and K? is dual cone of K. The function g : IRm → IRm is a nonsmooth function defined as

g(u) = [[µα‖uαT‖, 0, 0]>, α = 1 . . . nc]
>. (3)

Note that the variable u and û do not appear as unknowns since they can be directly obtained from v.

A Second Order Cone Complementarity Problem (SOCCP). From the mathematical pro-
gramming point of view, the problem appears to be a Second Order Cone Complementarity Problem
(SOCCP) [Facchinei and Pang, 2003] which can be generically defined asy = f(x)

K? 3 y ⊥ x ∈ K,
(4)

RR n° 9118
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where K is a second order cone. If the nonlinear part of the problem (1) is neglected (g(u) = 0), the
problem is an associated friction problem with dilatation, and by the way, is a gentle Second Order Cone
Linear Complementarity Problem (SOCLCP) with a positive definite matrix W = H>M−1H (possibly
semi–definite). The assumption of an associated frictional law, i.e, a friction law where the local sliding
velocity is normal to the friction cone differs dramatically from the standard Coulomb friction since it
generates a non–vanishing normal velocity when the system slides. In other terms, the sliding motion
implies the separation of the bodies. When the non-associated character of the friction is taken into
account through g(u), the problem is non monotone and nonsmooth, and therefore is very hard to solve
efficiently. For a given numerical algorithm, it is not so difficult to design mechanical examples to run
the algorithm into troubles [Cadoux, 2009].

Proof of convergence of the numerical algorithms are rare and most of these required strong assump-
tions among the following ones: a) small values of the friction coefficients, b) full rank assumptions and the
symmetry of the Delassus matrix W or c) the assumption that the problem is two-dimensional. Among
these results, we can cite the Czech school where the coefficient of friction is assumed to be bounded
and small. This assumption allows us to use fixed point methods on the convex sub–problems of Tresca
friction (friction threshold that does depend on the normal reaction and then transform the cone into
a semi-cylinder). We can also mention the results from [Pang and Trinkle, 1996, Stewart and Trinkle,
1996, Anitescu and Potra, 1997] where the friction cone is polyhedral (in 2D or by a faceting process).
In that case, if w = 0 or w ∈ im(H>), Lemke’s algorithm is able to solve the problem. The question of
existence of solutions has also been treated in [Klarbring and Pang, 1998, Acary et al., 2011] recalled in
Section 2.3 under similar assumptions but with different techniques. The question of uniqueness remains
a difficult problem in the general case.

Range of applicability. We clearly choose to simplify a lot the general problems of formulating the
contact problems with friction by avoiding including too much side effects that are themselves interesting
but render the study too difficult to carry out in a single report. We choose finite dimensional systems
where the time dependency does not appear explicitly. Nevertheless, we believe that there is a strong
interest to study this problem since it appears to be relatively generic in numerous simulations of systems
with contact and friction. This problem is indeed at the heart of the simulation of mechanical systems
with 3D Coulomb’s friction and unilateral constraints in the following cases:

• It might be the result of the time–discretization by event–capturing time–stepping methods or
event–detecting (event–driven) techniques of dynamical systems with friction; the variables are
homogeneous to pairs velocities/impulses or accelerations/forces.

• It might also be the result of space–discretization (by FEM for instance) of the elastic quasi-
static problems of frictional contact mechanics; in that case, the variables are homogenous to
displacements/forces of displacement rates/forces.

• If the system is a dynamical mechanical system composed of flexible solids, the problem is again
obtained by a space and time discretization.

• If the material follows a nonlinear mechanical bulk behavior, we can use this model after a standard
Newton linearization procedure.

For a description of the derivation of such problems in various practical situations we refer to [Laursen,
2003, Wriggers, 2006, Acary and Brogliato, 2008, Acary and Cadoux, 2013].

RR n° 9118
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1.2 Objectives and outline of the report

In this report, after stating the problem with more details in Section 2, we recall the existence result
of [Acary et al., 2011] for the problem (1) in Section 2.3. In this framework, we briefly present in Section 3
a few alternative formulations of the problem that enable the design of numerical solution procedures :
a) finite–dimensional Variational Inequalities(VI) and Quasi-Variational Inequalities(QVI), b) nonsmooth
equations and c) optimization based formulations.

Right after these formulations, we list some of the most standard algorithms dedicated to one of the
previous formulations :

1. the fixed point and projection numerical methods for solving VI are reviewed with a focus on
self-adaptive step rules (Section 4),

2. the nonsmooth (semi-smooth) Newton methods are described based on the various nonsmooth
equations formulations (Section 5),

3. Section 6 is devoted to the presentation of splitting and proximal point techniques,

4. and finally, in Section 7, the Panagiotopoulos alternating optimization technique, the successive
approximation technique and the SOCLCP approach are outlined.

Since it is difficult to be exhaustive on the approaches developed in the literature to solve frictional
contact problems, we decided to leave out the scope of the report the following approaches:

• the approaches that alter the fundamental assumptions of the 3D Coulomb friction model by faceting
the cone as in the pioneering work of [Klarbring, 1986] and followed by [Al-Fahed et al., 1991, Pang
and Trinkle, 1996, Stewart and Trinkle, 1996, Anitescu and Potra, 1997, Haslinger et al., 2004],
or by convexifying the Coulomb law (associated friction law with normal dilatancy) [Heyn et al.,
2013, Tasora and Anitescu, 2013, 2011, Anitescu and Tasora, 2010, Tasora and Anitescu, 2009,
Krabbenhoft et al., 2012] or finally by regularizing the friction law [Kikuchi and Oden, 1988].

• the recent developments of methods for the frictionless case [Morales et al., 2008, Miyamura et al.,
2010, Temizer et al., 2014] will not be discussed.

• the approaches that are based on domain decomposition and parallel computing [Breitkopf and
Jean, 1999, Renouf et al., 2004, Koziara and Bićanić, 2011, Wohlmuth and Krause, 2003, Dostál
et al., 2010, Heyn, 2013]. We choose in this report to focus on single domain computation and to
skip the discussion about distributed computing mainly for the sake of length of the report.

Finally, some possible interesting approaches have not been reported. We are thinking mainly to the
interior point methods approach [Christensen and Pang, 1998, Miyamura et al., 2010, Kleinert et al.,
2014]. Some basic implementations of such methods do not give satisfactory results. One of the reasons
is the fact that we were not able to get robustness and efficiency on a large class of problems. As it is
reported in [Kleinert et al., 2014, Krabbenhoft et al., 2012], it seems that it is needed to alter the friction
Coulomb’s law by adding regularization or dilatency in the model. In the same spirit, we skip also the
comparison for the possibly very promising methods developed in [Heyn et al., 2013, Heyn, 2013] that are
based on Krylov subspace and spectral methods. It could be very interesting to bench also these methods
on the actual Coulomb friction model, that is to say, in the nonmonotone case. Finally, our preliminary
results on the use of direct general SOCP or SOCLCP solvers off the shelf were not convincing. Indeed,
the structure of contact problems (product of a large number of small second order cones) has to be taken
into account to get efficiency and unfortunately, these solvers are difficult to adapt to this structure.

RR n° 9118
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Other comparisons have already been published in the literature. One of the first comparison study
has been done in [Raous et al., 1988] and in [Chabrand et al., 1998]. In this work, several formulations
are detailed in the bidimensional case (variational inequality, linear complementarity problem (LCP) and
augmented Lagrangian formulation) and comparisons of fixed point methods with projection, splitting
methods and Lemke’s method for solving LCP. Other comparisons have been done on 2D systems in [Mijar
and Arora, 2000b,a, 2004a,b]. In [Christensen et al., 1998], a very interesting comparison in the three-
dimensional case has been carried out which shows the superiority of the semi-smooth Newton methods
over the interior point methods. Comparisons on simple multi-body systems composed of kinematic
chains can be found in [Mylapilli and Jain, 2017].

As a difference with the previous publications, the comparison are performed on a large set of examples
using performance profiles in this report. Let us summarize the main conclusion from Section 8: on one
hand, the algorithms based on Newton methods for nonsmooth equations solve quickly the problem when
they succeed, but suffer from robustness issues mainly if the matrix H has not full rank. On the other
hand, the iterative methods dedicated to solving variational inequalities are quite robust but with an
extremely slow rate of convergence. To sum up, as far as we know there is no option that combines time
efficiency and robustness. The set of problems used here are from the FCLIB collection1. In this work,
this collection is solved with the software Siconos and its component Siconos/Numerics2[Acary et al.,
2015].

1.3 Notation

The following notation is used throughout the report: the 2-norm for a function g is denoted by ‖g‖ and
for a vector x ∈ IRn by ‖x‖. The index α ∈ IN is used to identify the variable pertaining to a single
contact. A multivalued mapping T : IRn ⇒ IRn is an operator whose images are sets. The second order
cone, also known as Lorentz or ice–cream cone, is defined as Kµ := {(x, t) ∈ IR× IR+ | ‖x‖ 6 µt}, µ > 0.
By polarity, the dual convex cone to a convex cone K defined by

K? = {x ∈ IRn | y>x > 0, for all y ∈ K}. (5)

The normal cone NK : IRn ⇒ IRn to a closed convex set X is the set

NK(x) = {d ∈ IRn | d>(y − x) 6 0}. (6)

The notation 0 6 x ⊥ y > 0 denotes that x > 0, y > 0 and x>y = 0. A complementarity problem
associated with a function F : IRn → IRn is to find x ∈ IRn such that 0 6 F (x) ⊥ x > 0. The
generalized complementarity problem is given by K? 3 F (x) ⊥ x ∈ K, where K is a closed convex cone.
Finite-dimentional Variational Inequality (VI) problems subsumes complementarity problems, system of
equations. Solving a VI(X,F ) is to find x ∈ X such that

F (x)>(y − x) > 0 for all y ∈ X. (7)

It is easy to see this problem is equivalent to solving a generalized equation

0 ∈ F (X) +NX(x). (8)

The Euclidean projector on a set X is denoted by PX .
1https://frictionalcontactlibrary.github.io/index.html, which aims at providing many problems to compare al-

gorithms on a fair basis
2http://siconos.gforge.inria.fr
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2 Description of the 3D frictional contact problems

2.1 Signorini’s condition and Coulomb’s friction.

Let us consider the contact between two bodies A ⊂ lR3 and B ⊂ lR3 with sufficiently smooth boundaries,
as depicted on Figure 1.

Body A

Body B

CA

N

T1

T2

CB

gN

Figure 1: Contact kinematic

From the body A “perspective”, the point CA ∈ ∂A is called a master point to contact. The choice
of this master point CA to write the contact condition is crucial in practice and amounts to consistently
discretizing the contact surface. The vector N defines an outward unit normal vector to A at the point CA.
With T1,T2 two vectors in the plane orthogonal to N, we can build an orthornormal frame (CA,N,T1,T2)

called the local frame at contact. The slave contact point CB ∈ ∂B is defined as the projection of the
point CA on ∂B in the direction given by N. Note that we assume that such a point exists. The gap
function is defined as the signed distance between CA and CB

gN = (CB − CA)>N. (9)

Consider two strictly convex bodies, which are non penetrating, i.e. A ∩ B = ∅, the master and
slave contact points can be chosen as the proximal points of each bodies and the normal vector N can be
written as

N =
CB − CA
‖CB − CA‖

. (10)

The contact force exerted by A on B is denoted by r ∈ IR3 and is decomposed in the local frame as

r := rNN + rT1T1 + rT2T2, with rN ∈ IR and rT := [rT1 , rT2 ]> ∈ IR2. (11)

The Signorini condition states that
0 6 gN ⊥ rN > 0, (12)

and models the unilateral contact. The condition (12), written at the position level, can also be defined
at the velocity level. To this end, the relative velocity u ∈ IR3 of the point CB with respect to CA is also
decomposed in the local frame as

u := uNN + uT1T1 + uT2T2 with uN ∈ IR and uT = [uT1 , uT2 ]> ∈ IR2. (13)

At the velocity level, the Signorini condition is written{
0 6 uN ⊥ rN > 0 if gN 6 0

rN = 0 otherwise.
(14)

RR n° 9118
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The Moreau’s viability Lemma [Moreau, 1988] ensures that (14) implies (12) if gN > 0 holds in the initial
configuration.

In some mechanical problems, especially the rigid multi-body systems dynamics, an impact law has
to be introduced to complete the dynamics. The most simple law is the Newton impact law that relates
the post impact velocity uN to the pre-impact velocity u−N through a coefficient of restitution e > 0 as

uN = −eu−N . (15)

Following the work of J.J. Moreau [Moreau, 1988], the impact law is embedded in the Signorini condition
at the velocity level as {

0 6 uN + eu−N ⊥ rN > 0 if gN 6 0

rN = 0 otherwise.
(16)

where rN plays the role of an impulse. The pre-impact velocity is a known value, and then, can be treated
as a constant term in w of equation (1). For the sake of simplicity, we will consider in the sequel that
−eu−N is included in the vector w.

Coulomb’s friction models the frictional behavior of the contact force law in the tangent plane spanned
by (T1, T2). Let us define the Coulomb friction cone K which is the isotropic second order cone (Lorentz
or ice–cream cone)

K = {r ∈ IR3 | ‖rT‖ 6 µrN}, (17)

where µ is the coefficient of friction. The Coulomb friction states for the sticking case that

uT = 0, r ∈ K, (18)

and for the sliding case that

uT 6= 0, r ∈ ∂K, and ∃α > 0 such that rT = −αuT. (19)

With the Coulomb friction model, there are two relations between uT and rT. The distinction is based
on the value of the relative velocity uT between the two bodies. If uT = 0 (sticking case), we have
‖rT‖ 6 µrN. On the other hand, we get the sliding case.

Disjunctive formulation of the Signorini-Coulomb model If we consider the velocity-level Sig-
norini condition (14) together with the Coulomb friction (18)–(19) which is naturally expressed in terms
of velocity, we obtain a disjunctive formulation of the frictional contact behavior as

r = 0 if gN > 0 (no contact)
r = 0, uN > 0 if gN 6 0 (take–off)
r ∈ K,u = 0 if gN 6 0 (sticking)
r ∈ ∂K, uN = 0,∃α > 0, uT = −αrT if gN 6 0 (sliding)

(20)

In the computational practice, the disjunctive formulation is not suitable for solving the Coulomb problem
as it suggests the use of enumerative solvers, with an exponential complexity. In the sequel, alternative
formulations of the Signorini-Coulomb model suitable for numerical applications are delineated. The core
idea is to translate the cases in (20) into complementarity relations.

Inclusion into normal cones The Signorini condition (12) and (14), in their complementarity forms
can be equivalently written as an inclusion into a normal cone to IR+

− gN ∈ NIR+(rN) and − uN ∈ NIR+(rN), (21)
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if gN 6 0 and rN = 0 otherwise. An inclusion form of the Coulomb friction for the tangential part can be
also proposed: let D(c) be the disk of radius c:

D(c) := {x ∈ IR2 | ‖x‖ 6 c}. (22)

For the Coulomb friction, we get
− uT ∈ ND(µrN)(rT). (23)

Since D(µrN) is not a cone, the inclusion (23) is not a complementarity problem, but a variational
inequality. The formulation (23) is often related to Moreau’s maximum dissipation principle of the
frictional behavior:

rT ∈ arg max
‖z‖6µrN

z>uT. (24)

This means that the couple (rT, uT) maximizes the energy lost through dissipation.

SOCCP formulation of the Signorini-Coulomb model In [Acary and Brogliato, 2008, Acary et al.,
2011], another formulation is proposed inspired by the so-called bipotential [De Saxcé, 1992, De Saxcé
and Feng, 1991, Saxcé and Feng, 1998]. The goal is to form a complementarity problem out of (21)
and (23). To this end, we introduce the modified relative velocity û ∈ IR3 defined by

û = u+ [µ‖uT‖, 0, 0]>. (25)

The entire contact model (20) can be put into a Second-Order Cone Complementarity Problem (SOCCP)
as

K? 3 û ⊥ r ∈ K (26)

if gN 6 0 and r = 0 otherwise.

2.2 Frictional contact discrete problems

We assume that a finite set of nc contact points and their associated local frames have been defined.
In general, this task is not straightforward and amounts to correctly discretizing the contact surfaces.
For more details, we refer to [Wriggers, 2006, Laursen, 2003]. For each contact α ∈ {1, . . . , nc}, the
local velocity is denoted by uα ∈ IR3, the normal velocity by uαN ∈ IR and the tangential velocity by
uαT ∈ IR2 with uα = [uαN, (u

α
T)>]>. The vectors u, uN, uT respectively collect all the local velocities

u = [(uα)>, α = 1 . . . nc]
>, all the normal velocities uN = [uαN, α = 1 . . . nc]

>, and all the tangential
velocities uT = [(uαT)>, α = 1 . . . nc]

>. For a contact α, the modified local velocity, denoted by ûα, is
defined by

ûα = uα + gα(u) where gα(uα) = [µα‖uαT‖, 0, 0]>. (27)

The vector û and the function g collect all the modified local velocity at each contact û = [ûα, α =

1 . . . nc]
> and the function g(u) = [[µα‖uαT‖, 0, 0]>, α = 1 . . . nc]

>.
For each contact α, the reaction vector rα ∈ IR3 is also decomposed in its normal part rαN ∈ IR and

the tangential part rαT ∈ IR2 as rα = [rαN , (r
α
T )>]>. The Coulomb friction cone for a contact α is defined

by Kα = {rα ∈ IR3 | ‖rαT‖ 6 µα|rαN |} and the set Kα,? is its dual. The set K is the cartesian product of
Coulomb’s friction cone at each contact, that is

K =
∏

α=1,...,nc

Kα and K? is its dual. (28)
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Figure 2: Coulomb’s friction law in the sliding case.

In this report, we investigate the case where the problem is given in its reduced form. We consider that
the discretized and linearized dynamics is of the form

Mv = Hr + f, (29)

with M a positive-definite matrix. The local velocities at the point of contact are given by

u = H>v + w. (30)

More information on the term w is given later in this section. The (global) velocities v can be substituted
in (30) by using a Schur-complement technique. This yields

u = H>M−1Hr +H>M−1f + w. (31)

Let us define W , often called the Delassus matrix, as

W := H>M−1H (32)

and the vector q as

q := H>M−1f + w. (33)

We are now ready to define the mathematical problem we want to solve.

Problem FC (Discrete frictional contact problem). Given

• a positive semi–definite matrix W ∈ IRm×m called the Delassus matrix,
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• a vector q ∈ IRm,

• a vector µ ∈ IRnc of coefficients of friction,

find a vector r ∈ IRm, such that 
K? 3 û ⊥ r ∈ K

u = Wr + q

û = u+ g(u)

(34)

with g(u) = [[µα‖uαT‖, 0, 0]>, α = 1 . . . nc]
>.

An instance of the problem is denoted by FC(W, q, µ)

Remark 1. We do not assume that the Delassus matrix W is symmetric in the general case. In most of
the applications, the Delassus matrix is symmetric since it represents either a mass matrix or a stiffness
matrix. Nevertheless, in the rigid body applications, or more generally when large rotations are taken into
account, the Delassus matrix is not symmetric. Indeed, in an implicit time-discretization, the Jacobian
matrix of the gyroscopic forces brings a skew symmetric matrix in the Delassus matrix.

2.3 Existence of solutions

The question of the existence of solution for the Problem FC has been studied in [Klarbring and Pang,
1998] and [Acary et al., 2011] with different analysis techniques under the assumption that the Delassus
matrix is symmetric. The key assumption for existence of solutions in both articles is as follows

∃v ∈ IRm : H>v + w ∈ intK?, (35)

or equivalently
w ∈ imH + intK?. (36)

Under the previous assumption, the Problem FC have a solution. Therefore, it makes sense to design
a procedure to solve the problem. In the sequel, we will compare numerical methods only when this
assumption is satisfied.

This assumption is easily verified in numerous applications. For applications in nonsmooth dynamics
where the unknown v is a relative contact velocity, the term w vanishes if we have only scleronomic
constraints. For w ∈ im(H>) (and especially w = 0), the assumption is trivially satisfied. As it is
explained in [Acary and Cadoux, 2013], the term w has several possible sources. If the constraints
are formulated at the velocity level, an input term of w is given in dynamics by the impact laws (see
equation (16)). In the case of the Newton impact law, it holds that w ∈ im(H>). For other impact
laws, this is not clear. Another input in w is given by constraints that depend explicitly on time. In
that case, we can have w 6∈ im(H>) and non existence of solutions. If the constraints are written at the
position level, w can be given by initial terms that come from the velocity discretization. In that cases,
the existence is also not ensured.

The assumption is also satisfied whenever imH = IRm or in other words if H> has full row rank.
Unfortunately, in large number of applications H> is rank deficient. From the mechanical point of view,
the rank deficiency of H and the amount of friction seems to play a fundamental role in the question
of the existence (and uniqueness) of solutions. In the numerical comparisons, we will attempt to get a
deeper understanding on the role of these assumptions on the convergence of the algorithms. The rank
deficiency of H is related to the number of constraints that are imposed to the system with respect to
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the number of degrees of freedom in the system. It is closely related to the concept of hyperstaticity
in overconstrained mechanical systems. In the most favorable cases, it yields indeterminate Lagrange
multipliers but also to unfeasible problems and then to the lost of solutions in the worse cases. The
second assumption on the amount of friction is also well–known. The frictionless problem is easy to solve
if it is feasible. It is clear that large friction coefficients prevent from sliding and therefore increase the
degree of hyperstaticity of the system.

3 Alternative formulations

In this section, various equivalent formulations of Problem FC are given. Our goal is to show that
such problems can be recast into several well-known problems in the mathematical programming and
optimization community. These formulations will serve as a basis for numerical solution procedures that
we develop in later sections.

3.1 Variational Inequalities (VI) formulations

Let us recall the definition a finite-dimensional VI(X,F ): find z ∈ X such that

F>(z)(y − z) > 0 for all y ∈ X, (37)

with X a nonempty subset of IRn and F a mapping from IRn into itself. We refer to [Harker and Pang,
1990, Facchinei and Pang, 2003] for the standard theory of finite–dimensional variational inequalities.
The easiest way to state equivalent VI formulations of Problem FC is to use the following equivalences:

K? 3 û ⊥ r ∈ K ⇐⇒ −û ∈ NK(r) ⇐⇒ û>(s− r) > 0, for all s ∈ K. (38)

For Problem FC, the following equivalent formulation in VI is directly obtained from

− (Wr + q + g(Wr + q)) ∈ NK(r). (39)

The resulting VI is denoted by VI(Fvi, Xvi) with

Fvi(r) := Wr + q + g(Wr + q) and Xvi := K. (40)

Uniqueness properties. In the general case, it is difficult to prove uniqueness of solutions to (40). If
the matrix H has full rank and the friction coefficients are “small”, a classical argument for the uniqueness
of solution of VIs can be satisfied. Note that the full rank hypothesis on H implies that W is positive-
definite. Therefore, we have (x− y)>W (x− y) > CW ‖x− y‖2 with CW > 0. Using this relation (40), it
yields

(Fvi(x)− Fvi(y))>(x− y) = (x− y)>W (x− y)

+
∑nc

α=1 µ
α(xαN − yαN)[‖[Wx+ q]αT‖ − ‖[Wy + q]αT‖]

> CW ‖x− y‖2 +
∑nc

α=1 µ
α(xαN − yαN)[‖[Wx+ q]αT‖ − ‖[Wy + q]αT‖].

(41)

Note that for small values of the coefficients of friction the first term in the right-hand side dominates the
second one. Hence, the mapping Fvi is strictly monotone and this ensures that the VI has at most one
solution [Facchinei and Pang, 2003, Theorem 2.3.3]. The fact that H is full rank also implies that the
Assumption (35) for the existence of solutions is trivially satisfied. Hence, there exists a unique solution
to the VI(Fvi, Xvi).
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3.2 Quasi-Variational Inequalities (QVI)

Let us recast Problem FC into the QVI framework. A QVI is a generalization of the VI, where the feasible
set is allowed to depend on the solution. Let us define this precisely: let X be a multi-valued mapping
IRn ⇒ IRn and let F be a mapping from IRn into itself. The quasi-variational inequality problem, denoted
by QVI(X,F ), is to find a vector z ∈ X(z) such that

F>(z)(y − z) > 0, ∀y ∈ X(z). (42)

The QVI formulation of the frictional contact problems is obtained by considering the inclusions (21)
and (23). We get

u>(s− r) > 0, for all s ∈ C(rN), (43)

where C(rN) is the Cartesian product of the semi–cylinders of radius µαrαN defined as

C(rN) :=

nc∏
α=1

{
s ∈ IR3 | sN > 0, ‖sT‖ 6 µαrαN

}
. (44)

Note that the QVI (43) involves only u and not û: this is the main interest of this formulation. The price
to pay is the dependence on r of the set C(rN). Problem FC can be expressed as a QVI by substituting
the expression of u, which yields

(Wr + q)>(s− r) > 0, for all s ∈ C(rN). (45)

This expression is compactly rewritten as QVI(Fqvi, Xqvi), with

Fqvi(r) := Wr + q and Xqvi(r) := C(rN). (46)

SinceW is assumed to be positive semi-definite matrix, Fqvi is monotone. Thus we get an affine monotone
QVI(Fqvi, Xqvi) for Problem FC.

3.3 Nonsmooth Equations

In this section, we expose a classical approach to solving a VI or a QVI, based on a reformulation of
the inclusion as a nonsmooth equation. The term nonsmooth equation highlights that the mapping we
consider fails to be differentiable. This is the price to pay for this reformulation. We can apply fixed-point
and Newton-like algorithms to solve the resulting equation. Given the nonsmooth nature of the problem,
applying Newton’s method appears challenging, but it can still be done for some reformulations. More
precisely for Problem FC, we search for an equation of the type

G(r) = 0 (47)

where G is generally only locally Lipschitz continuous. The mapping G is such that the zeroes of (47)
are the solutions of (34).

Natural and normal maps for the VI formulations A general-purpose reformulation of VI is
obtained by using the normal and natural maps, see [Facchinei and Pang, 2003] for details. The natural
map F nat : IRn → IRn associated with the VI (37) is defined by

F nat(z) := z − PX(z − F (z)), (48)
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where PX is the Euclidean projector on the set X. A well-known result (see [Facchinei and Pang, 2003])
states that the solutions of a VI are related to the zeroes of the natural map :

z solves VI(X,F ) ⇐⇒ F nat(z) = 0, (49)

Using (37), it is easy to see that if z solves VI(X,F ), then it is also a solution to VI(X, ρF ) for any ρ > 0.
Therefore, we can define a parametric variant of the natural map by

F nat
ρ (z) = z − PX(z − ρF (z)). (50)

The relations given in (49) continue to hold for the parametric mapping. Using those equivalences, the
frictional contact problem can be restated as zeroes of nonsmooth functions. With the natural map,
Problem FC under the VI form (40) can be reformulated as

F nat
vi (r) :=

[
r − PK (r − ρ(Wr + q + g(Wr + q)))

]
= 0. (51)

Following the same lines, the normal map may also be used to derive algorithms. The normal map
F nor : IRn → IRn is defined by

F nor(x) := F (PX(x)) + x− PX(x), (52)

and its parametric variant
F nor
ρ (x) = ρF (PX(x)) + x− PX(x). (53)

An equivalent result holds

z solves VI(X,F ) ⇐⇒ z = PX(x) for some x such that F nor(x) = 0. (54)

The normal map based formulation of VI is also obtained in the same way.
In the seminal work of [Sibony, 1970], iterative methods for solving monotone VIs are based on the

natural map and fixed point iterations. The role of ρ is recognized to be very important for the rate
of convergence. To improve the methods, Sibony [1970] proposes to use “skewed” projector based on a
non-Euclidean metric. Given a positive definite matrix R ∈ Rn×n, a skewed projector PX,R onto X is
defined as follows: z = PX,R(x) is the unique solution of the convex programm

min
1

2
(y − x)>R(y − x),

s.t. y ∈ X.
(55)

The skew natural map can be also defined and yields the following nonsmooth equation

F nat
R (z) = z − PX,R(z −R−1F (z)). (56)

The zeros of F nat
R (z) are also solution of the VI(X,F ). Considering the skew natural map, we obtain for

Problem FC under the VI form (40),

F nat
vi,R(r) :=

[
r − PK,R

(
r −R−1(Wr + q + g(Wr + q))

) ]
. (57)

The previous case is retrieved by choosing R = ρ−1In×n.
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Jean–Moreau’s and Alart-Curnier’s functions Using the alternative inclusions formulations (21)–
(23) with a given set of parameters ρN, ρT such that{

−ρNuN ∈ NIRnc
+

(rN), ρN > 0,

−ρTuT ∈ ND(µ(rn)+)(rT), ρT > 0,
(58)

we can replace PK into PIRnc
+

and PD(µ(rn)+) where

D(µ(rn)+) =
∏

α=1...nc

D(µα(rαN)+). (59)

defines the Cartesian product of the Coulomb disks for each contact. The notation x+ stands for x+ =

max(0, x). Using this procedure, Jean and Moreau [1987], Christensen et al. [1998] propose the following
nonsmooth equation formulation of the frictional contact conditionrN − PIRnc

+
(rN − ρNuN) = 0,

rT − PD(µ(rN)+)(rT − ρTuT) = 0.
(60)

The parameters ρN, ρT may be also chosen contact by contact. Problem FC is then reformulated as

Fmj(r) :=

[
rN − PIRnc

+
(rN − ρN(Wr + q)N)

rT − PD(µ(rN)+)(rT − ρT(Wr + q)T)

]
= 0. (61)

In the seminal work of Alart & Curnier [Curnier and Alart, 1988, Alart and Curnier, 1991], the
augmented Lagrangian approach is invoked (see Remark 3) to obtain a similar formulation motivated by
the development of nonsmooth (or generalized) Newton methods (see Section 5.2). To be accurate, the
original Alart–Curnier function is given byrN − PIRnc

+
(rN − ρNuN) = 0,

rT − PD(µ(rN−ρuN)+)(rT − ρTuT) = 0.
(62)

The difference between (60) and (62) is in the radius of the disk: D(µ(rN−ρuN)+) rather than D(µ(rN)+).
Problem FC can be also reformulated as in (61) using (62). This yields

Fac(r) :=

[
rN − PIRnc

+
(rN − ρN(Wr + q)N)

rT − PD(µ(rN−ρNuN)+)(rT − ρN(Wr + q)T)

]
= 0. (63)

Remark 2. From the QVI formulation (43), the following nonsmooth equation can also be written

r = PC(rN)(r − ρu) (64)

which corresponds to (60).

Remark 3. In the literature of computational mechanics [Curnier and Alart, 1988, Simo and Laursen,
1992, Alart and Curnier, 1991], very similar expressions are obtained using the concept of augmented
Lagrangian functions. This concept introduced in the general framework of Optimization by [Hestenes,
1969] and developed and popularized by [Rockafellar, 1974, 1993] is a strong theoretical tool for analyzing
existence and regularity of solutions of constrained optimization problems. Its numerical interest is still
a subject of intense debate in the mathematical programming community. In the nonconvex nonsmooth
context of frictional contact problems, its invocation is not so clear, but it has enabled the design of robust
numerical techniques. Nevertheless, it is worth to note that some of these methods appear as variants of
the methods developed to solve variational inequalities in other contexts. The method developed by [Simo
and Laursen, 1992] is a dedicated version of fixed point with projection for VI (see Section 1) and the
method of [Alart and Curnier, 1991] is a tailored version of semi–smooth Newton methods (see Section 5).
Nevertheless, the concept of augmented Lagrangian has never been used in the optimization literature for
this purpose.
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Xuewen-Soh-Wanji functions Following the earlier work of [Park and Kwak, 1994] and [Leung et al.,
1998], the following function is proposed in [Xuewen et al., 2000]:

Fxsw(r) :=

 min(uN, rn)

min(‖uT‖, µrN − ‖rT‖) = 0

|uT1
rT2
− uT2

rT1
+ max(0, uT1

rT1
) = 0

 = 0. (65)

In [Xuewen et al., 2000], the system is solved by a generalized Newton method with a line-search proce-
dure.

Hüeber–Stadler–Wolhmuth functions In [Stadler, 2004, Hüeber et al., 2008], and subsequently
in [Koziara and Bićanić, 2008], another function is used to reformulate the problem FC:

Fhsw(r) :=

[
rN − PIRnc

+
(rN − ρN(Wr + q)N)

max(µ(rN − ρNuN), ‖rt − ρtuT‖)rT − µmax(0, rn − ρNuN)(rt − ρTuT)

]
= 0. (66)

In [Hüeber et al., 2008], this function is used considering the constraints at the position level rather than
in [Koziara and Bićanić, 2008] the formulation is at the velocity level.

General SOCC-functions More generally, a large family of reformulations of the SOCCP (26) in
terms of equations can be obtained by using a so-called Second Order Cone Complementarity (SOCC)
function. Let us consider the following SOCCP over a symmetric cone K? = K. A SOCC-function φ is
defined by

K 3 x ⊥ y ∈ K ⇐⇒ φ(x, y) = 0. (67)

The frictional contact problem can be written as a SOCCP over symmetric cones by applying the following
transformations

x = Txû =

[
ûN

µûT

]
and y = Tyr =

[
µrN

rT

]
. (68)

Clearly, the nonsmooth equations of the previous sections provide several examples of SOCC-functions
and the natural map offers the simplest one. In [Fukushima et al., 2001], the standard complementarity
functions for Nonlinear Complementarity Problems (NCP) such as the celebrated Fischer-Burmeister
function are extended to the SOCCP by means of Jordan algebra. Smoothing functions are also given
with theirs Jacobians and they studied their properties in view of the application of Newton’s method.
For the second order cone, the Jordan algebra can be defined with the following non-associative Jordan
product

x · y =

[
x>y

yNxT + xNyT

]
(69)

and the usual componentwise addition x+y. The vector x2 denotes x ·x and there exists a unique vector
x1/2 ∈ K, the square root of x ∈ K, defined as

(x1/2)2 = x1/2 · x1/2 = x. (70)

A direct calculation for the SOC in IR3 yields

x1/2 =

 s
xT

2s

 , where s =

√
(xN +

√
x2

N − ‖xT‖2)/2. (71)
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We adopt the convention that 01/2 = 0. The vector |x| ∈ K denotes (x2)1/2. Thanks to this algebra and
its associated operator, the projection onto K can be written as

PK(x) =
x+ |x|

2
. (72)

This formula provides a new expression for the natural map and its associated nonsmooth equations.
This is exactly what is done in [Hayashi et al., 2005] where the natural map (48) is used together with
an expression of the projection operator based on the Jordan algebra calculus. The resulting SOCCP is
then solved with a semi–smooth Newton method, and a smoothing parameter can be added.

Most of the calculus in Jordan algebra are based on the spectral decomposition, a basic concept in
Jordan algebra, (see [Fukushima et al., 2001] for more details). For x = (xN, xT) ∈ IR× IR2, the spectral
decomposition is defined by

x = λ1u1 + λ2u2, (73)

where λ1, λ2 ∈ IR and u1, u2 ∈ IR3 are the spectral values and the spectral vectors of x given by

λi = xN + (−1)i‖xT‖, ui =



1
2

 1

(−1)i
xT

‖xT‖

 , if xT 6= 0

1
2

 1

(−1)iw

 , if xT = 0

i = 1, 2 (74)

with w ∈ IR2 any unit vector. Note that the decomposition is unique whenever xT 6= 0. The spectral
decomposition enjoys very nice properties that simplifies the computation of basic functions such that

x1/2 =
√
λ1u1 +

√
λ2u2, for any x ∈ K,

PK(x) = max(0, λ1)u1 + max(0, λ2)u2.
(75)

More interestingly, general SOCC-functions can also be extended and smoothed version of this function
can be also developed (see [Fukushima et al., 2001] ). Let us start with the Fischer-Burmeister function

φFB(x, y) = x+ y − (x2 + y2)1/2. (76)

It can be shown that the zeroes of φFB are solutions of the SOCCP (67) using the Jordan algebra associated
with K. Using the spectral decomposition, the Fischer-Burmeister function can be easily computed as

φFB(x, y) = x+ y − (
√
λ̄1ū1 +

√
λ̄2ū2) (77)

where λ̄1, λ̄2 ∈ IR and ū1, ū2 ∈ IR3 are the spectral values and the spectral vectors of x2 + y2 that is

λ̄i = ‖x‖2 + ‖y‖2 + 2(−1)i‖xNxT + yNyT‖

ūi =



1
2

 1

(−1)i
xNxT + yNyT

‖xNxT + yNyT‖

 , if xNxT + yNyT 6= 0

1
2

 1

(−1)iw

 , if xNxT + yNyT = 0

, i = 1, 2. (78)

Finally, Problem FC is then reformulated as

FFB(u, r) :=

 u−Wr − q

ΦFB

([
µrN

rT

]
,

[
1
µ (uN + µ‖uT‖)

uT

])  = 0. (79)

where the mapping ΦFB : IR3nc × IR3nc → IR3nc is defined as

ΦFB(x, y) =
[
(φ(xα, yα), α = 1 . . . nc)

>
]
. (80)
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3.4 Optimization problems

In this section, several optimization-based formulations are proposed. The quest for an efficient optimiza-
tion formulation of the frictional problem is a hard task. Since the problem is nonsmooth and nonconvex,
the use of an associated optimization problem is interesting from the numerical point of view if we want
to improve the robustness and the stability of the numerical methods.

A straightforward optimization problem can be written whose cost function is the scalar product r>û.
Indeed, this product is always positive and vanishes at the solution. Let us consider this first optimization
formulation 

min r>û = r>u+
∑nc

α=1 µ
αrαN‖uαT‖

s.t. û ∈ K?,

r ∈ K,

(81)

which amounts to minimizing the DeSaxcé’s bipotential function [De Saxcé, 1992] over K? ×K. A first
simplification can be made by noting that

û ∈ K? ⇐⇒ uN > 0, (82)

which leads to 
min r>u+

∑nc

α=1 µ
αrαN‖uαT‖

s.t. uN > 0

r ∈ K.

(83)

Starting from Problem FC, a direct substitution of u = Wr + q yields
min r>(Wr + q) +

∑nc

α=1 µ
αrαN‖(Wr + q)αT‖

s.t. (Wr + q)N > 0,

r ∈ K.

(84)

which is a nonlinear optimization problem with a nonsmooth and nonconvex cost function. From the
numerical point of view this problem may be very difficult and we have to ensure that the cost function has
to be zero at the solution which is not guaranteed if some local minima are reached in the minimization
process.

Other optimization-based formulations have been proposed in the literature. They are not direct
optimization formulation but they try to identify an optimization sub-problem which is well-posed and
for which efficient numerical methods are available. Three approaches can be listed in three categories: a)
the alternating optimization problems, b) the successive approximation method and c) the convex SOCP
approach.

The Panagiotopoulos alternating optimization approach The Panagiotopoulos alternating op-
timization approach aims at solving the frictional contact problem by alternatively solving the Signorini
condition for a fixed value of the tangential reaction rT, and solving the Coulomb friction model for a
fixed value of the normal reaction rN. Let us split the matrix W and the vector q in the following way:

u = Wr + q ⇐⇒

[
uN

uT

]
=

[
WNN WNT

WTN WTT

][
rN

rT

]
+

[
qN

qT

]
. (85)
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Two sub-problems can therefore be identified: the first one is to find uN and rN such thatuN = WNNrN + q̃N,

0 6 uN ⊥ rN > 0,
(86)

where q̃N = qN +WNTrT. The second problem is to find uT and rT such thatuT = WTTrT + q̃T,

−uT ∈ ND(µr̃N)(rT),
(87)

where r̃N is fixed and q̃T = qT +WTNrN.
If we assume for a while that the Delassus W is a symmetric positive semi–definite matrix, WNN and

WTT are also symmetric semi–definite positive matrices. Therefore, two convex optimization problems
can be formulated: min

1

2
r>NWNNrN + r>N q̃N

s.t. rN > 0,
(88)

and min
1

2
r>T WTTrT + r>T q̃T

s.t. rT ∈ D(µr̃N).
(89)

This approach has been proposed by [Panagiotopoulos, 1975] for two–dimensional applications in
soil foundation computing. It has also been used in other finite element applications in [Barbosa and
Feijóo, 1985, Tzaferopoulos, 1993] and studied from the mathematical point of view in [Haslinger and
Panagiotopoulos, 1984, Haslinger et al., 1996].

Remark 4. If the Delassus matrix is unsymmetric matrix but semi-definite positive, the following
quadratic programming problem is equivalent to (86)

min r>NWNNrN + r>N q̃N

s.t. rN > 0

WNNrN + q̃N > 0.

(90)

The successive approximation The successive approximation method identifies a single optimization
problem by introducing a function that maps the normal reaction to itself (or the friction threshold) such
that

h(rN) = rN. (91)

Using this artifact, we can define a new problem from Problem FC such that
θ = h(rN)

u = Wr + q

−uN ∈ NIRnc
+

(rN)

−uT ∈ ND(µθ)(rT).

(92)

If we assume for a while that the Delassus W is a symmetric positive semi–definite matrix the last three
lines are equivalent to a convex optimization problem over the product of semi–cylinders C(µ, θ), that is

θ = h(rN)min
1

2
r>Wr + r>q

s.t. r ∈ C(µ, θ)

(93)
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The method of successive approximation has been extensively used for proving existence and unique-
ness of solutions to the discrete frictional contact problems. We refer to [Haslinger et al., 1996] which
summarizes the seminal work of the Czech school [Nečas et al., 1980, Haslinger, 1983, 1984]. We will see
in the sequel that this approach also provides us with very efficient numerical solvers in Section 7.2.

The convex SOCP The convex SOCP approach is in the same vein as the previous one, with the
difference that a SOCQP sub-problem is identified. To this aim, we augment the problem by introduction
an auxiliary variable s, the image of g(u) introduced in (27). We then obtain

s = g(u)

û = Wr + q + s

K? 3 û ⊥ r ∈ K.

(94)

Since W is a positive semi-definite matrix, a new convex optimization sub-problem can be defined
s = g(u) min

1

2
r>Wr + r>(q + s)

s.t. r ∈ K.

(95)

This formulation introduced in [Cadoux, 2009] and developed in [Acary and Cadoux, 2013, Acary et al.,
2011] has been used to give an existence criteria to the discrete frictional contact problems. Furthermore,
this existence criteria can be numerically checked by solving a linear program of second-order cone
(SOCLP).

4 Numerical methods for VIs

4.1 Fixed point and projection methods for VI

Starting from the VI formulations (37) or more precisely an associated nonsmooth equation through the
natural map,

F nat
R (z) = z − PX,R(z −R−1F (z)). (96)

The basic idea of the algorithm is to perform fixed point iterations on the mapping

z 7→ PX,R(z −R−1F (z)), (97)

yielding to Algorithm 1 with the specific choice of R = ρ−1
k I. The choice of the updating rule of ρk is

detailed in Section 4.2.
For the formulation (40), the following iterations are performed

rk+1 ← PK,R(rk −R−1(Wrk + q + g(Wrk + q))). (98)

In the sequel when a parameter ρ is specified, it is assumed that R = ρ−1I.
The convergence of such methods are generally shown for strongly monotone VI. In our case, this

assumption is not satisfied, but we will see in the sequel that such methods can converge in practice.

Remark 5. Algorithm 1 with the iteration rule (98) and a fixed value of ρk has been originally pro-
posed in [De Saxcé and Feng, 1991, 1998]. The algorithm is called Uzawa’s algorithm by reference
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Algorithm 1 Fixed point iterations for the VI (37)

Require: F,X Data of VI (37)
Require: z0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the max number of iterations
Require: ρ0 initial value for ρ
Ensure: z solution of VI (37)

k← 0

while error > tol and k < itermax do
Update the value of ρk
zk+1 ← PX(zk − ρk F(zk))

Evaluate error.
k← k + 1

end while
z← zk

to the algorithm due to Uzawa in computing the optimal values of convex program by primal-dual tech-
niques[Glowinski et al., 1976, Fortin and Glowinski, 1983]. Note that the algorithm in [Simo and Laursen,
1992] is similar to the fixed point algorithm with projection though based on augmented Lagrangian concept
(see Remark 3).

Extragradient methods The extragradient method [Korpelevich, 1976] is also a well-known method
for VI which improves the previous projection method. It can be described as

z̄k ← PX(zk − ρF (zk))

zk+1 ← PX(zk − ρF (z̄k))
(99)

and formally defined in Algorithm 2. The convergence of this method is guaranteed under the following

Algorithm 2 Extragradient method for the VI (37)

Require: F,X Data of VI (37)
Require: z0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the max number of iterations
Ensure: z solution of VI (37)

k← 0

while error > tol and k < itermax do
Update the value of ρk
z̄k ← PX(zk − ρkF(zk))

zk+1 ← PX(zk − ρk F(z̄k))

Evaluate error.
k← k + 1

end while
z← zk

assumptions: there exists a solution and the function F is Lipschitz–continuous and pseudo–monotone.
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Name Algo. Additional informations

FP-DS 1 iteration rule (98) & fixed ρ
FP-VI-UPK 1 & 3 iteration rule (98) and updating rule (101)
FP-VI-UPTS 1 & 3 iteration rule (98) and updating rule (102)
EG-VI-UPK 2 & 3 iteration rule (99) and updating rule (101)
EG-VI-UPTS 2 & 3 iteration rule (99) and updating rule (102)

Table 1: Naming convention for the algorithms based on VI formulations.

4.2 Self-adaptive step-size rules

A key ingredient in this efficiency and the convergence of the numerical methods for VI presented above
is the choice of the sequence {ρk}. A sensible work has been done in the literature mainly motivated
by some convergence proofs under specific assumption. Besides the relaxation of the assumption for the
convergence, we are interesting in improving the numerical efficiency and robustness. We present in this
section, the most popular approach for choosing the sequence {ρk}.

In [Khobotov, 1987], a method is proposed to improve the extragradient method of Korpelevich [1976]
by adapting ρk in the following way. The goal is to find ρk that satisfies

0 < ρk 6 min

{
ρ̄, L

‖zk − z̄k‖
‖F (zk)− F (z̄k)‖

}
with L ∈ (0, 1) (100)

where ρ̄ is the maximum value of ρk which is chosen in the light of the specific problem. The objective is
to find a coefficient that is bounded by the local Lipschitz constant. The standard way to do that is to
use an Armijo–type procedure by successively trying some values of ρk = ρ̄νm with m ∈ IN and ν ∈ (0, 1),
with a typical value of 2/3. In the original article of [Khobotov, 1987], there is no procedure to size ρ̄
or to update it. In [He and Liao, 2002] and in the context of prediction–correction, the authors propose
to use the rule ρk = ρk−1ν

m and if the criteria (100) is largely satisfied for ρk, the value is increased.
In [Han and Lo, 2002], a similar procedure is used for the extragradient method by adding an increasing
step of ρk, which is done after the correction as in [He and Liao, 2002]. The criteria (100) is verified by
computing the ratio

rk ←
ρk‖F (zk)− F (z̄k)‖

‖zk − z̄k‖
. (101)

In [Solodov and Tseng, 1996], similar Armijo–like technique is used, and the ratio rk is computed as
follows:

rk ←
ρk(zk − z̄k)>(F (zk)− F (z̄k))

‖zk − z̄k‖2
. (102)

The approach is summarized in Algorithm 3. The parameter L typically chosen around 0.9 is a safety
coefficient in the evaluation of ρk. The parameter Lmin that triggers an increase of ρk is chosen around
0.3.

In [Han and Lo, 2002], the update of the Armijo rule ρk ← ν ρk can also be replaced by ρk ←
ν ρk min {1, 1/rk} but it appears that this trick does improve the self–adaptive procedure. Other more
evolved step–lengths strategies can be found in [Wang et al., 2010] that have been tried in this study.

4.3 Nomenclature

A nomenclature for the algorithms based on the VI formulation is given in Table 1.
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Algorithm 3 Updating rule for ρk

Require: F,X

Require: Search and safety parameters. L ∈ (0, 1), 0 < Lmin < L, ν ∈ (0, 1)

Require: Initial values zk ∈ X, ρk−1 > 0

ρk ← ρk−1

z̄k ← PX(zk − ρkF(zk))

Evaluate rk with (101) (or (102))
while rk > L do
ρk ← ν ρk

z̄k ← PX(zk − ρkF(zk))

Evaluate rk with (101) (or (102))
end while
Perform the correction step of extragradient or prediction–correction method.
if rk < Lmin then
ρk = 1

ν ρk

end if

5 Newton based methods

5.1 Principle of the nonsmooth Newton methods

In Section 3.3, several formulations of the frictional contact problem by means of nonsmooth equations
have been presented. These nonsmooth equations call for the use of nonsmooth Newton’s methods.
Remember that the standard Newton method consists in solving

G(z) = 0 (103)

by performing the following Newton iteration

zk+1 = zk − J−1(zk)G(zk). (104)

If the mapping G is smooth, the matrix J is the Jacobian matrix of G with respect to z, that is J(z) =

∇zG(z). Whenever G is nonsmooth but locally Lipschitz continuous, the Jacobian matrix J is replaced
by an element Φ(z) of the generalized Jacobian at z: Φ(z) ∈ ∂G(z). Let us recall the definition of the
generalized Jacobian. By Rademacher’s Theorem, if G is locally Lipschitz continuous, then G is almost
everywhere differentiable and let us define the set DG by

DG := {z | G is differentiable at z}. (105)

The generalized Jacobian of G at z can be defined by

∂G(z) = conv∂BG(z), (106)

with
∂BG(z) = { lim

z̄→z,z̄∈DG

∇G(z̄)}. (107)

If Φ(z) is nonsingular, then an iteration of the nonsmooth Newton method is given by

zk+1 = zk − Φ−1(zk)(G(zk)). (108)
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Algorithm 4 Nonsmooth Newton method for (103)

Require: G data of Problem (103)
Require: z0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the max number of iterations
Ensure: z solution of Problem (103)

k← 0

while error > tol and k < itermax do
compute (select) Φ(zk) ∈ ∂G(zk)

zk+1 ← zk − Φ−1(zk)(G(zk))

Evaluate error.
k← k + 1

end while
z← zk

The resulting nonsmooth Newton method is detailed in Algorithm 4.
The convergence of nonsmooth Newton methods is based on the assumption of semi–smoothness of

the nonsmooth function in (103). For this reason they are often called semi–smooth Newton methods (see
[Facchinei and Pang, 2003, Section 7.5] and references therein).

5.2 Application to the discrete frictional contact problem

We use the Alart–Curnier function Fac(u, r) in (63), Jean–Moreau function Fmj(u, r) in (61), Fischer-
Burmeister function FFB(u, r) in (79), and the natural map F nat

vi in (51) to define a Newton method for
the Problem FC.

Computation of an element of ∂G For any r0 in the nonsmooth domain of G, we compute Φ(r0) =

limt→0 Φ(r(t)) with t→ r(t) a parametrization such that limt→0 r(t) = r0 with r(t) in the smooth domain
for all t. Similar computations can also be found in [Joli and Feng, 2008] where a Newton method based
on the formulation (51) is used contact by contact in a Gauss–Seidel loop.

Lipschitz continuity properties For the mappings F nat
vi , Fac, FFB, Fmj, Fxsw, whose expressions is mostly

made of the Lipschitz functions PX ,min,max and ‖.‖ ; the local Lipschitz properties can be shown with-
out difficulties. For the mapping FFB, the proof of Lipschitz continuity of φFB can be found in [Sun
and Sun, 2005] and references therein. This ensures the consistency of the definition of the generalized
Jacobians.

5.3 Convergence and robustness issues.

The local convergence of the nonsmooth Newton methods is based on the semi-smoothness of the mapping
G and the fact that all elements of the generalized Jacobian at the solution point z?, Φ(z?) ∈ ∂G(z?)

are non singular (see [Qi and Sun, 1993] and Chapter 1 of [Qi et al., 2018] for a survey of mathematical
results). For our application, the semi-smoothness of the mapping Fac, Fmj, or Fhsw is proven in several
papers [Christensen and Pang, 1998, Hüeber et al., 2008]. The strong semi–smoothness of φFB can be
found in [Sun and Sun, 2005].

On the other hand, the regularity of all elements of the generalized Jacobians is not guaranteed. The
first reason is the possible rank deficiency of the matrix W , which is usual in rigid body applications
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as discussed in Section 2.3. Even if we consider a full rank matrix W , as in the standard one contact
case for instance, the invertibility of all the elements of the generalized Jacobian at the solution point
is not straightforward. For the mapping Fac, Fmj, some results are given in [Alart, 1993, 1995, Jourdan
et al., 1998]. Some of the results depend on the value of the coefficient of friction and the exact penalty
parameters ρ, ρN, ρT parameters. For the mapping Fhsw, some other results can be found in [Hüeber et al.,
2008].

In the numerical practice and even ifW is full-rank, it may happen that the elements of the generalized
Jacobians are not regular or very badly conditioned when we are far from the solution. This fact is
reported in [Alart, 1993, 1995, Jourdan et al., 1998, Hüeber et al., 2008, Koziara and Bićanić, 2008].
Some divergence of the Newton algorithm can be encountered. A few work has been done to understand
this problem. Among them, we cite [Hüeber et al., 2008] where some modifications of the elements of
the generalized Jacobian are performed far form the solution to keep the Newton iteration matrix regular
and well conditioned when the function Fhsw is chosen. This very interesting work opens new directions
of research for the other mappings. In [Koziara and Bićanić, 2008], some other heuristics are developed
to try to avoid divergence of the Newton loop. In the two next sections, we present two complementary
ways to partly solve this problem by choosing consistently the parameters ρ, ρN, ρT and by applying some
line–searches techniques to globalize the convergence.

5.4 Estimation of ρ, ρN, ρT parameters

One of the key parameters in the efficiency of the nonsmooth Newton methods is the choice of the
parameter ρ in the parameterized natural map (50) and the parameters ρN and ρT in the Jean–Moreau
and Alart-Curnier functions (61) and (63). The default choice is to set these parameters equal to 1 but
the numerical practice shows that the convergence of the nonsmooth solvers is drastically deteriorated,
especially if the norm or the conditioning of the matrix W is far from this unit value. There is no
theoretical rules to size this parameters, but some heuristics may be found in the literature for a single
contact problem that we expose in the sequel.

Inverse of a norm of W A first simple choice is to consider the inverse of a norm of the matrix W .
With this heuristics, we set the ρ parameter before the Newton loop as follows:

ρ =
1

‖W‖
, ρN = ρT =

1

‖W‖
. (109)

This choice is mainly based on a guess of the inverse of the local Lipschitz constant of the operator
Wr + q. In the case of the natural map, it amounts to neglecting the nonlinear contribution of g. For
the norm, whenever the matrix is symmetric definite positive, choosing the 2-norm based on the spectral
radius ‖W‖2 = ρ(W ) = λmax(W ) would yield:

ρ =
1

λmax(W )
, ρN = ρT =

1

λmax(W )
. (110)

Estimation based on the splitting WNN and WTT A second possible choice for the map (61) and
(63) is to use the fact that the problem is split with respect to the normal and the tangent directions. In
that case, we compute a value of ρN that is based on the eigenvalues of WNN and a value of ρT based on
the eigenvalue of WTT. For a single contact, we set

ρN =
1

WNN

, ρT =
1

λmax(WTT)
(111)
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A third option it also to take into account the conditioning of the matrix WTT by choosing

ρN =
1

WNN

, ρT =
λmin(WNN)

λ2
max(WTT)

(112)

Again, these heuristics implicitly assume that the Delassus matrix W is symmetric definite positive.

Adaptive estimation of the parameters In [Koziara and Bićanić, 2008], an adaptive way of updating
ρ is proposed that has not been implemented for our experiments.

Default choices By default, we use the rule (111) for the mapping (61) and (63) and the rule (110)
for the natural map. When other rules are chosen in the comparison, they are specified.

5.5 Damped Newton and line-search procedures

We use mainly two type of line-search procedures: the Goldstein-Price and the Armijo line-search. Usu-
ally, strong mathematical assumptions are needed to guarantee their success, especially on the smoothness
of the merit function M(x). For the Newton method, we use as merit function the half of the norm of
G, that is

M(x) =
1

2
‖G(x)‖ (113)

with G taken accordingly to the formulation equals to F nat
vi , Fac, FFB, Fmj, Fxsw. Clearly, the smoothness

assumptions are not satisfied in our case. Even if the assumptions are fulfilled and despite the math-
ematical proofs, in practice, is is recommended that some additional stopping criteria be added during
extrapolation and interpolation phases to avoid infinite loops. In the sequel, we use the recommendations
in Chapter 3 of [Bonnans et al., 2003], where the reader can find all the mathematical explanations of why
they terminate, under some assumptions on the merit function. The choice of the values for the param-
eters m1, m2 for the Goldstein-Price line-search and the parameter m1 alone for the Armijo line-search
is also discussed and it is advised to choose m1 <

1
2 and m2 >

1
2 .

Termination requires the existence of a function q ∈ C1(IR) with q′(0) < 0 which is the value of the
merit function in a given direction d. This function has to be bounded from below. In our case, this
function is q : t→ 1

2‖G(r+ td)‖. An additional stopping criterion is implemented as a maximum number
of iterations and when the line-search fails, the Newton loop is continued with the last value of the step
found by the line–search.

The Goldstein–Price (GP) line search and Armijo line search are described in Algorithm 5 and Algo-
rithm 6.

5.6 Nomenclature

A nomenclature for the algorithms based on the nonsmooth Newton methods is listed in Table 2.

6 Splitting techniques and proximal point algorithm

Splitting techniques are standard techniques to solve VI(F,X) when the function F is affine that is
F (z) = Mz + q and the set X can decomposed in a Cartesian product of independent smaller sets
X = ΠiXi. Usually, a block splitting of the matrix M is performed and a Projected Successive Over
Relaxation (PSOR) method is used to solve the VI. Since the cone K is a product of second-order cones
in IR3, a natural way to split the problem is to form sub-problems by using single contact as a building
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Algorithm 5 Goldstein–Price (GP) line search
Require: x, the starting point of the line-search.
Require: d, the direction of search.
Require: t, an initial stepsize-value.
Require: t→ q(t), for t > 0, with q ∈ C1 bounded from below and q′(0) < 0, a merit function representing
f(x+ td)

Require: m1, m2, parameters with 0 < m1 < m2 < 1

Require: a, with a > 1, parameter for extrapolation
Ensure: a finite line-search
tL ← 0

tR ← 0

∆← q(t)−q(0)
t

while m2q
′(0) > ∆ or ∆ > m1q

′(0) do
if m1q

′(0) < ∆ then
tR ← t

end if
if ∆ < m2q

′(0) then
tL ← t

end if
if tR = 0 then
t← at

else
t← tL+tR

2

end if
∆← q(t)−q(0)

t

end while

Algorithm 6 Armijo(A) line search
Require: x, the starting point of the line-search.
Require: d, the direction of search.
Require: t, an initial stepsize-value.
Require: t→ q(t), for t > 0, with q ∈ C1 bounded from below and q′(0) < 0, a merit function representing
f(x+ td)

Require: m1, a parameter with 0 < m1 < 1

Require: a, with a > 1, parameter for extrapolation
Ensure: a finite line-search

while m1q
′(0) < q(t)−q(0)

t do
if tR = 0 then
t← at

else
tR ← t

t← tR
2

end if
end while
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Name Algo. Additional informations

NSN-NM 4 Natural map formulation (51)
NSN-AC 4 Alart–Curnier formulation (63)
NSN-JM 4 Jean–Moreau formulation (61)
NSN-FB 4 Fischer-Burmeister formulation (79)
NSN-NM-GP 4 & 5 Natural map formulation (51) and the Goldstein–Price (GP) line search
NSN-AC-GP 4 & 5 Alart–Curnier formulation (63) and the Goldstein–Price (GP) line search
NSN-JM-GP 4 & 5 Jean–Moreau formulation (61) and the Goldstein–Price (GP) line search
NSN-FB-GP 4 & 5 Fischer-Burmeister formulation (79) and the Goldstein–Price (GP) line search
NSN-NM-A 4 & 6 Natural map formulation (51) and the Armijo(A) line search
NSN-AC-A 4 & 6 Alart–Curnier formulation (63) and the Armijo(A) line search
NSN-JM-A 4 & 6 Jean–Moreau formulation (61) and the Armijo(A) line search
NSN-FB-A 4 & 6 Fischer-Burmeister formulation (79) and the Armijo(A) line search
NSN-AC-HYBRID 4 & 2 Alart–Curnier formulation (63) with a pre computation of the initial guess with 100

iterations of EG-VI-UPK algorithm the
Table 2: Naming convention for the algorithms based on nonsmooth Newton (NSN) method

block. The sub-problems can be solved by any method for the VI that have been presented in the previous
sections. In the same way, the proximal point algorithm can also be used which amounts to solving the
original VI(F,X) by solving a sequence of (easier) VIs.

6.1 Splitting and relaxation techniques

The particular structure of the cone K as a product of second-order cones in IR3 calls for a splitting of
the problem contact by contact. For Problem FC, the relation

u = Wr + q (114)

is splitted along each contact as follows:

uα = Wααrα +
∑
β 6=α

Wαβrβ + qα, for all α ∈ 1 . . . nc, (115)

where the matrices α and β are used to label the variable for each contact. The matrices Wαβ with
α ∈ 1, . . . , nc and β ∈ 1, . . . , nc are easily identified from (114). From (115), a projected Gauss–Seidel
(PGS) method is obtained by using the following update rule at the k-th iterate:

uαk+1 = Wααrαk+1 +
∑
β<α

Wαβrβk+1 +
∑
β>α

Wαβrβk + qα, for all α ∈ 1 . . . nc. (116)

A Projected Successive Over Relaxation (PSOR) scheme is derived by introducing a relaxation parameter
ω > 0 such that

uαk+1 =
1

ω
Wααrαk+1 −

1

ω
Wααrαk +

∑
β<α

Wαβrβk+1 +
∑
β>α

Wαβrβk + qα, for all α ∈ 1 . . . nc. (117)

At the k-th iteration, the following problem is solved for each contact α:
uαk+1 = W̄ααrαk+1 + q̄αk+1,

ûαk+1 = uαk+1 + g(uαk+1),

Kα,? 3 ûαk+1 ⊥ rαk+1 ∈ Kα,

(118)

RR n° 9118



On solving frictional contact problems 32

where W̄αα = 1
ωW

αα

q̄αk+1 = − 1
ωW

ααrαk +
∑
β<αW

αβrβk+1 +
∑
β>αW

αβrβk + qα
, for all α ∈ 1 . . . nc. (119)

The problem (118) has exactly the same structure as Problem FC, but is of lower size since it is only for
one contact. It is solved by a local solver, which can be any of the algorithms presented in this report or
even an analytical method (enumerating all the possible cases as in [Bonnefon and Daviet, 2011]).

The PSOR algorithm is summarized in Algorithm 7 and the NSGS correspond to the case ω = 1.

Algorithm 7 PSOR algorithm for Problem FC

Require: W, q, µ

Require: r0 initial values
Require: tol > 0, tollocal tolerance values and itermax > 0, iterlocalmax > 0 the max number of local iterations
Require: ω a relaxation parameter
Ensure: r, u solution of Problem FC

while error > tol and k < itermax do
for α = 1 . . . nc do

W̄αα
k+1 ← 1

ωWαα

q̄αk+1 ← − 1
ωWααrαk +

∑
β<α Wαβrβk+1 +

∑
β>α Wαβrβk + qα

Solve the single contact problem FC(W̄αα, q̄αk+1, µ) at accuracy tollocal with a maximum of iteration
iterlocalmax

end for
Evaluate error.
k← k + 1

end while
r← rk

u← uk

Applications in frictional contact date back to the work of [Mitsopoulou and Doudoumis, 1988, 1987]
for two-dimensional friction. In [Jourdan et al., 1998], this method is developed in the Gauss-Seidel
configuration (ω = 1) with a local Newton solver based on the Alart–Curnier formulation. If the local
solver performs only one iteration of the VI solver based on projection, we get a standard splitting
technique for VI. In Table 3, the methods based on PSOR used in the comparison are summarized.

6.2 Proximal points techniques

The first use of the proximal idea dates back to the early days of convex analysis [Moreau, 1965]. The
proximity operator of a proper, lower semi-continuous function f is defined as

proxf (x) = min
z
f(z) + α

2 ‖z − x‖
2, α > 0 (120)

and the point proxf (x) is called the proximal point. The latter is unique whenever f is convex. Recently,
there has been a surge in the use of the proximity operator in optimization. There has been applications
to non-differentiable, large-scale optimization, mainly since the proximity operator enjoys nicer property:
it is differentiable and it may be easier to compute in some cases. There is a wealth of literature on
the use of proximal mapping in optimization [Parikh et al., 2014]. The basic idea is to replace (part of)
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the objective function by the proximal operator of it. Starting from an initial x0, a proximal algorithm
produces a sequence {xk} by the relation xk+1 = proxf (xk). The sequence is guaranteed to converge
whenever f is convex. This basic algorithm can be enhanced by a proper choice of the parameter α: some
acceleration techniques ensure the convergence of the sequence {xk} with a different α at each iteration.
In the non-convex case, the mapping proxf is still well behaved whenever f is said to be prox-regular and
α is small enough.

The proximal mapping can also be defined for set-valued mappings. Then it correspond to a regu-
larization of the (sub-) differential of f . More precisely, it correspond to the resolvent of ∇f , defined
as Rα := α(αI + T )−1. Starting from a initial guess x0, a sequence is computed as xk+1 = Rα(xk)

(assuming the singlevaluedness of Rα). Much less attention has been given to this kind of algorithms, es-
pecially few numerical studies have been conducted. From the theoretical point of view, the convergence
is shown in [Rockafellar, 1976] when the mapping T is maximal monotone, an extension of the convex
case previously mentioned. With the same hypothesis, the mapping Rα is single-valued for all α > 0.
For concreteness, consider the variational inequality

0 ∈ F (x) +NX(x) also written as 0 ∈ T (x). (121)

Then, the proximal point algorithm applied to this VI consists in solving at each step the VI

0 ∈ F (x) + αI − αxk +NX(x) (122)

that can be compactly written as
0 ∈ Fα,xk

(x) +NX(x). (123)

The parameter α can be changed for each sub-VI.
Other variants of the basic algorithm can be derived, like adding a relaxation parameter ω:

xk+1 = (1− ω)xk + ωzk+1, (124)

where zk+1 The algorithm is described in algorithm 8.

Algorithm 8 Proximal point algorithm for the VI (37)

Require: F,X Data of VI (37)
Require: ω relaxation parameter
Require: α0 the initial value of the proximal point parameter
Require: x0 initial value
Require: tol > 0, tolin tolerance values and itermax > 0 the max number of iterations
Ensure: x solution of VI (37)

k← 0

while error > tol and k < itermax do
Solve VI(Fαk,xk

, X) for zk+1 at accuracy tolint

xk+1 ← (1− ω)xk + ωzk+1

Evaluate error.
Compute αk+1

k← k + 1

end while
x← xk+1
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For solving the sub-problems VI(Fα,xk
, X), any of the previous algorithms for VI can be used. The

main interest of the proximal point algorithm is that the mapping Fα,xk
is nicer than F . For instance, if

F (x) = Mx+q , then the matrix in F (α, xk) is M +αI. It is easy to see that for α large enough, M +αI

is positive-definite, with no assumption on M . With nonlinear operator, choosing α large enough ensures
that Fα,xk

is monotone (with some condition on F ). In practice, this implies that a greater number of
algorithms are able to solve the VI. It is a good indicator of an easier problem to solve, and we observe
that this approach is able to provide some robustness to the VI-based approaches. The introduction of
two additional parameters (α and tolint) is the main drawback of this approach. Indeed, instead of solving
just one VI, this approach calls for solving multiple sub-VIs. This additional computational effort can be
reduced in two ways: the first one is to drive the proximal parameter αk as quickly as possible to zero, in
order to reduce the number of sub-VI to solve. The other option is to set the tolerance tolint to a higher
value when αk is large, so as to reduce the computational effort for the sub-VIs. The choice of tolint is
discussed in Section 6.3.

6.3 Control of the tolerance of internal solvers tolint and tollocal in the splitting
and proximal approaches

In Algorithms 7 and 8 an internal tolerance is used to control the required accuracy of the internal
solver. It is generally not useful to solve the internal problem at the accuracy of the global one. For
Algorithm 7, the local tolerance tollocal is set by default to a very low value of 10−14. An adaptive local
tolerance strategy has also been tested that sets the local tolerance to a fraction of the current error as,
for instance, tollocal = error/10. For the proximal point algorithm in Algorithm 8, the internal tolerance
tolint is set to a fraction of the error tolint = error/10.

6.4 Control of the proximal point parameter αk

In Algorithm 8, the proximal point parameter αk is updated for each sub-VI. We choose to implement
two rules for its computation. The first one is inspired by the work in [Hager and Zhang, 2008] that
is based on the current error or residual of the algorithm. The parameter is computed thanks to the
following rule:

αk = σ(error)ν , (125)

where σ > 0, ν > 0 are two additional parameters that influence the rate of driving αk to zero. The other
rule is an heuristic rule that starts from a given value of α0. If the internal solver for the sub-VI succeeds
to reach the required accuracy then αk+1 is decreased and set to αk+1 = αk/10. If the internal solver do
not succeed then we increase αk+1 as αk+1 = 5αk.

6.5 Nomenclature

A nomenclature for the algorithms based on the projection/splitting approach is given in Table 3.

7 Optimization based methods

In this section, the Delassus matrix is assumed to be symmetric in order to be able to state simple convex
optimization problems.
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Name Algorithm Additional informations
NSGS-AC 7 with ω = 1 local solver: NSN-AC with tolerance tollocal

NSGS-JM 7 with ω = 1 local solver: NSN-JM with tolerance tollocal

NSGS-AC-GP 7 with ω = 1 local solver: NSN-AC-GP with tolerance tollocal

NSGS-JM-GP 7 with ω = 1 local solver: NSN-JM=GP with tolerance tollocal

NSGS-FP-DS-One 7 with ω = 1 local solver: one iteration of FP-DS
NSGS-FP-VI-UPK 7 with ω = 1 local solver: FP-VI-UPK with tolerance tollocal

NSGS-EXACT 7 with ω = 1 exact local solver

PSOR-AC 7 local solver: NSN-AC with tolerance tollocal

PPA-NSN-AC 8 internal solver: NSN-AC solver
PPA-NSGS-AC 8 internal solver: NSGS-AC

Table 3: Naming convention for the algorithms based on splitting and proximal algorithms

7.1 Alternating optimization problem

The Panagiotopoulos approach described in Section 3.4 generates a family of solvers by choosing two
specific solvers for the normal contact problem (88) and the tangential contact problem (89), respectively.
This method may be viewed as a two-block Gauss-Seidel method (as pointed out by [Tzaferopoulos, 1993]).
More precisely, the following choices may be made for the normal and tangent problems.

The normal contact problemmin
1

2
r>NWNNrN + r>N q̃N

s.t. rN > 0
with q̃N = qN +WNTrT,k, (126)

is a convex quadratic program with simple bound constraints. In the literature, a large number of solvers
has been developed to solve such problems. Among others, we might cite the active set strategy solvers
[Fletcher, 1987, Nocedal andWright, 1999] that are mainly dedicated to small–scale systems, the projected
gradient [Calamai and More, 1987] and projected conjugate gradient methods [Moré and Toraldo, 1989,
Moré and Toraldo, 1991] that are more dedicated to large–scale systems. Note that there exists also a
wealth of methods in the literature that improves the methods of [Moré and Toraldo, 1991] for large–scale
systems. For the reader interested in those details, we refer to the book of [Dostál, 2016](see especially
the Section 8.7 for a review of the different approaches). It is clear that we might also use semi-smooth
Newton methods or interior point methods but our experience has shown that such methods are not
efficient when ker(WNN) 6= {0}. The optimality conditions of this quadratic problem reduced to a linear
complementarity problem with a semi-definite matrix. In that case, it is also possible to solve the problem
with PSOR techniques with line-searches. Due to space constraints, we decided in this work to use the
projected Gauss-Seidel (PGS) algorithm and the projected gradient algorithm of [Calamai and More,
1987] to solve the normal problem described. The projected gradient algorithm solved the following QP
for a convex set C min q(r) :=

1

2
r>Wr + r>b

s.t. r ∈ C
(127)

with the algorithm described in Algorithm 9.
The tangential problem,min

1

2
r>T WTTrT + r>T q̃T

s.t. rT ∈ D(µr̃N)
with q̃T = qT +WTNrN,k+1, (128)
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Algorithm 9 Projected gradient algorithm for QP (127)

Require: W, b that defines q(r)
Require: C a convex set
Require: r0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the maximum number of iterations
Require: ρ0 > 0, l, σ ∈ (0, 1)

Require: ilsmax maximum number of line-search iterations
Ensure: r solution of Problem (127)

rk ← r0 ; θ0 ← q(r0) ; k← 0

while error > tol and k < itermax do
Armijo like–search procedure
ils ← 0

while criterion > 0 and ils < ilsmax do
ρ← ρ0lils

r← PC(rk − ρ(Mrk + b))

θ ← q(r)

criterion← θ − θk − σ(Mrk + b)>(r − rk)

ils ← ils + 1

end while
rk ← r ; θk ← q(r);
evaluate error.

end while

is also a convex program but with a more complex structure since the constraints are quadratic one.
There exists dedicated algorithm, as ([Dostál and Kozubek, 2012]), for QP with convex constraints.
Earlier application of projected gradient and projected gradient techniques for the frictionless problem
can also be found in [Barbosa et al., 1997], including a comparison with PSOR techniques.

In the report, we will use either a) a reformulation of the optimality conditions of this problem as a
variational inequality and we apply the fixed point algorithm and the extra gradient algorithm of Section 4
or b) an adaptation of one of the splitting techniques detailed in Section 6. The algorithm is described
in Algorithm 10. In Table 4, we detailed the algorithms we use in the present study.

7.2 Successive approximation method

The methods of successive approximations is a natural tool for the numerical realization of Problem FC.
It is based on the Tresca approximation of the Coulomb cone as described in Section 3.4 and the work
of the celebrated Czech school [Nečas et al., 1980, Haslinger, 1983, 1984, Haslinger et al., 1996]. Each
iterative step is represented by an auxiliary contact problem with a given friction threshold described by
quadratic program over a cylinder (93), that we recall there:

θ = h(rN)

min
1

2
r>Wr + r>q

s.t. r ∈ C(µ, θ).

(129)

RR n° 9118



On solving frictional contact problems 37

Algorithm 10 Panagiotopoulos decomposition algorithm for Problem FC

Require: W, q, µ

Require: r0 initial values
Require: tol > 0, tolint tolerance values and itermax > 0 the max number of iterations
Ensure: r, u solution of Problem FC

rk ← r0 ; k← 0

while error > tol and k < itermax do
q̃N ← qN + WNTrT,k

solve (126) for rN,k+1 at accuracy tolint

q̃T ← qT + WTNrN,k+1

solve (128) for rT,k+1 at accuracy tolint

k← k + 1

evaluate error.
end while
r← rk

u←Wr + q

The radius of the cylinder is then updated in an iterative procedure. The algorithm is described in
Algorithm 11

Algorithm 11 Tresca approximation algorithm for Problem FC

Require: W, q, µ

Require: r0 initial values
Require: tol > 0, tolint tolerance values and itermax > 0 the max number of iterations
Ensure: r, u solution of Problem FC

rk ← r0 ; k← 0

while error > tol and k < itermax do
θ ← h(rN,k)

solve (129) for rN,k+1, rT,k+1 at accuracy tolint
k← k + 1

evaluate error.
end while
r← rk

u←Wr + q

In the literature, the successive approximation technique has been used in the bidimensional case
in [Haslinger et al., 2002] & [Dostál et al., 2002] with improved and dedicated QP solvers over box-
constraints. Two strategies are implemented: a) the classical Tresca iteration (called FPMI) and b) the
Panagiotopoulos decomposition plus a Fixed point (called FPMII). They use a specific QP solver for box
constraint [Dostál, 1997] that is an improvement of Moré–Toraldo method [Moré and Toraldo, 1991]. This
technique has been directly extended in the three-dimensional case with a faceting of the cone in [Haslinger
et al., 2004]. In the latter case, the problem is still a box constrained QP since it contains only polyhedral
constraints. In [Haslinger et al., 2012] the authors propose a successive approximation technique in 3D
with the special solver of [Kučera, 2007, 2008] which is itself an extension to disk constraints of the Polyak
method (conjugate gradient with active set on the bounds constraint) and its improvements [Dostál, 1997,
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Dostál and Schöberl, 2005]. Other improvements of the method may be found in [Dostál and Kučera,
2010] with a last improvement of the method in [Dostál and Kozubek, 2012]. All this work is summarized
and details in [Dostál, 2016].

7.3 ACLM approach

In the convex SOCCP approach described in Section 3.4, we have to solve for a given value the following
problem  min

1

2
r>Wr + r>(q + s)

s.t. r ∈ K.
(130)

which is again a convex quadratic program over second–order cone. The approach listed above could
again be used to solve this problem. In this work, we solve it by three different ways: a) an adaptation of
one of the splitting techniques detailed in Section 6, b) using the projected gradient algorithm dedicated
to convex QP described in Algorithm 9 or c) the fixed point algorithm and the extra gradient algorithm
of Section 4 . The algorithm is described in Algorithm 12 and we detailed the algorithms we use in the
present study in Table 4.

Algorithm 12 ACLM approximation algorithm for Problem FC

Require: W, q, µ

Require: r0 initial values
Require: tol > 0, tolint tolerance values and itermax > 0 the max number of iterations
Ensure: r, u solution of Problem FC

u0 ←Wr0 + q ; k← 0

while error > tol and k < itermax do
s← g(uk)

solve (130) for rk+1 at accuracy tolint
uk+1 ←Wrk+1 + q

k← k + 1

evaluate error.
end while
r← rk

u← uk

A nomenclature for the algorithms based on the optimisation approach is given in Table 4.

7.4 Convex relaxation and the SOCCP approach

Finally, we propose to compare the optimization based algorithm to a complete convex relaxation of the
problem by solving the convex SOCCP (130) with s = 0. This procedure is very similar to the approach
in [Tasora and Anitescu, 2009, Anitescu and Tasora, 2010, Tasora and Anitescu, 2011] where only the
convex problem is solved.

7.5 Control of the tolerance of internal solvers tolint in optimization approach

In Algorithms 10, 11 and 12, an internal tolerance is used to control the accuracy of the internal solver. It
is generally not useful to solve the internal problem at the accuracy of the global one. In the comparison
study, we set the internal tolerance tolint to error/10.
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Name Algo. Additional informations
PANA-PGS-FP-VI-UPK 10 The normal problem is solved by a PGS algorithm and the

tangent problem is solved with the FP-VI-UPK algorithm
PANA-PGS-EG-VI-UPK 10 The normal problem is solved by a PGS algorithm and the

tangent problem is solved with the EG-VI-UPK algorithm
PANA-PGS-CONVEXQP-PG 10 &9 The normal problem is solved by a PGS algorithm and the

tangent problem is solved with Algorithm 9
PANA-CONVEXQP-PG 10&9 Both normal and tangent problems are solved with Algorithm 9

TRESCA-NSGS-FP-VI-UPK 11 The problem 129 is solved with the FP-VI-UPK algorithm
TRESCA-FP-VI-UPK 11 & 1 The problem 129 is solved with the FP-VI-UPK algorithm
TRESCA-EG-VI-UPK 11 & 2 The problem 129 is solved with the EG-VI-UPK algorithm
TRESCA-CONVEXQP-PG 11 &9 The problem 129 is solved with Algorithm 9

ACLM-NSGS-FP-VI-UPK 12 The problem 130 is solved with the NSGS-FP-VI-UPK algorithm
ACLM-FP-VI-UPK 12& 1 The problem 130 is solved with the FP-VI-UPK algorithm
ACLM-EG-VI-UPK & 2 12 The problem 130 is solved with the EG-VI-UPK algorithm
ACLM-CONVEXQP-PG 12 The problem 130 is solved with the Algorithm 9

Table 4: Naming convention for optimization based algorithms

8 Comparison framework

In this section, we present our comparison framework. Especially, we specify how the performance is
measured and how the performance profiles are built.

8.1 Measuring errors

A key parameter in the measurement of performance of the solver is the definition of the error. The
absolute error is given by the norm of the natural map. A relative error is computed with respect to the
norm of the vector q. More precisely, the error is given by

error =
‖F nat

vi (r)‖
‖q‖

. (131)

assuming that ‖q‖ is larger than the machine accuracy. If not, we may assume that q = 0 and a trivial
solution can be computed. For all solvers, the error in (131) is compared to the required tolerance tol

given by the user.
For some iterative solvers such as VI-FP, VI-EG, NSGS and PSOR, the computation of the error (131) at

each iteration penalizes the performance of the solver: it amounts to computing a matrix-vector product,
an operation that is more computationally expensive than one iteration of the solver. Hence, a cheaper
error measurement is used inside the main loop in Algorithms 1, 2 and 7. This cheaper error measurement
is given by

errorcheap =
‖rk+1 − rk‖
‖rk‖

. (132)

The tolerance of solver is then self-adapted in the loop to meet the required tolerance based on the error
given by (131).

8.2 Performance profiles

The concept of performance profiles was introduced in [Dolan and Moré, 2002] for bench-marking opti-
mization solvers on a large set of problems. For a set P of np problems, and a set S of ns solvers, we
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define a performance criterion for a solver s, a problem p and a required precision tol by

tp,s = computing time required for s to solve p at precision tol, (133)

A performance ratio over all the solvers is defined by

rp,s =
tp,s

min {tp,s, s ∈ S}
> 1 . (134)

For τ > 1, we define a distribution function ρs for the performance ratio for a solver s as

ρs(τ) =
1

np
card{p ∈ P, rp,s 6 τ} 6 1. (135)

This distribution computes the number of problems p that are solved with a performance ratio below a
given threshold τ . In other words, ρs(τ) represents the probability that the solver s has a performance
ratio not larger than a factor τ of the best solver. It is worth noting that ρs(1) represents the probability
that the solver s beats the other solvers, and ρs(τ) characterizes the robustness of the method for large
values of τ . To summarize: the higher ρs is, the better the method is. In the sequel, the term performance
profile denotes a graph of the functions ρs(τ), τ > 1.

The computational time is used to measure performance in (133). Other criteria can be used, like the
number of floating point operations (flops). It is a better measure of performance since it is independent
of the computer. Unfortunately, it is usually difficult to measure in an automatic and robust way over
various platforms. Whence, we stick with the computational time.

In our experiments, we decided to fix the required accuracy with the tolerance of each solver. Another
performance criteria could also be used: for instance a timeout could be defined and the metric would
be the error at that time. This a way to measure the ability of a solver to give an approximate solution
within a prescribed time limit that may be interesting for real-time applications. Another way to measure
performance may also be to divide the computational time by the number of contacts in order to judge of
the ability of the solver to be scalable. For the sake of conciseness, this has not been done in this report.

8.3 Benchmarks presentation

To perform the comparison of the solvers on a fair basis, we use a large set of problems that comes from
various applications. This collection is FCLib (Frictional Contact library) which is an open collection of
problems in a hdf5 format described in [Acary et al., 2014]3. In this work, we used the version v1.0 for
the comparisons that contains 2368 problems4.

The test sets are illustrated in Figure 3 and details on each test are given in Table 5. All the problems
have been generated thanks to the software codes LMGC905 and Siconos. In Table 5, the number of
degrees of freedom n corresponds to the degrees of freedom of the system before its condensation (or
reduction) to local variables. In other words, the number of rows of the matrix M and H in (1). The
contact density c is the ratio of the number of contact unknowns over the number of degrees of freedom:

c =
3nc
n

=
m

n
. (136)

The coefficient c corresponds also to the ratio between the number of rows of H over its number of
columns. If this number is larger than 1, the matrix H can not be full row rank and then the matrix
W is also rank deficient. Whenever m > n, we can observe in Table 5 that this number c is a good

3More information can be found at https://frictionalcontactlibrary.github.io
4 The whole collection of problems can be found at https://github.com/FrictionalContactLibrary/fclib-library
5https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home

RR n° 9118

https://frictionalcontactlibrary.github.io
https://github.com/FrictionalContactLibrary/fclib-library
https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home


On solving frictional contact problems 41

approximation of the rank ratio of the matrix W in our applications. The estimation of the rank of
matrix W shows that it is very close to the number of degrees of freedom of the system when c > 1. For
c≫ 1, the contact density is really high and the system suffers from hyperstaticity as we discussed in
Section 2.3. In Table 5, we also give an estimation of the conditioning of the matrix W . When is was
possible from a computational point of view, we perform a singular value decomposition (SVD) of the
matrixW to estimate the spectral radius and then the conditioning by cutting the small eigenvalues. This
process has two drawbacks. Firstly, the computation of the SVD decomposition can be really expensive
for large dense matrices. Secondly, the value of the condition number of the matrix is very sensitive
to the threshold for cutting off the small eigenvalues. This is the reason why we also use LSMR [Fong
and Saunders, 2011] algorithm to give an better approximation of the condition number of rank deficient
matrix.

The four first tests in Table 5, Cubes_H8_2, Cubes_H8_5, Cubes_H8_20 and LowWall_FEM, are
examples that involve flexible elastic bodies meshed by finite element methods. Due to a consistent choice
of the space-discretization of the contact surfaces, the Delassus matrix W in that case is full rank. In the
sequel, we will call these sets of examples the flexible test sets.
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(a) Cubes_H8 (b) LowWall_FEM

(c) Aqueduct_PR (d) Bridge_PR

(e) 100_PR_Periobox (f) 945_SP_Box_PL

(g) Capsules (h) Chain (i) KaplasTower (j) BoxesStack

(k) Chute_1000, Chute_4000, Chute_local_problems

Figure 3: Illustrations of the FClib test problems
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Cubes_H8_2 LMGC90 0.3 15 162 [3 : 5] [0.02 : 0.09] 1 [2.2.101 : 1.3.103] [8.1.105 : 1.5.106] 3.2.10−4

Cubes_H8_5 LMGC90 0.3 50 1296 [17 : 36] [0.02 : 0.09] 1 [3.3.104 : 7.2.104] [1.3.106 : 3.1.106] 4.2.10−4

Cubes_H8_20 LMGC90 0.3 50 55566 [361 : 388] [0.019 : 0.021] 1 [2.4.105 : 2.5.105] [1.3.106 : 5.2.106] 5.2.10−5

LowWall_FEM LMGC90 0.83 50 {7212} [624 : 688] [0.28 : 0.29] 1 – [9.3.102 : 5.0.105] 5.2.10−2

Aqueduct_PR LMGC90 0.8 10 {1932} [4337 : 4811] [6.81 : 7.47] [6.80 : 7.46] [4.7.107 : 3.4.108] [6.7.101 : 1.5.102] 1.1.10−15

Bridge_PR LMGC90 0.9 50 {138} [70 : 108] [1.5 : 2.3] [2.27 : 2.45] [8.3.104 : 1.1.105] [1.9.103 : 2.6.104] 5.8.10−18

100_PR_Periobox LMGC90 0.8 106 {606} [14 : 578] [0.2 : 3] [1.76 : 3.215] [4.3.102 : 1.0.106] [6.3.105 : 3.5.106] 8.8.10−20

945_SP_Box_PL LMGC90 0.8 60 {5700} [2322 : 5037] [1.22 : 2.65] [1.0 : 2.66] [2.2.104 : 4.4.105] [2.9.101 : 9.2.102] 1.3.10−10

Capsules Siconos 0.7 249 [96:600] [17 : 304] [0.53 : 1.52] [1.08 : 1.55] – [4.8 : 1.6.102] 3.3.10−02

Chain Siconos 0.3 242 {60} [8 : 28] [0.5 : 1.3] [1.05 : 1.6] [7.4.104 : 4.0.109] [1.5.101 : 4.7.105] 3.7.10−02

KaplasTower Siconos 0.7 201 [72 : 792] [48 : 933] [3.0 : 3.6] [2.0 : 3.53] [67 : 2174] [8 : 67] 5.4.10−08

BoxesStack Siconos 0.7 255 [6 : 300] [1 : 200] [1.86 : 2.00] [1.875 : 2.0] [3.8.104 : 2.5.107] [9.0 : 5.4.103] 2.23.10−14

Chute_1000 Siconos 1.0 156 [276 : 5508] [74 : 5056] [0.69 : 2.95] [1.0 : 2.95] [2.1.101 : 1.9.103] 6.6.10−02

Chute_4000 Siconos 1.0 40 [17280 : 20034] [15965 : 19795] [2.51 : 3.06] – – [5.5.101 : 9.0.103] 8.9.10−14

Chute_local_problems Siconos 1.0 834 3 1 1 1 [1.04 : 4.66] [2.6 : 2.6.101] 1.76.10−09

Table 5: Description of the test sets of FCLib library (v1.0)
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8.4 Software & implementation details

All the solvers that are used in this report are implemented in standard C99 in the component of the open
source software Siconos called numerics. The aim of Siconos is to provide a common platform for the
modeling, simulation, analysis and control of general nonsmooth dynamical systems6. The linear algebra
operations are based on BLAS/LAPACK. The algorithms VI-FP, VI-EG, NSGS and PSOR use the sparse
block structure of the Delassus matrix W . The NSN solvers relies on a standard sparse implementation
given by csparse7. We solve linear systems with the LU factorization method embedded in csparse. The
simulations are performed on the University of Grenoble-Alpes cluster ciment8.

8.5 Simulation campaign

The simulation campaign is described in Table 6. For some test sets, two simulation runs have been
performed with different precisions and prescribed time limits. A trade-off between the time limit and
the precision has been chosen such that all the problems of the test sets are solved by at least one solver.
In Sections 9 and 10, we report the results for the simulation campaign, which includes more that 27000

runs. Given this wealth of data, we do not report in this report, profiles when a family of solvers fails to
solve the instances9.

9 Comparison of methods by family

In this section, we perform a comparison of the solvers by family. The goal is to study the influence of
the various parameters and possible strategies on the performance of the solvers.

9.1 Numerical methods for VI: FP-DS, FP-VI-? and FP-EG-?

In Figure 4, we compare the different VI numerical solvers described in Section 4. Except for the FP-DS
solver, the solvers FP-VI-? and FP-EG-? are very robust. Nevertheless, they are quite slow to converge
in practice for large problems and/or with tight tolerances. Only the test sets for which the solvers have
reached the precision before the prescribed time limit are presented. For that reason, the results for the
test sets LowWall_FEM, LowWall_FEM II, Cubes_H8, Bridge_PR, AqueducPR, 945_SP_Box_PL,
BoxesStack, Chute_4000 and Chute_1000 are not depicted. The main conclusions are as follows:

1. The solver FP-DS suffers from robustness problems and a lot of divergence has been observed. This
is mainly due to the fact that we set a priori the ρ parameter in Algorithm 1 to a fixed value equal
to 1, independently of the problem.

2. The solvers FP-VI-? and FP-EG-? are really robust but slow. They are able to solve all the problems
but they require a lot of time. We did not observe divergence issues on all the test sets for these
solvers. Comparing to FP-DS, the self-adaptive rule for sizing the paramater ρk is of utmost
importance for the robustness and the convergence rate.

6More information on the software is available at http://siconos.gforge.inria.fr and the software can be downloaded at
https://github.com/siconos/siconos

7http://people.sc.fsu.edu/ jburkardt/c_src/csparse/csparse.html
8https://ciment-grid.ujf-grenoble.fr/
9Nevertheless, the reader can have access to the complete list of performance profiles at

https://github.com/siconos/faf/blob/master/TeX/Full-test/full-test_current.pdf
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Cubes_H8_? 10−08 100 1.73 2.13 4.83−03 5.78−03 0
Cubes_H8_? II 10−04 100 0.92 1.06 2.66−03 2.83−03 0
LowWall_FEM 10−08 400 13.1 3.50 1.91−02 5.09−03 0
LowWall_FEM II 10−04 400 14.8 2.85 2.16−02 4.54−03 0
Aqueduct_PR 10−04 200 5.80 6.36 4.90−04 3.03−04 0
Bridge_PR 10−08 400 10.3 12.9 1.23−01 2.88−01 0
Bridge_PR II 10−04 100 0.048 0.038 1.30−03 1.42−03 0
100_PR_Periobox 10−04 100 0.064 0.062 1.56−04 1.22−04 0
945_SP_Box_PL 10−04 100 3.20 1.71 6.45−04 3.36−04 0
Capsules 10−08 50 1.46.10−02 1.74.10−02 5.67−05 6.26−05 0
Chain 10−08 50 6.19.10−04 3.68.10−04 3.15.10−05 1.46.10−05 0
KaplasTower 10−08 200 1.27.10−01 3.75.10−01 1.84.10−04 4.57.10−04 0
KaplasTower II 10−04 100 2.84.10−02 1.51.10−01 3.39.10−05 1.84.10−04 0
BoxesStack 10−08 100 3.42.10−02 8.87.10−02 3.24.10−04 9.77.10−04 0
Chute_1000 10−04 200 2.62 3.06 6.76−04 6.58−04 0
Chute_4000 10−04 200 10.52 7.88 5.71−04 4.07−04 0
Chute_local_problems 10−08 10 1.80.10−04 1.57.10−05 1.80.10−04 1.57.10−05 0

Table 6: Parameters of the simulation campaign
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3. Except for the test set KaplasTower II, the FP-EG-? performs better than FP-VI-?. Otherwise, the
performance are quite similar since we plot the performance for a quite narrow range of values of
τ ∈ [1, 5]

4. The difference between the adaptive strategy for sizing ρk, UPK and UPTS, is negligible in all the
test sets. Therefore, the choice of the update rule is not really important.
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Figure 4: Comparison of numerical methods FP-DS, FP-VI-? and FP-EG-?

RR n° 9118



On solving frictional contact problems 47

9.2 Splitting based algorithms: NSGS-? and PSOR-?

In this section, we compare the family of solvers based on splitting and relaxation techniques described in
Section 6.1. Firstly, we start by comparing the choice of the local solvers in NSGS-? and then the effect
of the local tolerance tollocal. Secondly, we study the influence of the order of the contact list. Finally, we
study the effect of the relaxation parameter ω in PSOR-? solvers.

Influence of the local solver in NSGS-? algorithms In Figure 5, we report the performance profiles
of the NSGS-? for the different local solvers. The main conclusions are:

1. When the prescribed time limit is sufficiently large and the tolerance is low (10−4), we observe that
the NSGS-? solvers are robust. Indeed, we are able to find a local solver for each test sets that is
able to give a solution at the required accuracy. Nevertheless, there is no universal efficient local
solver that outperforms the other ones.

2. When the tolerance is equal to 10−8, the NSGS-? solvers have some difficulties to reach conver-
gence for all the problems within the prescribed time limit. This is the case for the test sets
LowWall_FEM, Cubes_H8, Bridge_PR, Chain, Capsules and BoxesStack. Generally, the conver-
gence is so slow that it is difficult to reach tight tolerance with a reasonable time limit.

3. Except for the test sets KaplasTower II and BoxesStack, the solver NSGS-EXACT behaves poorly.
This is mainly due to the fact that the local solver is not robust to find a solution when the
unknowns are far from the global solution for all the other contacts. This behavior was already
reported in [Daviet et al., 2011] where another solver based on a nonsmooth Newton technique is
used when the exact solution is not satisfactory.

4. The NSGS-FP-DS-One solver is most efficient on the test sets Bridge_PR II, KaplasTower II, Chain
and BoxesStack. In these tests sets, a part of the problems seems easier to solve and the NSGS-
FP-DS-One solver seems sufficient to get a global convergence. Nevertheless, this local solver seems
slow or suffers from robustness issues for other test sets.

5. On the flexible test sets, Cubes_H8_?, LowWall_FEM and the rigid test sets 945_SP_Box_PL
and Chute_4000, the best solver is NSGS-FP-VI-UPK for a relatively low required tolerance (tollocal =

10−06). For these test sets, an approximate solution of the single contact problems seems sufficient
to ensure an efficient convergence towards the solution without entailing robustness.

6. On the test sets 100_PR_PerioBox, KaplasTower, Chain, Capsules, the solver NSGS-NSN-? are
the best solvers and behave very well on Bridge_PR II. It seems that when a tight accuracy is
required, the solvers NSGS-NSN-? are useful and helps with a tight local tolerance to speed-up the
convergence.

7. For the Chute_1000, Chute_4000 test sets, we observe large differences between the local formula-
tions of the nonsmooth equations for the Newton solvers (NSGS-NSN-AC or NSGS-NSN-JM). The
solver NSGS-NSN-JM is the best solver and really better than NSGS-NSN-AC although their theo-
retical formulation are very close. These two test sets are characterized by difficult local problems
where the Delassus matrix W is unsymmetric with large extra-diagonal terms.

8. For almost all the tests, the line–search procedures slow down the solvers without increasing the
robustness. The only test sets where it has a positive outcome is Chute_4000 where the NSGS-AC
solver fails to get a solution and the line–search seems to stabilize the algorithm.
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Figure 5: Influence of the local solver in NSGS-? algorithms.

RR n° 9118



On solving frictional contact problems 49

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

(j) KaplasTower II

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

(k) KaplasTower

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

(l) Chute_local_problems

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

(m) Chute_4000

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

(n) Chute_1000

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(o) Chain

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(p) Capsules

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(q) BoxesStack

NSGS-AC
NSGS-AC-GP

NSGS-JM
NSGS-JM-GP

NSGS-FP-DS-One
NSGS-EXACT

NSGS-FP-VI-UPK (tollocal = 10−06)
NSGS-FP-VI-UPK (tollocal = 10−14)

Figure 5: Influence of the local solver in NSGS-? algorithms (continued).RR n° 9118
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Influence of the tolerance of the local solver tollocal in NSGS-FP-VI-UPK algorithms In this
paragraph, the tolerance of the local solver tollocal is varied and its effect on the global convergence of
the solver is reported. In Figure 6, we report the performance profiles of NSGS-FP-VI-UPK algorithms
for the tollocal in the range [10−04, 10−16]. We also report the efficiency of the adaptive strategy for sizing
the value of the local tolerance (see Section 6.3). The main observations are:

1. For the test sets that are quickly solved (see Table 6), such as Capsules a tight tolerance on the local
solver 10−16 improves the efficiency of the NSGS-FP-VI-UPK solver. Similar results are obtained for
BoxesStack, Chain, KaplasTower and KaplasTower II; they are not depicted.

2. For the other problems that are harder to solve, that is, when we expect more iterations of the
NSGS-FP-VI-UPK solver, the adaptive rule, or a tight local tolerance is better.

From these results, it is quite difficult to guess in advance the internal dynamics of the solver. By internal
dynamics, we mean the propagation in the algorithm of the error and the values of the unknowns, between
the local problem solvers and the global loop over contacts. Note that the range of τ that we used in the
graph is quite small, so the difference in performance between the solvers is not crucial.

Influence of the tolerance of the local solver tollocal in NSGS-AC-GP algorithms. In Figure 7,
we report the performance profiles of NSGS-AC-GP algorithms for the tollocal in the range [10−04, 10−16].
We also test the adaptive strategy for the local tolerance. Except for the test set Chute_local_problems,
the main observation is that the local tolerance does not noticeably change the convergence of the solver.
For the test set Chute_local_problems, there is no internal dynamics of the main loop of the NSGS since
there is only one contact. It is therefore reasonable to see that the adaptive strategy performs better
than the other.

Influence of the choice of the parameters ρN, ρT in the local solver of the NSGS-AC algorithms
In Figure 8, we evaluate the influence of the choice of the parameters ρN, ρT on the convergence of the
solver. The main conclusion are:

1. For the test sets 945_SP_Box_PL, 100_PR_PerioBox, KaplasTower II, KaplasTower, Chute_local_problems,
Chute_4000, Chute_1000, Capsules, a fixed value of ρN = ρT = 1 has a dramatic effect on the
convergence of the algorithm. The scaling of ρ is of utmost importance for the efficiency and the
robustness of the solver. Note that the rule (112) that takes into account the condition number of
the local Delassus matrix W deteriorates the performance for Chute_4000, Chute_1000. In these
problems, the local matrix is unsymmetric with large extra-diagonal terms due to large gyroscopic
effects.

2. For the other tests, the choice of ρN, ρT does not really change the results such as LowWall_FEM
II, mainly due the fact that the order of magnitude of the chosen ρ with the rules (110), (111) or
(112) is in [10−01, 1]. Cubes_H8 II, Cubes_H8, Bridge_PR II, Bridge_PR, 100_PR_PerioBox,
Chain, BoxesStack and AqueducPR are not displayed since the results are similar.

One of the conclusions of this study is as follows: the rules (110), (111) improve a lot some simulations
without increasing the computational cost for the others. Therefore, it is strongly advised to use them.
Some further theoretical studies are needed to understand the effect of ρ on the convergence. In particular,
the rule (112) is usually better, but sometimes completely destroys the convergence.
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Figure 6: Influence of the tolerance of the local solver tollocal in NSGS-FP-VI-UPK algorithms.
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Figure 7: Influence of the tolerance of the local solver tollocal in NSGS-FP-NSN-AC-GP algorithms.
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Figure 8: Influence of the choice of the parameters ρN, ρT in the local solver of the NSGS-AC algorithmsRR n° 9118
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Figure 9: Influence of the contacts order in NSGS algorithms.

Influence of the order of contacts in NSGS algorithms In this section, we study the influence of
the contact order within the loop of the NSGS-AC-GP solver. We reproduce in Figure 9 the result of the
solvers with the original contact list of the problem (NSGS-AC-GP) and with two other ways of iterating
over the contacts. The solver NSGS-AC-GP Shuffled corresponds to a single randomization of the list of
contacts at the beginning of the algorithm. In the solver NSGS-AC-GP Fully shuffled, the list is shuffled
at each iteration. The following observations can be made:

1. The solver NSGS-AC-GP Fully shuffled performs really better on the flexible test sets (Cubes_H8_?,
LowWall_FEM).

2. For the rigid test sets, we reproduce here only the test set 100_PR_PerioBox because the other test
sets behave similarly. The NSGS-AC-GP Fully shuffled has a really bad influence on the convergence
of the solver. It seems that it modifies the internal dynamics of the solver in a way that the rate of
convergence is really decreased.

Comparison of PSOR algorithm with respect to the relaxation parameter ω In Figure 10, the
relaxation parameter ω is varied ranging in [0.5, 1.8]. Two conclusions can be drawn:
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1. For the flexible tests Cubes_H8_? and LowWall_FEM, the efficiency of the solver is really improved
as we decreased the value of ω. Moreover, this is done without destroying the robustness of the
solver.

2. For the rigid tests, the effect of the relaxation is not so clear. For values of ω greater than 1.0,
the efficiency is improved but the robustness deteriorates. We observe the contrary for the ω less
than 1.0. Note in particular that, for the test sets Chute_1000 and Chute_4000, the convergence
is completely destroyed for ω = 1.8.

To conclude, it is difficult to advice to use PSOR algorithm with ω 6= 1. If it accelerates drastically the
rate of convergence of the algorithm for some problems, but it deteriorates the convergence for others.
Further studies would be needed to design self–adaptive schemes for sizing ω.

9.3 Comparison of NSN-? algorithms

In this section, the nonsmooth Newton methods are compared. The performance profiles are depicted in
Figure 11 for the test sets for which the NSN-? are able to solve at least 10% of the problems. The main
conclusions are as follows:

1. For the flexible tests Cubes_H8_? and LowWall_FEM, most of the Newton methods succeed to
solve the problems within the prescribed time limit. The solver NSN-AC-HYBRID appears to be
the best solver. The effect of computing an initial guess with a robust method such as EG-VI-UPK
improves the convergence. In practice, we observe that the computation allows one to determine
roughly the set of closed and sliding contacts and it helps a lot the convergence of the Newton
solvers. The solvers without a line–search procedure perform also better than those with a line–
search procedure which seems to slow down the convergence without improving the robustness. For
the different formulations, the NSN-AC and NSN-JM give equivalent results and are better than the
NSN-NM solver which is in turns better than the NSN-FB solver. Note that the Goldstein–Price line
search is usually better than the Armijo despite the fact that the merit function is not necessarily
smooth. Finally, we note that NSN-FB and NSN-FB-A are really the slowest solvers on these flexible
examples.

2. For the rigid test sets with a high value of the rank ratio or the contact density c (see Table 5),
the Newton methods fail to converge and a lot of divergence issues have been noted in prac-
tice. This is the case for the test sets Bridge_PR II, Bridge_PR, AqueducPR, 945_SP_Box_PL,
100_PR_PerioBox that are not depicted in Figure 11.

3. For the rigid test sets with a low value of the rank ratio or the contact density c less than 1 such as
Chute_1000 and Chain, we observe that the Newton methods are able to solve some problems. We
note also that in the Chain test set, the use of a fixed value of ρ is penalizing a lot the convergence
of the solver. Contrary to flexible test sets, the use of a line–search procedure helps to get a better
robustness of the solver. This is particularly true for NSN-NM-GP.

4. Finally, for the test sets KaplasTower and Capsules, the NSN-FB-GP is able to solve more than 80%
of the tests in a very efficient way. Some further studies would be needed to understand why this
specific solver performs really better than the others.

As a general conclusion, the success of the NSN-? algorithms is conditioned by the rank of the Delassus
matrix W , and then, by the contact density value c. For full rank matrix W , the solvers are robust and
efficient. For values of c not larger than 1, the methods are able to find a solution with a tight accuracy.
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Figure 10: Effect of relation coefficient ω in PSOR-AC-GP algorithm.
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For larger values of c and larger rank ratio, the nonsmooth Newton methods are not robust and generally
diverge.

9.4 Comparison of the proximal point algorithm PPA-NSN-? and PPA-NSGS-?
algorithms

In Figure 12, we compare the proximal point approach with various internal solvers based on nonsmooth
Newton methods NSN-?. The main observations are:

1. For the flexible test sets (see for an illustration the test set LowWall_FEM II), for which the
nonsmooth Newton solvers work pretty well, the use of a proximal point algorithm has no interest
since it slows down the convergence of the algorithm by performing a first iteration with a given,
and possibly large, value of the parameter α.

2. For the test sets KaplasTower, Chute_1000, Chain, Capsules and BoxesStack, the proximal point
approach improves greatly the efficiency of the NSN-AC-GP solver and often also improves its
reliability (see for comparison Figure 11). Clearly, the regularization introduced in the proximal
point algorithm increases the rank of the matrix W and it has a strong effect on the convergence
of the nonsmooth Newton methods.

3. The efficiency of the proximal point algorithm strongly depends on the internal solver.

4. The strategy for updating the regularization parameter α plays also an important role. Quite
surprisingly, for the Bridge_PR test set, the adaptive rule that does not take into account the
current error is really efficient and allows us to get a robust and efficient solver with respect to the
others. Unfortunately, there is no updating rule for the parameter α that works for all test sets.

In Figure 13, we compare the NSGS-AC solver when it is used directly or inside the proximal point
algorithm. On most of the test sets such as KaplasTower, a direct application of the NSGS-AC solver is
already efficient and its embedding into a proximal point algorithm does not bring any improvements.
Nevertheless, we can see in Figure 13 that the proximal point algorithm improves the robustness and the
efficiency for the test sets 945_SP_Box_PL and Capsules has been improved.

9.5 Comparison of optimization-based algorithms PANA-?, TRESCA-? and ACLM-
?

In Figure 14, we compare the algorithms based on the optimization approach presented in Section 7.
The pure convex relaxation SOCLCP-NSGS-PLI method has been added to understand the effect of the
nonconvexity of the problems on the efficiency and robustness of the solvers. The main conclusions are:

1. The pure convex relaxation in SOCLCP-NSGS-PLI simplifies drastically the problems in the test
sets LowWall_FEM II, AqueducPR, KaplasTower, BoxesStack and is slightly better in Bridge_PR
II, 100_PR_PerioBox, KaplasTower II test sets. Especially, we note that if we want to reach a
better accuracy as in the KaplasTower test set, the convex relaxation helps a lot, but this conclusion
cannot be made in the test set Bridge_PR. Let us also note that the convex relaxation does not
help a lot in the test sets Cubes_H8, Bridge_PR, Chute_1000, Chute_4000 and Capsules. One
of the conclusion may be that the nonconvexity of the problem is not the only difficulty in such
problems. Using a convex relaxation is not sufficient to solve all the problems.
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RR n° 9118



On solving frictional contact problems 61

2. The solvers based on the optimization approach are generally robust but slow. This is mainly due
to two reasons. Firstly, we use iterative first order solvers as internal solver with a slow convergence
rate. The fact that the Delassus matrix has not full rank in the rigid tests prevents the use of
second order methods as nonsmooth Newton methods. For the flexible test, it could be of interest
to implement dedicated new solvers of the internal convex problems based on nonsmooth Newton
methods. Furthermore, the tests with off-the-shelf implementations of optimization methods were
not really concluding. The general convex solvers are not able to exploit the particular structure
of the constraints given by a Cartesian product of a large number of second order cones in IR3.
Secondly, the fixed point iteration that drives the convergence is generally slow. Once again, it
would be valuable to implement a second order method for driving the external loop.

3. On the choice of a specific optimization based strategy with respect to the others, we can ob-
serve that the comparison is really problem–dependent. On the test sets Cubes_H8, Bridge_PR,
Bridge_PR II, LowWall_FEM and AqueducPR, the ACLM-? solvers are the best. For the test prob-
lems KaplasTower, 945_SP_Box_PL, Chute_4000, Chute_1000 and BoxesStack, the TRESCA-?
solvers are better. Finally, the PANA-? solvers are better on the 100_PR_PerioBox test set. Since
the convex relaxation of the internal problem is made in different manners, it is expected that the
different families of solvers behave differently. In particular, if the coefficient of friction is large or if
the number of sliding contacts is low, we expect the ACLM-? solvers to behave better because the s
variable in the fixed point iteration will not drastically influence the convergence. On the contrary,
when the coefficient of friction is low, we may expect the splitting introduced in the PANA-? to be
better. An analysis of the contact status (closed, sliding, sticking) in the problems would be a next
step in understanding the performance of each family.

10 Comparison of different families of solvers.

In this last section, we compare the most efficient solvers for each family. The performance profiles are
reported in Figure 15. The main conclusions are as follows:

1. First of all, we can observe that for all the test sets, at least one solver is able to solve all the
problems within the prescribed time. Unfortunately, there is no universal solver that outperforms
all the other solvers for all the test sets.

2. For the flexible test sets, the nonsmooth Newton solvers NSN-? are the best solvers. In the test
set LowWall_FEM II, the NSN-? are followed the NSGS-FP-VI-UPK and NSGS-AC solvers. On
this test set, the required accuracy is limited to 10−04 and the NSGS-? are still able to reach the
tolerance in a competitive time. Between the test sets Cubes_H8 II and Cubes_H8, and between
LowWall_FEM II and LowWall_FEM, the required accuracy is decreased to 10−08. With a tighter
tolerance, we observe that the relative efficiency of the NSN-? solvers increase. This was already
noted in [Acary et al., 2017]. In other words, on the flexible tests we are able to use nonsmooth
Newton methods efficiently since the Delassus matrix W has full rank. In that case, the quadratic
convergent rate helps reaching tighter tolerances. Note that in the flexible test sets, the proximal
point algorithms PPA-NSN-? are not really interesting but as the required accuracy decreased, they
start to compete with NSGS-? algorithms.

3. For most of the rigid test sets with a low required accuracy of 10−04 as AqueducPR, 945_SP_Box_PL,
100_PR_PerioBox , KaplasTower, Chute_4000 and Chute_1000, the NSGS-? are the most efficient
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Figure 14: Comparison of the optimization based solvers
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and robust solvers. In the case of the test sets Chute_4000 and Chute_1000, the NSGS-FP-VI-UPK
solvers are better than the NSGS-AC-? due to some robustness issues in the local solvers based on
nonsmooth Newton methods. These solvers are generally followed by optimization based solvers
such as ACLM-? and TRESCA-? solvers, except for the test set 945_SP_Box_PL where the more
robust solver is TRESCA-NSGS-FP-VI-UPK.

4. For the rigid test sets with a required accuracy of 10−08 as Bridge_PR, Chain, Capsules and
BoxesStack, the solvers PPA-? are the most efficient and robust solvers. The regularization of the
Delassus matrix introduced by the proximal point algorithm has a very positive effect. Especially,
it enables the use of nonsmooth Newton techniques that help reaching a tighter accuracy thank to
their quadratic convergent rates. The PPA-? algorithms are generally followed by NSGS-?, except
in the case of the Chain test set where the NSN-? are able to solve 60% of the problems quite
efficiently. In the case of the Bridge_PR test set, the use of proximal point technique PPA-NSN-
AC-GP α0 = 10+03 is the only one to solve all the problems at the tolerance of 10−08. As discussed
in Section 9.4, the rule for updating the proximal point parameter α play an important role and
deserves further studies.

5. In the case of the Chute_local_problems test set, we observe that the optimization based solvers
are the best and allows one to circumvent the issues of robustness of NSGS-AC-? solvers that are
reduced in that case to the NSN-? solvers. We recall that these local problems are extracted from
Chute_4000 and selected as most difficult local problems. These problems are characterized by
strongly unsymmetric matrices with large extra-diagonal terms compared to the diagonal ones. In
that case, the optimization solvers based on a convexification help to solve the problems although
the local Delassus matrix is not necessarily symmetric. We can also note as in the Chute_4000 and
Chute_1000 that the NSGS-FP-VI-UPK solvers are less sensitive to this asymmetry of the Delassus
matrix.

11 General conclusions

In this report, we have reviewed several formulations of the discrete contact problem with Coulomb
friction. These formulations open the way to various solving procedures that have been detailed. Some
are already well-known: a) the splitting and relaxation techniques (NSGS-? and PSOR-? solvers), b) the
nonsmooth Newton methods (NSN-? solvers) and c) the optimization based solvers (PANA-?, TRESCA-?
and ACLM-? solvers). For the first time, we present general solvers based on the variational inequalities
formulation (FP-VI-? and FP-EG-?). These methods extend the standard fixed point iteration (FP-DS or
also coined Uzawa’s algorithm) in various directions and provide some self-adaptive rules to update the
ρ parameter that appear to be crucial in practice for the efficiency of the methods. As far as we know,
it is also the first application of the proximal point algorithms (PPA-?) to the discrete frictional contact
problem. This new family of solvers appears to be a promising alternative when we want to reach tight
accuracy for collections of rigid bodies such as granular materials.

Then we presented a thorough comparison of solvers over a large set of test problems. Using per-
formance profiles, the solvers have been compared family by family, and then altogether. The main
conclusions and perspectives of this study are as follows:

• The methods based on variational inequality formulations (FP-VI-?) are robust, if a consistent self-
adaptive rule for the parameter ρ is used. We presented two rules that yield very satisfactory
results. Thanks to their robustness, these methods provide reliable solvers for the local problem
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Figure 15: Comparison of the solvers between families
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Figure 15: Comparison of the solvers between families (continued)RR n° 9118
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in splitting techniques. Nevertheless, the convergence is slow: those methods have difficulties to
get a solution within the prescribed time for tight tolerances, or if the problem size is large. The
main perspectives for these methods are a) to adapt the values of ρ contact by contact to try to
improve the convergence speed and b) to perform computation in parallel for large scale systems.
Indeed, each iteration of the FP-VI-? solvers may be straightforwardly implemented on distributed
computer architectures.

• The methods based on splitting techniques, the NSGS-? solvers, provide us with robust and efficient
solvers provided that the local solver is robust. They are generally more efficient than the FP-VI-
? methods since they exploit the particular structure of the problem (sparse block sparsity and
local solver routines). However, they suffer from the same problems as the FP-VI-? solvers: the
convergence rate is low and high accuracy is difficult to reach within the prescribed time. The main
perspective for this solver is to improve the robustness and the efficiency of the local solver, for
instance by using proximal point techniques or optimization based solvers. Regarding the PSOR-?
solvers, for some values of the relaxation parameter ω, the convergence rate is greatly improved
with respect to the NSGS-? solvers. However, guessing the correct value of the parameter ω is
challenging as some values may increase the computational effort or make the algorithm diverge.
Clearly, a self adaptive rule for sizing the relaxation parameter ω would be a notable improvement.

• The nonsmooth Newton solvers NSN-? appear to be a very efficient family of solvers for problems
that have a full-rank Delassus matrix or a very low contact density. For instance, in the case of the
flexible tests, they are the best solvers among others and they are able to reach tight tolerances that
are not reachable with the FP-VI-? and NSGS-? solvers. For the other test sets, they suffer from
robustness issues. To overcome this, we work on several options: a) the choice of the ρ parameters in
the equation based formulation, b) the line-search procedures may help to stabilize the convergence
at the price to slow down the convergence and c) improving the initial starting point of the solver
with a FP-VI-?. All these improvements appear to increase the robustness. Unfortunately, it was
not sufficient to circumvent all the divergence problems. Some pointers in the literature try to
modify the iteration matrix in the Newton loop to improve robustness when the iterates are far
form the solution. This solution has not been tested. The main perspectives for these solvers are to
improve their robustness by testing modifications of the iteration matrix or self-adapting rule for
sizing ρ. The question of the scaling and the preconditioning must be studied deeper. When the
solvers are robust, these solvers are also highly parallelizable for large systems since we can rely on
massively parallel solvers for linear systems such as MUMPS.

• As we discussed before, the PPA-? solvers are a possible solution for improving the robustness of
the NSN-? methods while keeping their convergence rates. This solution proves its efficiency on a
lot of test sets. Nevertheless, we were not able to find an universal rule for updating the parameter
α such that it works for all test sets. Clearly, this deserves more studies on this aspect.

• The optimization based solvers (PANA-?, TRESCA-? and ACLM-?might also exhibit good robustness
properties. Unfortunately, they suffer from the slow convergence of the external loop based on a
fixed point updating, which is not compensated by the efficiency of the convex problem solver. As
we have seen, the nonconvexity of the problems is not the only difficulty: most of the time the rank
deficiency of the Delassus matrix is the main cause of the slow convergence or divergence. Finally,
it would be worthwhile investigating why an optimization formulation is better than another for
some test sets. One of the reasons might be that the contact status (closed, sticking, sliding) are
not distributed in the same way along the test sets. A study based on the contact status would be
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complementary to the measure of the rank ratio and the contact density for guessing the cause of
the issues.
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Appendix 1. Basics in Convex Analysis

Definition 1 (Rockafellar and Wets [1997]). Let X ⊆ IRn. A multivalued (or point-to-set) mapping
T : X ⇒ X is said to be (strictly) monotone if there exists c(>) > 0 such that for all x̂, x̃ ∈ X

(v̂ − ṽ)
>

(x̂− x̃) > c‖x̂− x̃‖ with v̂ ∈ T (x̂), ṽ ∈ T (x̃). (137)

Moreover T is said to be maximal when it is not possible to add a pair (x, v) to the graph of T without
destroying the monotonicity.

The Euclidean projector PX onto a closed convex set X: for a vector x ∈ IRn, the projected vector
z = PX(x) is the unique solution of the convex quadratic programm

min
1

2
(y − x)>(y − x),

s.t. y ∈ X.
(138)

The following equivalences are classical:

y = PK(x)⇐⇒ min 1
2 (y − x)>(y − x)

s.t. y ∈ K
(139)

⇐⇒ −(y − x) ∈ NK(y) (140)

⇐⇒ (x− y)>(y − z) > 0,∀z ∈ K (141)

−F (x) ∈ NK(x)⇐⇒ −ρF (x)>(y − x) > 0,∀y ∈ K (142)

⇐⇒ (x− (x− ρF (x))>(y − x) > 0,∀y ∈ K (143)

⇐⇒ x = PK(x− ρF (x)) thanks to (141) (144)

Sub-differential of the Euclidean norm.

The sub-differential of the Euclidean norm in IRn is given by:

∂‖z‖ =


z

‖z‖
, z 6= 0

{x, ‖x‖ 6 1}, z = 0
(145)

Euclidean projection on the unit ball.

Let B = {x ∈ IRn, ‖x‖ 6 1}. The Euclidean projection on the unit ball is given by:

PB(z) =

 z if z ∈ B
z

‖z‖
if z /∈ B (146)

Its subdifferential can be computed as

∂PB(z) =


I if z ∈ B \ ∂B
I + (s− 1)zz>, s ∈ [0, 1] if z ∈ ∂B
I

‖z‖
− zz>

‖z‖3
if z /∈ B

(147)
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Euclidean projection on the second order cone of IR3.

Let K = {x = [xNxT]T ∈ IR3, xN ∈ IR, ‖xT‖ 6 µxN} be the second order cone in IR3. The Euclidean
projection on K is

PK(z) =


z if z ∈ K
0 if −z ∈ K∗

1

1 + µ2 (zN + µ‖zT‖)

 1

µ
zT

‖zT‖

 if z /∈ K and − z /∈ K∗
(148)

Direct computation of an element of the subdifferential The computation of the subdifferential
of PK is given as follows

• if z ∈ K \ ∂K, ∂zPK(z) = I,

• if −z ∈ K∗ \ ∂K∗, ∂zPK(z) = 0,

• if z /∈ K and −z /∈ K∗ and, ∂zPK(z) = 0, we get

∂zNPK(z) =
1

1 + µ2

[
1

µzT

]
(149)

and
∂zT [PK(z)]N =

µ

1 + µ2

zT

‖zT‖
(150)

∂zT [PK(z)]T =
µ

(1 + µ2)

[
µ
zT

‖zT‖
z>T
‖zT‖

+ (zN + µ‖zT‖)(
I2
‖zT‖

− zTz
>
T

‖zT‖3
)

]
(151)

that is

∂zT [PK(z)]T =
µ

(1 + µ2)‖zT‖

[
(zN + µ‖zT‖) I2 + zN

zTz
>
T

‖zT‖2
)

]
(152)

Computation of the subdifferential using the spectral decomposition In [Hayashi et al., 2005],
the computation of the Clarke subdifferential of the projection operator is also done by inspecting the
different cases using the spectral decomposition

∂PK(x) =



I (λ1 > 0, λ2 > 0)
λ2

λ1 + λ2
I + Z (λ1 < 0, λ2 > 0)

0 (λ1 < 0, λ2 < 0)

co{I, I + Z} (λ1 = 0, λ2 > 0)

co{0, Z} (λ1 < 0, λ2 = 0)

co{0 ∪ I ∪ S} (λ1 = 0, λ2 = 0)

(153)

where

Z = 1
2

[
−yN y>T
yT −yNyTy

>
T

]
,

S =

{
1
2 (1 + β)I + 1

2

[
−β w>

w −βww>

]
| −1 6 β 6 1, ‖w‖ = 1

} (154)

with y = x/‖xT‖. A simple verification shows that the previous computation is an element of the
subdifferential.
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Appendix 2. Computation of Generalized Jacobians for Nons-
mooth Newton methods

Computation of components of subgradient of F nat
vi

Let us introduce the following notation for an element of the sub–differential

Φ(u, r) =

[
ρI −ρW

Φru(u, r) Φrr(u, r)

]
∈ ∂F nat

vi (u, r) (155)

where Φxy(u, r) ∈ ∂x[F nat
vi ]y(u, r). Since Φuu(u, r) = I, a reduction of the system is performed in practice

and Algorithm 4 is applied or z = r withG(z) = [F nat
vi ]r(Wr + q, r)

Φ(z) = Φrr(r,Wr + q) + Φru(r,Wr + q)W
(156)

Let us introduce the following notation for an element of the sub–differential with an obvious simpli-
fication

Φ(v, r) =

 ρM −ρH
−ρH> ρI 0

0 Φru(v, u, r) Φrr(v, u, r)

 ∈ ∂F nat
vi (u, r) (157)

where Φxy(v, u, r) ∈ ∂x[F nat
vi-1]y(v, u, r). A possible computation of Φru(v, u, r) and Φrr(v, u, r) is directly

given by (159) and (158). In this case, the variable u can be also substituted.
For one contact, a possible computation of the remaining parts in Φ(u, r) is given by

Φru(u, r) =


0 if r − ρ(u+ g(u)) ∈ K

I − ∂r[PK(r − ρ(u+ g(u)))] if r − ρ(u+ g(u)) /∈ K
(158)

Φru(u, r) =



ρ

I +

 0 0 0
uT

‖uT‖
0 0

 if

r − ρ(u+ g(u)) ∈ K

uT 6= 0

ρ

(
I +

[
0 0 0

s 0 0

])
, s ∈ IR2, ‖s‖ = 1 if

r − ρ(u+ g(u)) ∈ K

uT = 0

I + ρ

I +

 0 0 0
uT

‖uT‖
0 0

 ∂u[PK(r − ρ(u+ g(u)))] if r − ρ(u+ g(u)) /∈ K

(159)
The computation of an element of ∂PK is given in Appendix 11.

Alart–Curnier function and its variants

For one contact, a possible computation of the remaining parts in Φ(u, r) is given by

ΦrNuN(u, r) =

{
ρN if rN − ρNuN > 0

0 otherwise
(160)
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ΦrNrN(u, r) =

{
0 if rN − ρNuN > 0

1 otherwise
(161)

ΦrTuN(u, r) =



0 if ‖rT − ρTuT‖ 6 µmax(0, rN − ρNuN)

0 if

‖rT − ρTuT‖ > µmax(0, rN − ρNuN)

rN − ρNun 6 0

µρN

rT − ρTuT

‖rT − ρTuT‖
if

‖rT − ρTuT‖ > µmax(0, rN − ρNuN)

rN − ρNun > 0

(162)

ΦrTuT(u, r) =


ρT if ‖rT − ρTuT‖ 6 µmax(0, rN − ρNuN)

µρT(rN − ρNuN)+Γ(rT − ρTuT) if

‖rT − ρTuT‖ > µmax(0, rN − ρNuN)

rN − ρNun > 0

(163)

ΦrTrN(u, r) =



0 if ‖rT − ρTuT‖ 6 µmax(0, rN − ρNuN)

0 if

‖rT − ρTuT‖ > µmax(0, rN − ρNuN)

rN − ρNun 6 0

−µ rT − ρTuT

‖rT − ρTuT‖
if

‖rT − ρTuT‖ > µmax(0, rN − ρNuN)

rN − ρNun > 0

(164)

ΦrTrT(u, r) =


0 if ‖rT − ρTuT‖ 6 µmax(0, rN − ρNuN)

I2 − µ(rN − ρNuN)+Γ(rT − ρTuT) if

‖rT − ρTuT‖ > µmax(0, rN − ρNuN)

rN − ρNun > 0

(165)
with the function Γ(·) defined by

Γ(x) =
I2×2

‖x‖
− xx>

‖x‖3
(166)

If the variant (60) is chosen, the computation of ΦrT• simplifies in

ΦrTuN(u, r) = 0 (167)

ΦrTuT(u, r) =

{
ρT if ‖rT − ρTuT‖ 6 µrN
−µρTrn,+Γ(rT − ρTuT) if ‖rT − ρTuT‖ > µrN

(168)

ΦrTrN(u, r) =



0 if ‖rT − ρTuT‖ 6 µrN

0 if

‖rT − ρTuT‖ > µrn

rN 6 0

−µ rT − ρTuT

‖rT − ρTuT‖
if

‖rT − ρTuT‖ > µrn

rN > 0

(169)

ΦrTrT(u, r) =

{
0 if ‖rT − ρTuT‖ 6 µrN
I2 − µ(rN)+Γ(rT − ρTuT) if ‖rT − ρTuT‖ > µrN

(170)
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Figure 16: Comparison of numerical method for VI FP-DS, FP-VI-? and FP-EG-?
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Figure 17: Influence of the local solver in NSGS-? algorithms.
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Figure 18: Influence of the tolerance of the local solver tollocal in NSGS-FP-VI-UPK algorithms.
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Figure 19: Influence of the tolerance of the local solver tollocal in NSGS-FP-NSN-AC-GP algorithms.
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Figure 20: Influence of the choice of the parameters ρN, ρT in the local solver of the NSGS-AC algorithms
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Figure 21: Influence of the contacts order in NSGS algorithms.
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Figure 22: Effect of relation coefficient ω in PSOR-AC-GP algorithm.
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Appendix 3. Full report of tests

Numerical methods for VI: FP-DS, FP-VI-? and FP-EG-?

Splitting based algorithms: NSGS-? and PSOR-?

Comparison of NSN-? algorithms

Comparison of PPA-NSN-AC algorithm with respect to the step-size param-
eter σ, µ

Comparison of optimization-based algorithms

Comparison of different families of solvers.
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Figure 23: Comparison of NSN-? algorithms.
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Figure 24: Comparison of internal solvers in PPA-? algorithms.
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Figure 25: Effect of the step-size parameter σ, µ in PPA-NSN-AC algorithm
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Figure 26: Effect of the step-size parameter σ, µ in PPA-NSN-AC algorithm
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Figure 27: Effect of the step-size parameter σ, µ in PPA-NSN-AC algorithm
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Figure 28: Comparison of the optimization based solvers
RR n° 9118



On solving frictional contact problems 95

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

ρ
(τ
)

(a) LowWall_FEM II

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

ρ
(τ
)

(b) LowWall_FEM

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

(c) Cubes_H8 II

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

(d) Cubes_H8

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

(e) Bridge_PR II

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

(f) Bridge_PR

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

(g) AqueducPR

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

ρ
(τ
)

(h) 945_SP_Box_PL

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(i) 100_PR_PerioBox II

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(j) 100_PR_PerioBox

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(k) KaplasTower II

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(l) KaplasTower

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(m) Chute_local_problems

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(n) Chute_4000

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(o) Chute_1000

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(p) Chain

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(q) Capsules

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

ρ
(τ
)

(r) BoxesStack

NSGS-AC
NSN-AC-GP

NSN-AC
TRESCA-NSGS-FP-VI-UPK

FP-VI-UPK

EG-VI-UPK
PPA-NSN-AC-GP α0 = 10+04, ν = 1, σ = 5.0

ACLM-NSGS-FP-VI
PPA-NSN-AC-GP α0 = 10+04, ν = 2.0, σ = 5.0

Figure 29: Comparison of the solvers between families
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Figure 30: Comparison of the solvers between families
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Figure 31: LMGC_100_PR_PerioBox time VI/UpdateRule
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Figure 32: LMGC_100_PR_PerioBox time NSGS/LocalSolver
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Figure 33: LMGC_100_PR_PerioBox time NSGS/LocalSolverHybrid
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Figure 34: LMGC_100_PR_PerioBox time NSGS/LocalTol
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Figure 35: LMGC_100_PR_PerioBox time NSGS/LocalTol-VI

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

NSGS-AC-GP
NSGS-AC-GP Fully shuffled

NSGS-AC-GP Shuffled

Figure 36: LMGC_100_PR_PerioBox time NSGS/Shuffled
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Figure 37: LMGC_100_PR_PerioBox time PSOR
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Figure 39: LMGC_100_PR_PerioBox time PROX/NSN/InternalSolvers

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

ρ
(τ
)

NSGS-AC
PPA-NSGS-NSN-AC α0 = 10+04, ν = 1, σ = 5.0

Figure 40: LMGC_100_PR_PerioBox time PROX/NSGS/InternalSolvers
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Figure 41: LMGC_100_PR_PerioBox time PROX/Parametric studies ν = 0.5
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Figure 42: LMGC_100_PR_PerioBox time PROX/Parametric studies ν = 1.0
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Figure 43: LMGC_100_PR_PerioBox time PROX/Parametric studies ν = 2.0
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Figure 44: LMGC_100_PR_PerioBox time PROX/Regularized problem
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Figure 45: LMGC_100_PR_PerioBox time OPTI
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Figure 47: LMGC_100_PR_PerioBox time COMP/zoom
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Figure 48: LMGC_945_SP_Box_PL time VI/UpdateRule
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Figure 49: LMGC_945_SP_Box_PL time NSGS/LocalSolver
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Figure 50: LMGC_945_SP_Box_PL time NSGS/LocalSolverHybrid

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

NSGS-AC-GP (adaptive tollocal)
NSGS-AC-GP (tollocal = 10−04)
NSGS-AC-GP (tollocal = 10−06)
NSGS-AC-GP (tollocal = 10−08)

NSGS-AC-GP (tollocal = 10−10)
NSGS-AC-GP (tollocal = 10−12)
NSGS-AC-GP (tollocal = 10−14)
NSGS-AC-GP (tollocal = 10−16)

Figure 51: LMGC_945_SP_Box_PL time NSGS/LocalTol
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Figure 52: LMGC_945_SP_Box_PL time NSGS/LocalTol-VI
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Figure 53: LMGC_945_SP_Box_PL time NSGS/Shuffled
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Figure 54: LMGC_945_SP_Box_PL time PSOR
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Figure 56: LMGC_945_SP_Box_PL time PROX/NSN/InternalSolvers
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Figure 57: LMGC_945_SP_Box_PL time PROX/NSGS/InternalSolvers
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Figure 58: LMGC_945_SP_Box_PL time PROX/Parametric studies ν = 0.5
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Figure 59: LMGC_945_SP_Box_PL time PROX/Parametric studies ν = 1.0
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Figure 60: LMGC_945_SP_Box_PL time PROX/Parametric studies ν = 2.0
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Figure 61: LMGC_945_SP_Box_PL time PROX/Regularized problem
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Figure 62: LMGC_945_SP_Box_PL time OPTI
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Figure 64: LMGC_945_SP_Box_PL time COMP/zoom
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LMGC Aqueduc PR precision 1.0e-04 timeout 200
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Figure 65: LMGC Aqueduc PR time VI/UpdateRule
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Figure 66: LMGC Aqueduc PR time NSGS/LocalSolver
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Figure 67: LMGC Aqueduc PR time NSGS/LocalSolverHybrid
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Figure 68: LMGC Aqueduc PR time NSGS/LocalTol
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Figure 69: LMGC Aqueduc PR time NSGS/LocalTol-VI
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Figure 70: LMGC Aqueduc PR time NSGS/Shuffled
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Figure 71: LMGC Aqueduc PR time PSOR
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Figure 73: LMGC Aqueduc PR time PROX/NSN/InternalSolvers
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Figure 74: LMGC Aqueduc PR time PROX/NSGS/InternalSolvers
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Figure 75: LMGC Aqueduc PR time PROX/Parametric studies ν = 0.5
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Figure 76: LMGC Aqueduc PR time PROX/Parametric studies ν = 1.0
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Figure 77: LMGC Aqueduc PR time PROX/Parametric studies ν = 2.0
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Figure 78: LMGC Aqueduc PR time PROX/Regularized problem
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Figure 79: LMGC Aqueduc PR time OPTI
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Figure 81: LMGC Aqueduc PR time COMP/zoom
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LMGC Bridge PR precision 1.0e-04 timeout 100
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Figure 82: LMGC Bridge PR time VI/UpdateRule
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Figure 83: LMGC Bridge PR time NSGS/LocalSolver
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Figure 84: LMGC Bridge PR time NSGS/LocalSolverHybrid
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Figure 85: LMGC Bridge PR time NSGS/LocalTol
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Figure 86: LMGC Bridge PR time NSGS/LocalTol-VI
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Figure 87: LMGC Bridge PR time NSGS/Shuffled
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Figure 88: LMGC Bridge PR time PSOR
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Figure 90: LMGC Bridge PR time PROX/NSN/InternalSolvers
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Figure 91: LMGC Bridge PR time PROX/NSGS/InternalSolvers
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Figure 92: LMGC Bridge PR time PROX/Parametric studies ν = 0.5
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Figure 93: LMGC Bridge PR time PROX/Parametric studies ν = 1.0
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Figure 94: LMGC Bridge PR time PROX/Parametric studies ν = 2.0
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Figure 95: LMGC Bridge PR time PROX/Regularized problem
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Figure 96: LMGC Bridge PR time OPTI
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Figure 98: LMGC Bridge PR time COMP/zoom
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LMGC Bridge PR precision 1.0e-08 timeout 400
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Figure 99: LMGC Bridge PR time VI/UpdateRule
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Figure 100: LMGC Bridge PR time NSGS/LocalSolver
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Figure 101: LMGC Bridge PR time NSGS/LocalSolverHybrid
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Figure 102: LMGC Bridge PR time NSGS/LocalTol
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Figure 103: LMGC Bridge PR time NSGS/LocalTol-VI
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Figure 104: LMGC Bridge PR time NSGS/Shuffled
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Figure 105: LMGC Bridge PR time PSOR
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Figure 107: LMGC Bridge PR time PROX/NSN/InternalSolvers
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Figure 108: LMGC Bridge PR time PROX/NSGS/InternalSolvers
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Figure 109: LMGC Bridge PR time PROX/Parametric studies ν = 0.5

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

ρ
(τ
)

PPA-NSN-AC-GP α0 = 10+04, ν = 1.0, σ = 0.5
PPA-NSN-AC-GP α0 = 10+04, ν = 1.0, σ = 1.0
PPA-NSN-AC-GP α0 = 10+04, ν = 1.0, σ = 5.0

PPA-NSN-AC-GP α0 = 10+04, ν = 1.0, σ = 100.0
PPA-NSN-AC-GP α0 = 10+04, ν = 1.0, σ = 1000.0

Figure 110: LMGC Bridge PR time PROX/Parametric studies ν = 1.0
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Figure 111: LMGC Bridge PR time PROX/Parametric studies ν = 2.0

RR n° 9118



On solving frictional contact problems 135

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

ρ
(τ
)

PPA-NSN-AC α0 = 10+04, ν = 1, σ = 5.0
PPA-NSN-AC-GP fixed α0 = 10+04

PPA-NSN-AC-GP adaptive α0 = 10+03

PPA-NSN-AC-GP adaptive α0 = 10+04

PPA-NSN-AC-GP adaptive α0 = 10+06

Figure 112: LMGC Bridge PR time PROX/Regularized problem

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

ρ
(τ
)

PANA-PGS-FP-VI-UPK
PANA-PGS-FP-VI-EG-UPK

PANA-CONVEXQP-PG
PANA-PGS-CONVEXQP-PG
TRESCA-NSGS-FP-VI-UPK
TRESCA-CONVEXQP-PG

TRESCA-FP-VI-UPK
SOCLCP-NSGS-PLI
ACLM-NSGS-FP-VI

ACLM-VI-FPP
ACLM-VI-EG

Figure 113: LMGC Bridge PR time OPTI
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0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

NSGS-AC
NSN-AC-GP

NSN-AC
TRESCA-NSGS-FP-VI-UPK

FP-VI-UPK

EG-VI-UPK
PPA-NSN-AC-GP α0 = 10+04, ν = 1, σ = 5.0

ACLM-NSGS-FP-VI
PPA-NSN-AC-GP α0 = 10+04, ν = 2.0, σ = 5.0

Figure 115: LMGC Bridge PR time COMP/zoom
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LMGC LowWall FEM precision 1.0e-04 timeout 400

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

FP-DS
FP-VI-UPK

FP-VI-UPTS

EG-VI-UPK
EG-VI-UPTS

Figure 116: LMGC LowWall FEM time VI/UpdateRule
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Figure 117: LMGC LowWall FEM time NSGS/LocalSolver
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Figure 118: LMGC LowWall FEM time NSGS/LocalSolverHybrid

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ρ
(τ
)

NSGS-AC-GP (tollocal = 10−04)
NSGS-AC-GP (tollocal = 10−06)
NSGS-AC-GP (tollocal = 10−08)
NSGS-AC-GP (tollocal = 10−10)

NSGS-AC-GP (tollocal = 10−12)
NSGS-AC-GP (tollocal = 10−14)
NSGS-AC-GP (tollocal = 10−16)

Figure 119: LMGC LowWall FEM time NSGS/LocalTol
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Figure 120: LMGC LowWall FEM time NSGS/LocalTol-VI
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Figure 121: LMGC LowWall FEM time NSGS/Shuffled
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Figure 122: LMGC LowWall FEM time PSOR
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Figure 124: LMGC LowWall FEM time PROX/NSN/InternalSolvers
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Figure 125: LMGC LowWall FEM time PROX/NSGS/InternalSolvers
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Figure 126: LMGC LowWall FEM time PROX/Parametric studies ν = 0.5
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Figure 127: LMGC LowWall FEM time PROX/Parametric studies ν = 1.0
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Figure 128: LMGC LowWall FEM time PROX/Parametric studies ν = 2.0
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Figure 129: LMGC LowWall FEM time PROX/Regularized problem

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

ρ
(τ
)

PANA-PGS-FP-VI-UPK
PANA-PGS-FP-VI-EG-UPK

PANA-CONVEXQP-PG
PANA-PGS-CONVEXQP-PG
TRESCA-NSGS-FP-VI-UPK
TRESCA-CONVEXQP-PG

TRESCA-FP-VI-UPK
SOCLCP-NSGS-PLI
ACLM-NSGS-FP-VI

ACLM-VI-FPP
ACLM-VI-EG

Figure 130: LMGC LowWall FEM time OPTI
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Figure 132: LMGC LowWall FEM time COMP/zoom
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LMGC LowWall FEM precision 1.0e-08 timeout 400

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5

ρ
(τ
)

FP-DS
FP-VI-UPK

FP-VI-UPTS

EG-VI-UPK
EG-VI-UPTS

Figure 133: LMGC LowWall FEM time VI/UpdateRule
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Figure 134: LMGC LowWall FEM time NSGS/LocalSolver
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Figure 135: LMGC LowWall FEM time NSGS/LocalSolverHybrid

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ρ
(τ
)

NSGS-AC-GP (adaptive tollocal)
NSGS-AC-GP (tollocal = 10−04)
NSGS-AC-GP (tollocal = 10−06)
NSGS-AC-GP (tollocal = 10−08)

NSGS-AC-GP (tollocal = 10−10)
NSGS-AC-GP (tollocal = 10−12)
NSGS-AC-GP (tollocal = 10−14)
NSGS-AC-GP (tollocal = 10−16)

Figure 136: LMGC LowWall FEM time NSGS/LocalTol
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Figure 137: LMGC LowWall FEM time NSGS/LocalTol-VI
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Figure 138: LMGC LowWall FEM time NSGS/Shuffled
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Figure 139: LMGC LowWall FEM time PSOR
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Figure 141: LMGC LowWall FEM time PROX/NSN/InternalSolvers
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Figure 142: LMGC LowWall FEM time PROX/NSGS/InternalSolvers
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Figure 143: LMGC LowWall FEM time PROX/Parametric studies ν = 0.5
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Figure 144: LMGC LowWall FEM time PROX/Parametric studies ν = 1.0
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Figure 145: LMGC LowWall FEM time PROX/Parametric studies ν = 2.0
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Figure 146: LMGC LowWall FEM time PROX/Regularized problem
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Figure 147: LMGC LowWall FEM time OPTI
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Figure 149: LMGC LowWall FEM time COMP/zoom
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LMGC Cubes H8 precision 1.0e-04 timeout 100
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Figure 150: LMGC Cubes H8 time VI/UpdateRule
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Figure 151: LMGC Cubes H8 time NSGS/LocalSolver
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Figure 152: LMGC Cubes H8 time NSGS/LocalSolverHybrid
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Figure 153: LMGC Cubes H8 time NSGS/LocalTol
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Figure 154: LMGC Cubes H8 time NSGS/LocalTol-VI
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Figure 155: LMGC Cubes H8 time NSGS/Shuffled
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Figure 156: LMGC Cubes H8 time PSOR
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Figure 158: LMGC Cubes H8 time PROX/NSN/InternalSolvers
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Figure 159: LMGC Cubes H8 time PROX/NSGS/InternalSolvers
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Figure 160: LMGC Cubes H8 time PROX/Parametric studies ν = 0.5
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Figure 161: LMGC Cubes H8 time PROX/Parametric studies ν = 1.0
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Figure 162: LMGC Cubes H8 time PROX/Parametric studies ν = 2.0
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Figure 163: LMGC Cubes H8 time PROX/Regularized problem
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Figure 164: LMGC Cubes H8 time OPTI
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Figure 166: LMGC Cubes H8 time COMP/zoom
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Capsules precision 1.0e-08 timeout 50
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Figure 167: Capsules time VI/UpdateRule
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Figure 168: Capsules time NSGS/LocalSolver
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Figure 169: Capsules time NSGS/LocalSolverHybrid
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Figure 170: Capsules time NSGS/LocalTol
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Figure 171: Capsules time NSGS/LocalTol-VI

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

NSGS-AC-GP
NSGS-AC-GP Fully shuffled

NSGS-AC-GP Shuffled

Figure 172: Capsules time NSGS/Shuffled
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Figure 173: Capsules time PSOR
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Figure 175: Capsules time PROX/NSN/InternalSolvers
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Figure 176: Capsules time PROX/NSGS/InternalSolvers
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Figure 177: Capsules time PROX/Parametric studies ν = 0.5
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Figure 178: Capsules time PROX/Parametric studies ν = 1.0
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Figure 179: Capsules time PROX/Parametric studies ν = 2.0
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Figure 180: Capsules time PROX/Regularized problem
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Figure 181: Capsules time OPTI
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Figure 183: Capsules time COMP/zoom
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Chain precision 1.0e-08 timeout 50
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Figure 184: Chain time VI/UpdateRule
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Figure 185: Chain time NSGS/LocalSolver
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Figure 186: Chain time NSGS/LocalSolverHybrid
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Figure 187: Chain time NSGS/LocalTol
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Figure 188: Chain time NSGS/LocalTol-VI
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Figure 189: Chain time NSGS/Shuffled
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Figure 190: Chain time PSOR
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Figure 192: Chain time PROX/NSN/InternalSolvers
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Figure 193: Chain time PROX/NSGS/InternalSolvers
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Figure 194: Chain time PROX/Parametric studies ν = 0.5
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Figure 195: Chain time PROX/Parametric studies ν = 1.0
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Figure 196: Chain time PROX/Parametric studies ν = 2.0
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Figure 197: Chain time PROX/Regularized problem
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Figure 198: Chain time OPTI
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Figure 200: Chain time COMP/zoom
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BoxesStack1 precision 1.0e-08 timeout 100
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Figure 201: BoxesStack1 time VI/UpdateRule
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Figure 202: BoxesStack1 time NSGS/LocalSolver
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Figure 203: BoxesStack1 time NSGS/LocalSolverHybrid
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Figure 204: BoxesStack1 time NSGS/LocalTol
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Figure 205: BoxesStack1 time NSGS/LocalTol-VI
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Figure 206: BoxesStack1 time NSGS/Shuffled
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Figure 207: BoxesStack1 time PSOR
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Figure 209: BoxesStack1 time PROX/NSN/InternalSolvers
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Figure 210: BoxesStack1 time PROX/NSGS/InternalSolvers
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Figure 211: BoxesStack1 time PROX/Parametric studies ν = 0.5
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Figure 212: BoxesStack1 time PROX/Parametric studies ν = 1.0
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Figure 213: BoxesStack1 time PROX/Parametric studies ν = 2.0
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Figure 214: BoxesStack1 time PROX/Regularized problem
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Figure 215: BoxesStack1 time OPTI
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Figure 217: BoxesStack1 time COMP/zoom
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KaplasTower precision 1.0e-04 timeout 100
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Figure 218: KaplasTower time VI/UpdateRule
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Figure 219: KaplasTower time NSGS/LocalSolver
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Figure 220: KaplasTower time NSGS/LocalSolverHybrid
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Figure 221: KaplasTower time NSGS/LocalTol
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Figure 222: KaplasTower time NSGS/LocalTol-VI
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Figure 223: KaplasTower time NSGS/Shuffled
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Figure 224: KaplasTower time PSOR
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Figure 226: KaplasTower time PROX/NSN/InternalSolvers
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Figure 227: KaplasTower time PROX/NSGS/InternalSolvers
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Figure 228: KaplasTower time PROX/Parametric studies ν = 0.5
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Figure 229: KaplasTower time PROX/Parametric studies ν = 1.0
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Figure 230: KaplasTower time PROX/Parametric studies ν = 2.0
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Figure 231: KaplasTower time PROX/Regularized problem
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Figure 232: KaplasTower time OPTI
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Figure 234: KaplasTower time COMP/zoom
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Chute_1000 precision 1.0e-04 timeout 200
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Figure 235: Chute_1000 time VI/UpdateRule
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Figure 236: Chute_1000 time NSGS/LocalSolver
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Figure 237: Chute_1000 time NSGS/LocalSolverHybrid
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Figure 238: Chute_1000 time NSGS/LocalTol
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Figure 239: Chute_1000 time NSGS/LocalTol-VI
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Figure 240: Chute_1000 time NSGS/Shuffled
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Figure 241: Chute_1000 time PSOR
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Figure 243: Chute_1000 time PROX/NSN/InternalSolvers
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Figure 244: Chute_1000 time PROX/NSGS/InternalSolvers
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Figure 245: Chute_1000 time PROX/Parametric studies ν = 0.5
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Figure 246: Chute_1000 time PROX/Parametric studies ν = 1.0
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Figure 247: Chute_1000 time PROX/Parametric studies ν = 2.0
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Figure 248: Chute_1000 time PROX/Regularized problem
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Figure 249: Chute_1000 time OPTI
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Figure 251: Chute_1000 time COMP/zoom
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Chute_4000 precision 1.0e-04 timeout 200
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Figure 252: Chute_4000 time VI/UpdateRule
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Figure 253: Chute_4000 time NSGS/LocalSolver
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Figure 254: Chute_4000 time NSGS/LocalSolverHybrid
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Figure 255: Chute_4000 time NSGS/LocalTol
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Figure 256: Chute_4000 time NSGS/LocalTol-VI
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Figure 257: Chute_4000 time NSGS/Shuffled
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Figure 258: Chute_4000 time PSOR
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Figure 260: Chute_4000 time PROX/NSN/InternalSolvers
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Figure 261: Chute_4000 time PROX/NSGS/InternalSolvers
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Figure 262: Chute_4000 time PROX/Parametric studies ν = 0.5
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Figure 263: Chute_4000 time PROX/Parametric studies ν = 1.0
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Figure 264: Chute_4000 time PROX/Parametric studies ν = 2.0
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Figure 265: Chute_4000 time PROX/Regularized problem
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Figure 266: Chute_4000 time OPTI
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NSGS-FP-VI-UPK (tollocal = 10−14)Figure 267: Chute_4000 time COMP/large
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Figure 268: Chute_4000 time COMP/zoom
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Chute_local_problems precision 1.0e-04 timeout 10
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Figure 269: Chute_local_problems time VI/UpdateRule
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Figure 270: Chute_local_problems time NSGS/LocalSolver
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Figure 271: Chute_local_problems time NSGS/LocalSolverHybrid
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Figure 272: Chute_local_problems time NSGS/LocalTol
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Figure 273: Chute_local_problems time NSGS/LocalTol-VI
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Figure 274: Chute_local_problems time NSGS/Shuffled
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Figure 275: Chute_local_problems time PSOR
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Figure 277: Chute_local_problems time PROX/NSN/InternalSolvers
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Figure 278: Chute_local_problems time PROX/NSGS/InternalSolvers
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Figure 279: Chute_local_problems time PROX/Parametric studies ν = 0.5
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Figure 280: Chute_local_problems time PROX/Parametric studies ν = 1.0
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Figure 281: Chute_local_problems time PROX/Parametric studies ν = 2.0
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Figure 282: Chute_local_problems time PROX/Regularized problem
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Figure 283: Chute_local_problems time OPTI
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Figure 285: Chute_local_problems time COMP/zoom
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Figure 286: Chute_local_problems time VI/UpdateRule
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Figure 287: Chute_local_problems time NSGS/LocalSolver
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Figure 288: Chute_local_problems time NSGS/LocalSolverHybrid
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Figure 289: Chute_local_problems time NSGS/LocalTol
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Figure 290: Chute_local_problems time NSGS/LocalTol-VI
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Figure 291: Chute_local_problems time NSGS/Shuffled
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Figure 292: Chute_local_problems time PSOR

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5

ρ
(τ
)

NSN-AC-GP
NSN-AC

NSN-AC fixed rho
NSN-AC-A

NSN-JM-GP
NSN-JM

NSN-JM-A

NSN-FB-GP
NSN-FB

NSN-FB-A
NSN-NM-GP

NSN-NM
NSN-NM-A

NSN-AC-HYBRIDFigure 293: Chute_local_problems time NSN
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Figure 294: Chute_local_problems time PROX/NSN/InternalSolvers
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Figure 295: Chute_local_problems time PROX/NSGS/InternalSolvers
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Figure 296: Chute_local_problems time PROX/Parametric studies ν = 0.5
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Figure 297: Chute_local_problems time PROX/Parametric studies ν = 1.0
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Figure 298: Chute_local_problems time PROX/Parametric studies ν = 2.0
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Figure 299: Chute_local_problems time PROX/Regularized problem
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Figure 300: Chute_local_problems time OPTI
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Figure 302: Chute_local_problems time COMP/zoom
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