N

N

Smart Mobility for All: A Global Federated Market for
Mobility-as-a-Service Operators
Franco Callegati, Maurizio Gabbrielli, Saverio Giallorenzo, Andrea Melis,

Marco Prandini

» To cite this version:

Franco Callegati, Maurizio Gabbrielli, Saverio Giallorenzo, Andrea Melis, Marco Prandini. Smart
Mobility for All: A Global Federated Market for Mobility-as-a-Service Operators. ITSC2017- 20th
International Conference on Intelligent Transportation , Oct 2017, Yokohama, Japan. hal-01631427

HAL Id: hal-01631427
https://inria.hal.science/hal-01631427
Submitted on 9 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01631427
https://hal.archives-ouvertes.fr

Smart Mobility for All
A Global Federated Market for Mobility-as-a-Service Operators
Franco Callegati', Maurizio Gabbrielli'-2, Saverio Giallorenzo'?, Andrea Melis', Marco Prandini'

Abstract—Multi-modal travelling is a common phenomenon. However, planning multi-modal journeys is still an unstructured and
time-consuming experience for customers: they lose time assembling a comprehensive plan out of disparate data, spread over a
multitude of information systems — each corresponding to a different company responsible for one of the legs in the journey. Also
transport operators are affected by the sparsity of the transportation market, as they might lose potential customers who could not find or
know about their services. In this paper, we propose Mobility as a Service (MaaS) as a solution to such problems. Key element of MaaS
is that Maa$S operators can aggregate solutions of multiple providers to deliver dynamic, transparent multi-modal travels to their users,
who experience transportation as managed directly by a single operator. However, given the volume and sparsity of the transportation
market, we argue that MaaS operators cannot rely on one-to-one, custom contracts of usage with single mobility operators. Instead, we
envision the creation of platforms that automatise the marketing of services for mobility among many mobility providers.

In this work, we detail the required features of a general software platform for such a MaaS market. In particular, we provide a precise
definition of Maa$S through the Maa$S Stack — a tiered view of the components needed by entities to join the MaaS market. Then, through
the lens of the Maa$S Stack, we elicit the features of an enabling software platform. Finally, to validate our approach, we present a
compliant prototype, called SMAII, and discuss its main design choices, among which: i) how SMAIl supports the creation of a
federation-based MaaS market and ii) how microservices — an emerging architectural style that fosters cohesiveness and minimality of
components — enhance flexibility and let the platform and the services of its members efficiently scale according to dynamic demands.

Index Terms—Mobility as a Service, Microservices, Federated Platforms

<+

1 INTRODUCTION

Issues of Multi-modal Travelling: Multi-modal travelling
is a common phenomenon. Commuters, tourists, and travel-
ling workers are used to compose trips out of legs covered
with disparate means: bike, car (personal, rented, hailed, or
shared), bus, train, boats, and planes. Usually, each “hop”
requires interaction with a different operator and, mostly,
with a different information system, since mobility resources
are administrated and owned by a scattered plethora of
mobility operators. As noted in [1], this is due to regulatory
and logistic constraints that favour site-specific solutions.
Hence, the experience of multi-modal travelling results
often into a discontinuous flow of interaction, scattered over
many applications, having a negative effect on both mobility
providers and customers. The former suffer opportunity costs
due to the loss of potential clients that could not find or
know about their services. On the other side, the customers
undergo many inconveniences, culminating in a sensible
waste of time. Reasons comprise:

« uneven experience: customers may have to plan their trips
over separate systems and different media with inconsist-
ent interfaces and flow of interaction (e.g., calling a taxi
via phone and then continuing the trip on train, whose
ticket was booked online);

o access issues: although multi-modal planning services have
become freely available (e.g., mapping services provided
by Google and Microsoft), customers still need to find out
what provides information on their trips. They have to look

Universita di Bologna, Via Zamboni, 33, 40126 Bologna, Italy
2INRIA, France
Manuscript submitted on 18th July 2017.

for places, phone numbers, and dedicated applications or
websites to retrieve information and book the trips.
interaction issues: once customers found what means
provide information on their trips, they have to negotiate
how to get those information, dealing with multiple authen-
tication systems, extracting data from different represent-
ations, and aggregating them to obtain a comprehensive
plan of the whole travel. Each step increases the risk
of introducing inconsistencies or missing key pieces of
information.

In addition to the time lost by customers and missed
opportunities of mobility providers, there are strong concerns
regarding data replication and security. When users interact
with multiple, separate systems within the same travel (i.e.,
to plan/book one of its legs), they are likely to replicate
information that is already present in another system. How-
ever, since they have to manually replicate such data (e.g.,
their IDs, dates of the trip, or personal needs), they could
introduce discrepancies among legs. As an example, consider
the steps from a multi-modal travel-planning application to
the actual booking of the travel. Although the travel-planner
holds information on each leg of the travel, the customer
has to manually replicate a subset of such data when she
books each leg, managed by a different operator. Also the
security of the data of the travellers plays an important
role [2]. Customers have to provide their personal data to
systems that guarantee uneven security measures, making
difficult or even impossible to assess the level of security of
the whole process.

Mobility as a Service: A possible solution to the issues
illustrated above is the creation of a unifying framework

Legend

o0

In-house
services

Bus GPS Timetables
Postioning

Real-time

external
invocation

City Bus
Operator
subscription

Position

Iﬂ

National Train

} Payment ‘ Timetables

Operator

SMAII
Helper
Service

[SMAH;

Bus GPS =)
Proxy

{ Federation

Timetable)|

eTicketing b3
System |

Proxy

SMAII
Compliant

Service

o g [Timetable B
ﬁ ! Proxy

Service

H SMAIl j

Business
Policies

orchestrate

Dispatcher
services

o &
Journey
Planner

forward

Eﬂ {Eﬁ request —

MaaS
Operator

plan __
trip

§o

Handler

—
m Bus Delays

Real-timefg| |
Position | |
Pub/Sub | | ‘

eTicketingGd
Analysis |
Service N

Service
Registry / Discovery

O]~

Car Hailing Company

Hailing
Service

Service

Car Hailing B
Proxy

-...-
iy
Crowdsourcing
Operator

Disruption Notifier

——SMAIl

Figure 1. Representation of the SMAIl architecture.

for mobility that supports the coordination of different
transportation systems. Such an idea has been envisioned
and described in several works in the last decade [1], [3],
[4], [5]. More recently, this idea has materialised in some
practical applications inspired by the concept of Mobility as
a Service (MaaS) — see for example [6]. Analogously to the
case of Cloud Computing (conveyor of the everything-as-
a-service paradigm), MaaS hides a dynamic infrastructure
of different travel agencies into a consistent interface: this
makes Maa$S users experience travelling as provided by a
single agency. Ideally, a MaaS provider, also called MaaS
operator, shall provision its users with information and
procedures for discovering, planning, booking, and guiding
journeys, combining any variety of means of transportation.
To the final user, the provisioning of mobility resources (i.e.,
information on transportation and the actual transits) is
transparent wrt the actual provider of the service. Since
mobility resources are administrated and owned by disparate
mobility providers, we argue that the leading economic
model of MaaS markets is that of federations of providers,
each trading its mobility resources. In such a federated
market, Maa$S operators dynamically partner with each other
whilst preserving their individual autonomy and without
a centralised regulation authority — which, in the case of
transportation, would be practically impossible to appoint.

Contributions: In this paper we present two main con-
tributions. First, we introduce the Maa$S Stack (§ 3): this is
the first tiered view that provides a structure for the, so far,
informal concept of MaaS. The Maa$S Stack originates from
our discussions with companies interested in entering the
market of Mobility as a Service, as well as from investigations
conducted within the EU EIT Digital project SMAII'. We
deem our view useful to isolate and clarify which elements
must be in place for mobility operators to join the MaaS
market, possibly becoming themselves Maa$S operators. The
second contribution is the presentation of a platform called
Smart Mobility for All (SMAII)?-3 (§ 4), that we are currently de-
veloping to support the creation of a federation-based MaaS
market and which is structured according to the principles of

1. Project description: https://goo.gl/WKnnSW
2. Wiki: https://github.com/small-dev/SMALl.Wiki/wiki
3. Deployable platform: https://hub.docker.com/u/smallproject/

the MaaS Stack. SMAII facilitates the publication, automatic
retrieval, and orchestration of functionalities for mobility,
provided by different mobility operators. The platform builds
on the concept of Federated Cloud Computing [7] and
maintains an open approach wrt the possible members of the
federation: MaaS operators, traditional transport agencies,
and other players that trade information linked to mobility,
like weather forecasts or crowd-sourcing communities [8].

Given its open approach, SMAIl can host and enhance
any service for mobility already present in the market.
As an example, we consider an actual pilot developed as
part of the mentioned EU project. In the pilot, a mobility
operator had a customised multi-modal journey planner
(Open Trip Planner). The operator deployed the planner
in SMAIl and refined its outputs with real-time GPS data
on public transport vehicles, provided by other operators
present in SMAIl. More in general, the provider of the planner
can automatise the retrieval of real-time data offered by any
other mobility operator in the market. Note that, given the
dynamic nature of contracts of usage in SMAII, real-time data
is accessed on-demand and its retrieval is limited / optimised
to the actual queries received from the users of the planner.
In § 2 and § 5 we provide further examples of how SMAIl can
host and/or expedite the enhancement of services already
present in the transportation market.

Concluding our introduction, we highlight that SMAII
is developed following the microservices paradigm [9]
and members are strongly supported in publishing their
functionalities as microservices. As remarked in § 4.1, such
architectural choice positively impacts on both SMAIl and
the resources deployed by members, which enjoy great
flexibility, gradual deployment and continuous integration,
eased software maintenance and, most important, efficient
scalability according to dynamic demands.

2 OVERVIEW

In this section, we overview the concept of MaaS and
illustrate the main features of SMAIl with a representative
instantiation of our platform, depicted in Figure 1. In the
remainder of the paper, we use the term service to indicate
an application deployed within or outside SMAIl, while we
use the term microservice to indicate an instance of a service

Regional Government i Universita di Bologna Bus Agency

1 Legend

| Tacking |___ | Review | | Administration | | | Delay | | Tracking D b B

i o | | |)

| Database | | Panel i ! Console i ! | Calculator | i Scheduler | GPSAPI i i Scheduling ! Service

,,,,,, | T S T SO [| | . e mmmm s L
L} l : X A AN A 'S i External Component
i
Administrator i m Bus Agency J Integration

; SMAII
i
i

Figure 2. Representation of the BusCheck Pilot.

within SMAII*. In Figure 1, the coloured entities outside of
the boundaries of SMAIl (bordered with double lines) are
providers of mobility resources and MaaS operators. These
are public transportation agencies, private companies, and
online communities. By entering the platform, each member
can be dynamically federated with the other agents already
present. Once in SMAIl, members can deploy their own
functionalities as microservices, e.g., in Figure 1, the City
Bus operator deploys three services: the first two are Bus
GPS Proxy and Timetable Proxy, which function as wrappers
for some pre-existing applications deployed in-house by
the operator. The third service, Bus Delays, is completely
contained in the platform and orchestrates the other two
services of the Bus Operator to calculate the delays of buses
by comparing the actual GPS position of the rides with the
expected scheduling from the timetables.

SMAII provides helpers (e.g., Registry / Discovery and
Dispatcher) to publish, discover, compose, and regulate
the usage of the deployed microservices. Considering the
example above, although all the microservices belong to the
Bus Operator, all the invocations from the Bus Delays service
are routed and managed by the Dispatcher. The Dispatcher
also enforces the usage Business Policies defined by the
owner of the invoked service, e.g., it can refuse to proxy
the invocation to the addressee as well as to delay frequent
requests if they exceed the rates established by the owner.

Business Policies are fundamental for marketing on-
demand services. As an example, consider the case in which
the City Bus Operator integrates the crowd-sourced data on
Route Network Disruption in its Bus Delays service (e.g.,
to forecast day-long delays on the interested routes). With
SMAII, using such crowd-sourced data does not require the
presence of pre-existing contracts of usage between the Bus
Operator and the Crowdsourcing Operator. By accepting the
business policies formalised by the Crowdsourcing Operator,
the Bus Operator can dynamically access (and pay for) the
Disruption information.

Finally, different SMAIl installations can be federated
as well, so that region-wide instances can constitute a
federation of international- and world-wide platforms. Con-
sider, for example, a MaaS operator that wants to provide
transportation solutions to its users travelling abroad. It
would be unthinkable for the MaaS operator to foresee and
stipulate contracts of usage in advance with all the possible
foreign transport agencies. On the contrary, with SMAIl a
MaaS operator can automatise the dynamic aggregation of
foreign federated services for its users, letting them access

4. Hence, to a service correspond one or more copies of the same
microservice that implements its functionalities.

transport solutions of other operators. Moreover, like the
other members of the platform, also MaaS operators can
deploy services. For example, in Figure 1 the MaaS Operator
deploys a Journey Planner and a Trip Handler. The latter,
in particular, is the service that orchestrates the dynamic
multi-modal trips for the users of the MaaS Operator. To do
that, Trip Handler interacts with the Dispatcher to reach and
orchestrate the other federated services: it uses information
on scheduling, availability, disruptions, and the position of
buses, trains, and on-demand cars to dynamically plan a
multi-modal trip, booking and paying the rides for the user.

A Motivating, Real-World Example: = We now illustrate
the proposed approach with a real-world use case developed
within the recent EU EIT Digital project SMAIL As part of
the project, we investigated the suitability — in terms of
development, interoperability, and scalability — of SMAI
wrt the creation of new smart mobility applications, possibly
integrating pre-existing services.

As a real-world example, we report one of such applica-
tions, which we implemented as a pilot, called BusCheck. The
pilot, commissioned by the Department of Transportation of
the government of the Emilia-Romagna (ER) region (Italy),
aims at recoding and displaying the quality of service of
the buses in the Bologna province. Figure 2 represents the
architectural view of our solution, composed of interacting
services (continuous boxes) and external functionalities
(dotted boxes) owned and provided by three organisations:
the ER regional government, the University of Bologna, and
TPER, the bus agency of the Bologna area. In Figure 2, we
omit Registry, Discovery, and Dispatcher helpers that enable
interaction among the deployed services (explained in § 4.1).

As shown in Figure 2, BusCheck emerges from the
composition of four services deployed within SMAIl (double-
line in Figure 2): i) Administrator is a service owned by the ER
government and used by operators to schedule and issue the
tracking of buses. Operators interact with the service through
a in-house client GUI outside SMAII. ii) Tracker is a service
developed and maintained by the University of Bologna. It
implements the actual logic to track buses. The service relies
on two sub-services: a Tracking Scheduler that, based on
the timetables of the tracked bus, triggers the retrieval of
its real-time position; a Delay Calculator that computes the
divergence between the expected and actual positions of the
tracked bus. iii) BusAgency is a service maintained by the
Bus Agency. It exposes to the Tracker the static and real-time
data on all the vehicles of the bus agency. iv) Database is a
service owned by the ER government that interacts with the
Tracker, receiving data on delays and serving them internally
to regional operators for both real-time and static inspection.

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

\
Clearing Roaming Access Control Service Level Agreement Business Intelligence §
D
w
Federation 1)
g
e RS s % 5
o |Z| g
Travel Travel User Identity / § g |2
A - . S|E |5
IRED IR EilfE Monitoring Guidance cetng [Healtlig Profile Management IPEYIET é < g
O g5
Travel o S g
218 |5
218 | =
Sle|©
Geographical Maps Environmental Conditions onte >

Transport Networks Network Status

Routes, Timetables, etc.

Vehicle Features, Position, Availability, Weather, Prices, etc.

———- ouabj[ajul Ssaulsng - || Jo11 >oelS SEeN -

Figure 3. The MaaS Stack

3 THE MAAS STACK

For the clarification of the concept of MaaS, we deem useful
to define it as a tiered structure, called the MaaS Stack. We
use such partition in § 4 to analyse the elements of MaaS
markets and the solutions we integrated in SMAII.

Figure 3 represents the MaaS Stack, comprising 3 tiers
(dashed lines): eMobility Operator, Business Intelligence, and
MaaS Operator. Inside the tiers, we identify 4 macro-layers
of services (rounded rectangles), each building on top of
the others: the Information layer contains basic services like
timetables and real-time positions; Travel and User services
build on Information ones to offer more advanced features to
users; Business Intelligence services analyse data on perform-
ance and usages of the aforementioned services, providing
insight to their owners; Federation services let operators trade
their solutions and form dynamic partnerships.

In the next sections we analyse in depth the tiers of the
Maa$ Stack and the layers that characterise them.

3.1 Towards Mobility as a Service

Recently, traditional transport agencies have been publishing
the data of their transportation solutions. Airline compan-
ies [10], train operators [11], and city-to-region-wide bus
operators have been compelled to open the data regarding
their transport systems to integrate with (de-facto) stand-
ards [12]. Beside traditional transport agencies, new compan-
ies entered the transportation market offering functionalities
for mobility such as mapping, travel guidance, multi-modal
journey planning and booking. The latests novelty on the
transportation market scene are hailing companies like Uber
and Lyft: “virtual” agencies that offer software functionalities
to enable transport solutions. This scenario characterises the
first tier of the MaaS Stack where isolated entities, called
eMobility operators, provide functionalities for mobility called
eMobility services..

3.2 MaaS Stack Tier I | eMobility Operators

Definition 1 (eMobility Service). A software functionality for
mobility, provided in a machine-readable form.

For example, an eMobility service could give access to air-
line/train/bus schedules in machine-readable formats [12],

N ——————— - jOJEIBdQ SEE - ||| 1o

[13], [14]. Support for machine-readable formats is key to
enable the dynamic composition of services, so that informa-
tion can be automatically processed, enriched, aggregated,
etc., and exposed to other services in the same fashion.
Figure 3 shows the layered taxonomy of eMobility services
in the MaaS Stack. The mobility-specific services fall into two
macro-categories: Information and Travel ones; then, there
are what we define User services, such as user identity
management, user preferences, payment circuits, etc., which
are not specific to mobility. A listing of the fundamental
services in these categories includes the following.

Information services allow users to access basic data needed

for transportation purposes.

Static / Planned data is stable or seldom updated, regarding
elements like maps, infrastructures (e.g., bus stops, park-
ing, rails, docks), and timetables of transport services.

Real-time data report the status of the system. This ranges
from unexpected infrastructural unavailability to current
weather conditions, GPS position of vehicles, available
seats/spots, traffic, delays, strikes, etc..

As depicted in Figure 3, Information services can be stack-

ed as well. We illustrate the concept considering the Static

/ Planned information stack: the basic data on vehicles

regarding e.g., Routes and Timetables provide a base for the

static Transport Network. This holds also for Geographical

Maps with respect to the transport network.

User services provide functionalities loosely related to trans-
portation but necessary to interact with users.

User Identity / Profile Management services allow to authen-
ticate and authorise users, and also include functions to
manage their preferences and historical records.

Payment services handle transactions to pay transportation
solutions and (possibly) the access to eMobility services.

Travel services mainly build upon Information ones.

Journey Planning services find journeys, possibly multi-
modal, between two points. They work on static data,
possibly integrating real-time one for dynamic results.

Travel Guidance assist the user with real-time travelling in-
formation wrt her position (e.g., turn-by-turn guidance).

Travel Monitoring services track the position of the user
and notify other subscribed applications of check-ins/-
outs and other events related to her movements.

Booking services use Information and Payment services to
place a reservation for the user (e.g., seats, spots, etc.).
Ticketing integrates Booking services to create and deliver

transportation tickets (i.e., access tokens) to users.

In the first tier of the MaaS Stack, we consider only
single eMobility operators (i.e., operators that do not use
and integrate the services of other operators).

Definition 2 (eMobility Operator). An entity that owns,
administrates, and exposes eMobility services.

Intuitively, an eMobility operator is any entity (company,
association, etc.) that publishes and orchestrates a set of eMo-
bility services directly administrated by itself. An example
of tier I eMobility operator is the National Train Operator
in Figure 1: it exposes services to buy tickets online and
to publish timetables and the real-time position of vehicles
in machine-readable standards. Our definition of eMobility
operators comprises also providers of services not directly
linked to transportation solutions, for example weather
forecasts: indeed, they provide an important information
on mobility and can enter the MaaS market as well.

3.3 MaasS Stack Tier Il | Business Intelligence

The second tier of the MaaS Stack still focuses on single
eMobility operators but it enriches the taxonomy of eMobility
services with the category of Business Intelligence [15]. This
category of services is separated from first-tier ones for two
reasons: first they are not meant for users but rather for
eMobility operators, and second, they span over all first-tier
services by monitoring and analysing their usages. The aim
of Business Intelligence services is to provide insight on the
performances of eMobility services.

In Figure 1, an example of second-tier Business In-
telligence service is the eTicketing Analysis Service. The
service can access the data of the eTicketing System and,
e.g., can suggest new pricing policies to the National Train
Operator as well as reporting rarely used routes that could
be merged/discarded. More generally, other examples of
Business Intelligence services comprise reporting on the
usage of the published eMobility services, analysis of the
quality of transit systems (e.g., relating the discrepancies
between scheduled trips and real-time delays), monitoring
the profitability, sustainability, and reliability of the provided
services and determining trends and making predictions on
future usage, for capacity planning and policy definition.

3.4 MaasS Stack Tier lll | MaaS Operators

As mentioned in § 1, the market of eMobilty operators is
a very scattered one. The concept of Mobility as a Service
originates from the economic opportunity of bridging the
gaps between operators, both cutting down overhead for
users and enabling synergistic strategies among transport
providers. For the creation and success of such a MaaS
market, it is imperative that eMobility operators can trade
and use said services on-demand. Such high degree of
flexibility (and trust) is typical of federations [7].

Definition 3 (MaaS Operator). An eMobility operator
federated with other eMobility operators. A Maa$S oper-
ator provides to its users eMobility and transit services

5

of other operators as its own. The usage of such foreign
services undergoes formal business policies.

In the context of MaaS, when eMobility operators federate,
they accept to adopt common technologies and formal
business policies. Such technology standards and regulations
are critical for a marketplace where eMobility and transport-
ation services are traded like stocks, i.e., dynamically (not
regulated by long-term, static contracts) and on-demand.
Federated operators establish business policies to mechanise
the trading of their services. The aim is to let users integrate
eMobility services and transportation solutions of “foreign”
operators into their travelling experience. The principle,
already envisioned in [1], resembles that of roaming of
GSM phone networks [16], where users connect through the
services of another phone company when travelling outside
the geographical coverage area of the home network.

Definition 4 (MaaS Roaming). Users of a MaaS operator can
transparently use eMobility and transit services of other,
federated operators.

As an example, consider the MaaS Operator in Figure 1.
Being federated with the National Train Operator and The
City Bus Operator, it can offer multi-modal journeys that
span different means of transportation (rail and road) and
have wide-to-narrow scopes (inter-city and intra-city). For
example, the MaaS Operator can leverage the available
business policies so that its users can plan and purchase
a trip (through its journey planner) associated with an
eTicket bought from the National Train Operator which also
comprises 5 trips of the City Bus Operator. The synergy
benefits all partners: the MaaS Operator provides (and it is
paid for) a comprehensive service to its users; the National
Train Operator acquires users and can charge for the access
to its eTicketing system; the City Bus Operator acquires new
users that (probably) would otherwise have taken a taxi due
to the overhead of looking for the right route and where
to buy the needed tickets. Our example introduces the last
fundamental element of the third tier of the MaaS Stack:
Clearing services, i.e., eMobility services that account for
roaming usages and compensate operators according to the
established business policies. Callegati et al. analyse in [17] a
similar scenario, where transport companies within the same
region share a unique ticket, requiring a clearing system
to manage the redistribution of the profits according to the
policy agreement of ticket sold and validated.

4 THE SMALL ARCHITECTURE
4.1 A Market of Microservices

Following the lesson of Cloud Computing [18] (and the
related SaaS/PaaS/Iaa$ stack), we argue that MaaS providers
will require tools and infrastructures to harness the hetero-
geneous landscape of eMobility operators. We choose mi-
croservices [9] as the enabling technology for an on-demand
marketplace after the observation that operators (e.g., the
Bus Operator in Figure 1) already have a collection of legacy
software systems that address some specific issues (e.g., the
Bus GPS Positioning and the Timetables services) and that
other operators (e.g., the National Train Operator in Figure 1)
are willing to pay to access them. In practice, operators would
like to include specific external functionalities (e.g., a bus

tracking service) in their own services rather than use (and
pay for) a bundle of unneeded functionalities (e.g., a real-time
planner that includes the mentioned bus tracking capability).
Microservice architectures achieve such degree of granularity.
This feature recently drove companies like Amazon and
Netflix to adopt microservice architectures, enabling them
to harness the complexity of their large software base. In-
deed, microservice architectures bring fundamental features
for on-demand provisioning, among which: independent
development cycles, per-usage resource allocation (limiting
the allocation for unneeded bundled functionalities), and
freedom to use task-specific technologies.

As expected, microservices come with some trade-off:
loosely-coupled microservices communicate via message
passing, which requires proper routing and may suffer
latencies and failures; many requests can overload a service,
hence it should prevent outages by limiting them and/or
scaling accordingly; microservices are heterogeneous but
their data-formats and Application Programming Interfaces
(APIs) should be homogeneous to foster compositionality.

For these reasons, SMAIl strives for standardization of
data-formats and APIs. Moreover, it provides infrastructural
tools to cope with most of the aforementioned issues: orches-
tration abstractions to streamline the composition of available
services (via the Jolie programming language [19], [20]);
data-format conversion functionalities; service registries and
dispatchers to both store the definition and address of
all the services deployed on the platform and to route
requests to them; business intelligence outlets for auditing
and performance indicators on the usage of services. In
addition, we investigated technologies to counteract security
issues [2], to enforce business policies for the dynamic access
to services, to federate different deployments of SMAII, and
to regulate the usage of services among members.

We now proceed to address the main issues of MaaS
federated markets, describing the elements of SMAIl that
deal with them. In doing so, we follow the MaaS Stack from
the bottom up. We first focus the needs of single eMobility
operators within the first two tiers, broadening our view to
Maa$ operators in the third tier.

4.2 Tierlandll

Whilst tier I and II are stacked and their respective services
differ from a user perspective (travellers for the first tier,
operators for the second one), at the architectural level they
share the same needs and components. Hence, in this section,
we consider them together.

Concerning these two tiers, we fixed some basic require-
ments in the design of SMAIl that we deem necessary within
a platform for single-tenant microservice deployment:

« sandboxing [21] for development and security;

o scaling both horizontally (i.e., create and remove copies
of the same service) and vertically (i.e., increase and
decrease the resources available to a microservice);

e publication and discovery of services and the related
Application Programming Interfaces (APIs);

o orchestration of services.

Below, we detail the mentioned requirements and discuss
the elements of the SMAIl platform that address them.

6

Deployment — Sandboxing and Scaling: virtualisation
is the standard solution for cloud-based deployment of
services [18]. The administrator of a service creates an
isolated virtual machine, i.e., sandboxed, wrt the others and
deploys her service on it. Then, single virtual machines
can be scaled vertically and, by managing the number of
copies of the same machine, horizontally. However, virtual
machines have several shortcomings: they entail important
costs due to the need for dedicated resources, these resources
could be wasted in idle cycles, and preparing and deploying
full virtual images takes sensible time. Hence, in SMAIl we
chose containerisation [22] as suitable solution that balances
costs, time, and ease of development with a flexible and
secure deployment. On these regards, SMAIl can integrate
techniques to optimise the deployment of microservices
based on a description of the target configuration [23].
Beside deployment, microservices are mainly involved in
orchestration, to which we dedicate the next two paragraphs.
In the first, we describe why and how services should be
indexed into a registry for discovery. In the second, we show
how to support the orchestration of discovered services.

Orchestration — Registry and Discovery: in cloud-based
platforms like SMAII, the address of a microservice is dynam-
ically determined at the time of the deployment and can
even change during the life-cycle of the microservice (e.g.,
due to migrations). For this reason, SMAIl does not provide
the direct address of a deployed microservice. Instead,
following a pattern called registry-and-discovery — adopted
by other cloud platforms [24], [25], [26], [27], [28] — when
a programmer deploys a service in SMAII, she also registers
it, with its description and APIs, into a Registry. As reply,
the Registry returns a unique identifier of the microservice,
which works as its reference address.

A registered service becomes visible to (allowed) users
through the Discovery service, i.e., a SMAIl helper dedicated
to query the Registry to find services that match the require-
ments expressed by a user. Indeed, SMAIl supports users
and access policies to let the owner of a service define which
member can discover (and interact with) it. This is useful
also within the borders of a single eMobility operator, where
different departments deploy services handling confidential
information, to avoid dangerous leakages [2].

Finally, regarding API definition, in SMAIl we chose to
support RESTful [29] and Jolie ones. On the one hand, we
chose to support RESTful interfaces for compatibility, given
the current adoption of RESTful technologies. On the other
hand, we argue Jolie interfaces to be more flexible than
RESTful ones (e.g., they are not constrained within HTTP
verbs). Moreover, Jolie interfaces enjoy desirable features
like out-bound and in-bound checking for compatibility wrt
the specified API [30]. Hence, when present, we preserve
Jolie interfaces of microservices and provide tools® for the
automatic conversion to RESTful ones.

Orchestration — Routing: The last feature we consider
here is routing of requests to registered services, which
in SMAIl is embodied by the Dispatcher service. As an
example of interaction with the Dispatcher, consider Figure 4

5. The Jolie REST router: https://github.com/jolie/jester

response getPosition

getPosition @ BGP] v
Format: JSSON/HTTP
‘ Authentication (api_key) ‘
AV Bus Delays
‘Authoﬁzaﬁon(api,key) ‘
1 ID: BD
=] ‘Service Level Agreements ‘
I
‘Support Patterns (cache, breakers) ‘
‘ Logging ‘
ID: BGP
‘ Data-format conversion ‘
7 Bus GPS Proxy
‘Rouﬁng ‘
Format: XML/SOAP
T

getPosition @ BGP +

response getPosition

Figure 4. Example workflow of the SMAII Dispatcher.

that depicts the invocation of the Bus GPS Proxy from
the Bus Delays service (cf. Figure 1). In Bus Delays the
programmer writes the orchestration code, labelling the
invocations to the Bus GPS Proxy with its identifier BGP — as
mentioned, programmers can obtain microservice identifiers
at deployment-time or through the Discovery. At runtime,
each invocation done by the Bus Delays service passes
through the Dispatcher, which interprets the label assigned
to the invocation and redirects it to the actual deployment
address of the Bus GPS Proxy. The Dispatcher handles the
routing of the response back to the invoker.

The Dispatcher also plays a central role in the develop-
ment of microservices in SMAIl (similar to API Gateways [26],
[31]) and supports the advanced features, like access policies
and service level agreements, of the third tier of the MaaS
Stack. These features (rectangles in Figure 4) comprise:

o Authentication and Authorisation, forwarding only re-
quests allowed to interact with the invoked service;

o Service Level Agreements which e.g., regulate the rate of
calls per time unit and certify the respect of availability
and responsiveness contracts;

e Support Design Patterns for microservices, like circuit
breakers [32], caches, etc., which normally would require
a direct integration within (and modification of) the
microservices, as done e.g., with Netflix Hystrix [33];

o Logging, which is useful for debugging and security;

e Data and Channel conversion for the seamless integration
of heterogeneous services, e.g., in Figure 4 the request
of the Bus Delays service uses HTTP and JSON while
the Bus GPS Proxy uses XML over SOAP.

4.3 Tierlll

The third tier contains the most advanced features of SMAII,
devoted to the creation of a global MaaS market.

We note that SMAIl encompasses two types of federations.
The first one is at the level of eMobility operators, which can
trade and access their services (becoming Maa$S operators).
These federations are defined dynamic because i) they exist
at runtime, according to the automatic enforcement of the
Access Policies and Service Level Agreements of the invoked
service and ii) they live as long as their related transaction
between the parties. The second type of federation concerns

7

SMAIl instances. Here, the federation is static, i.e., the owners
of SMAIl instances define agreements regarding the inter-
communication technologies [34], the security, reliability, and
availability of their link, and the security requirements within
their platforms. With federated SMAIl instances, eMobility
operators belonging to distinct instances can trade their
services and establish dynamic federations that span different
geographic contexts.

The fundamental components that allow SMAIl to form
a unique market of eMobility services are the Discovery
and the Dispatcher. Indeed, once these two components
are aware of the presence of other instances of SMAII, they
are able to automatically route discovery queries and service
invocations towards the other federated platforms. To do this,
both components forward their (respective discovery and
invocation) requests towards their equivalent in the targeted
platform. The forwarded request is handled as coming within
the targeted platform. This is the context where the advanced
features of the Dispatcher heavily come into play to enforce
Access Control and Service Level Agreements.

Finally, dynamic federations of eMobility operators en-
able the support for roaming, the hallmark of Mobility as a
Service, i.e., that Maa$S users can integrate into their travelling
experience the eMobility services and the transportation
solutions of other operators. Clearing services are the last
piece that completes the picture in SMAII, as they compensate
usages of transport solutions as well as of eMobility services,
according to the contract agreements.

5 RELATED WORK AND CONCLUSION

In this paper, we argued how Mobility as a Service (MaaS)
represents a feasible solution to the problems of multi-modal
travelling. On a broader perspective, we illustrated how
Maa$S concretise a steady trend of research on transport-
ation systems [1], [3], [4], [5] that foresees disparate and
sparse transportation networks unified within communic-
ating frameworks for mobility. In doing so, we informally
introduced the characteristics of MaaS operators and how
they shall facilitate the dynamic provisioning of multi-modal
transportation to their users. Then, we formalised MaaS
through a novel, structured view, called the MaaS Stack.
Finally, we presented SMAIl, our prototype platform for the
creation of a federation-based global market for MaaS.

Regarding related work, to the best of our knowledge,
both the MaaS Stack and SMAIl have no direct work to
compare with. Indeed, the MaaS Stack is the first formal
treatment on the features of MaaS markets. Similarly, SMAI|
is the first platform that enables the automatic creation of
services for MaaS.

For the sake of completeness, we consider some platforms
and applications for mobility already present in the market
and discuss how they compare with SMAIl. The closest
platforms to SMAIl are MyCicero [35] and FluidTime [36],
however they adopt a closed approach where customers
collaborate on a one-to-one basis and the offering and
integration of services for mobility is not done by customers
but handled directly by the providers of the platform.
Broadening our scope, there are applications that interact
with multiple mobility companies like Swiftly [37], for the
analysis and management of the real-time data on traffic,

and Hannovermobil [38] for booking and ticketing of trips.
Also in these cases, both applications create a one-to-many
relation with the providers of data and services, which
cannot directly interact with each other. Note that all the
mentioned platforms and applications could be deployed in
SMAIl and leverage its features to automatise the inclusion
of data and services provided by the federated members. A
similar comparison can be drawn with applications like
Bridj, RideCell, and ZipCar. These are focussed on the
provisioning of proprietary vehicles to move people and
goods. Once deployed in SMAII, these applications could
both i) federate, selling to each other the access to their
vehicles/customers, and ii) automatise the inclusion of local
providers and communities [39], generating a liquid market
around the same core business. Analogously, applications for
multi-modal journey planning like Rome2rio, Google Transit,
Hyperdia, and NaviTime, once deployed in SMAII, could
automatically enrich their results with real-time (possibly
crowd sourced [40]) data, for dynamic trip planning [41], also
considering traffic monitoring and accident detection [42],
and the collection of crowd-sourced data on cognitive dis-
traction [43], drowsiness [44], and behaviour of drivers [45]
to avoid incidents.

Although SMAIl is currently at a prototypical stage, we
are validating the platform with our industrial partners.
As future work, we plan to provide tools to support pro-
grammers and system owners in the creation, verification,
and maintenance of microservices. In these respects, cutting
edge technologies for service composition like Choreographic
Programming [46], [47] can help in establishing partnerships
among members of SMAIl (i.e., formal contracts) which can
even be dynamically updated after deployment [48].

Finally, the third tier of the Maa$S Stack requires technolo-
gies for the federation of SMAIl instances [7] (i.e., federation
of cloud clusters), the definition and the enforcement of
Access Policies and Service Level Agreements [49], as well as
best practices, standards, and techniques to guarantee high
levels of security within the platform.

REFERENCES

[1] J. M. Parker, “Applying a system of systems approach for improved
transportation,” SAPIENS, no. 3.2, 2010.

[2] F Callegati, S. Giallorenzo, A. Melis, and M. Prandini, “Insider
threats in emerging mobility-as-a-service scenarios,” in HICSS, AIS
Electronic Library (AISeL), 2017.

[3] M. W. Maier, “Architecting principles for systems-of-systems,” in
INCOSE, vol. 6, pp. 565-573, Wiley Online Library, 1996.

[4] M. W. Maier, “Research challenges for systems-of-systems,” in 2005
IEEE SMC, vol. 4, pp. 3149-3154, IEEE, 2005.

[5] D. Giuli, F. Paganelli, S. Cuomo, and P. Cianchi, “Toward a cooper-
ative approach for continuous innovation of mobility information
services,” IEEE Systems Journal, vol. 7, no. 4, pp. 669-680, 2013.

[6] S. Pippuri et al., “Maas finland.” http://maas. fi.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in Algorithms and architectures for parallel
processing, pp. 13-31, Springer, 2010.

[8] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp- 14, 2006.

[9] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,”
in PAUSE, Springer, 2017. to appear.

[10] S. Morrison and C. Winston, The evolution of the airline industry.
Brookings Institution Press, 1995.

[11] A. Nash, D. Huerlimann, J. Schiitte, and V. P. Krauss, “Railml-a
standard data interface for railroad applications,” Computers in
Railways IX, WIT Press, Southampton, pp. 233-240, 2004.

8

[12] Google, “Google transit feed
https://developers.google.com/transit/.

[13] Google, “Google transit feed specification | realtime transit.”
https://developers.google.com/transit/gtfs-realtime/.

[14] CEN, “Service interface for real time information.”
http://user47094.vs.easily.co.uk/siri/.

[15] S. Negash, “Business intelligence,” 2004.

[16] M. Mouly, M.-B. Pautet, and T. Foreword By-Haug, The GSM system
for mobile communications. Telecom publishing, 1992.

[17] E. Callegati, A. Campi, A. Melis, M. Prandini, and B. Zevenbergen,
“Privacy-preserving design of data processing systems in the public
transport context,” PAJAIS, vol. 7, no. 4, 2015.

[18] R. Buyya et al., “Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility,”
FGCS, vol. 25, no. 6, pp. 599 - 616, 2009.

[19] Jolie Team, “Jolie programming lang..” http://jolie-lang.org.

[20] E. Montesi, C. Guidi, and G. Zavattaro, “Service-oriented program-
ming with jolie,” in WSF, pp. 81-107, Springer, 2014.

[21] V. Prevelakis and D. Spinellis, “Sandboxing applications.,” in
USENIX Annual Tech. Conf., FREENIX Track, pp. 119-126, 2001.

[22] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux |., vol. 2014, Mar. 2014.

[23] M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi,
“Self-reconfiguring microservices,” in Theory and Practice of Formal
Methods, pp. 194-210, Springer, 2016.

[24] Netflix, “Eureka.” https://github.com/Netflix/eureka.

[25] Netflix, “Ribbon.” https://github.com/Netflix/ribbon.

[26] Amazon, “API Gateway.” https://aws.amazon.com/api-gateway/.

[27] Apache, “Zookeeper.” https://zookeeper.apache.org/.

[28] WSO2, “Ws02 api manager.” http://wso2.com/api-management/.

[29] R. T. Fielding, Architectural styles and the design of network-based
software architectures. PhD thesis, UC Irvine, 2000.

[30] E. Montesi, “Process-aware web programming with jolie,” Science
of Computer Programming, vol. 130, pp. 69-96, 2016.

[31] Netflix, “Zuul.” https://github.com/Netflix/zuul.

[32] F. Montesi and]. Weber, “Circuit breakers, discovery, and api
gateways in microservices,” CoRR, vol. abs/1609.05830, 2016.

[33] Netflix, “Hystrix.” https://github.com/Netflix/hystrix.

[34] K. Indrasiri, “Microservices in pratice - key architectural concepts
of an msa,” Wso2 White Paper, 2016.

[35] Mycicero, “http://www.mycicero.it/.” http://www.mycicero.it/.

[36] Fluidtime, “Fluidtime.” https://www.fluidtime.com.

[37] Swiftly, “https://goswiftly/.” https://goswift.ly/.

[38] Hannovermobil, “Hannovermobil.” http://www.gvh.de/service/
rad-auto-carsharing/hannovermobil.

[39] S. Mirri, C. Prandi, P. Salomoni, F. Callegati, A. Melis, and
M. Prandini, “A service-oriented approach to crowdsensing for
accessible smart mobility scenarios,” MIS, vol. 2016, pp. 1-14, 2016.

[40] A. Melis, S. Mirri, C. Prandi, M. Prandini, and P. Salomoni, “A
microservice-based architecture for the development of accessible,
crowdsensing-based mobility platforms,” in CTS, pp. 498-505, IEEE,
2016.

[41] J.-Q. Li, K. Zhou, L. Zhang, et al., “A multimodal trip plan-
ning system incorporating the park-and-ride mode and real-time
traffic/transit information,” in ITSC, vol. 25, pp. 65-76, 2010.

[42] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic
monitoring and accident detection at intersections,” IEEE TITS,
vol. 1, pp. 108-118, Jun 2000.

[43] M. Miyaji, H. Kawanaka, and K. Oguri, “Driver’s cognitive
distraction detection using physiological features by the adaboost,”
in ITSC, pp. 1-6, IEEE, 2009.

[44] K. Hayashi, K. Ishihara, H. Hashimoto, and K. Oguri, “Individual-
ized drowsiness detection during driving by pulse wave analysis
with neural network,” in ITSC, pp. 901-906, IEEE, 2005.

[45] M. Miyaji, M. Danno, and K. Oguri, “Analysis of driver behavior
based on traffic incidents for driver monitor systems,” in IVS,
pp- 930-935, IEEE, 2008.

[46] M. Carbone and F. Montesi, “Deadlock-freedom-by-design: multi-
party asynchronous global programming,” in POPL, pp. 263-274,
2013

specification.”

[47] S. Giallorenzo, Real-World Choreographies. PhD thesis, Universita
degli studi di Bologna, 2016.

[48] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, and M. Gab-
brielli, “AIOC]: A choreographic framework for safe adaptive
distributed applications,” in SLE, pp. 161-170, Springer, 2014.

[49] P. Patel et al., “Service level agreement in cloud computing,” 2009.

