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Abstract. In order to support, for example, a quantitative analysis of
various algorithms, protocols etc. probabilistic features have been intro-
duced into a number of programming languages and calculi. It is by now
quite standard to define the formal semantics of (various) probabilis-
tic languages, for example, in terms of Discrete Time Markov Chains
(DTMCs). In most cases however the probabilities involved are repre-
sented by constants, i.e. one deals with static probabilities. In this paper
we investigate a semantical framework which allows for changing, i.e.
dynamic probabilities which is still based on time-homogenous DTMCs,
i.e. the transition matrix representing the semantics of a program does
not change over time.

1 Introduction

Over the last 20 years or so probabilistic programming languages, model check-
ing, programming, semantics etc. have become more and more popular. It ap-
pears now to be rather straight forward to add probabilities to any language,
formalism, calculus, etc. one might be interested in. Most “probabilistic” pro-
gramming languages, etc. however use constant probabilities [11, 10] etc., as
we also did in our own work [4, 7], especially when anything beyond a simple
operational semantics is considered.

One of the motivations for introducing probabilities, as a form of quantified
non-determinism, into a programming language is to allow for the formulation
and analysis of so-called “randomised algorithms” [13], i.e. algorithms where
chance is exploited in order to obtain a certain result, may it be probabilistic
primality tests, Monte Carlo integration, etc.

However, there is a large class of randomised algorithms in the area of stochas-
tic programming which have dynamic probabilities at their core, such a stimu-
lated annealing, the Metropolis algorithm, Boltzmann machines, etc. [1, 17]. All
of these try to find global optimal solutions and in order to avoid getting trapped
into a local minima (as might, for example, be the effect of a steepest gradient
method) there are random perturbations. The effect of these perturbations is de-
creasing over time, i.e. during optimisation the chances of a perturbation changes
slowly to become zero. Without going into the details of such “cooling” schemes
or schedules we are in this paper interested in how to formalise dynamically
changing probabilities in an appropriate semantical model.



Probabilistic features, e.g. choices, introduce also a subtle, nevertheless ex-
tremely important form of coordination. Probabilities have to be normalised, not
as a formal requirement but quasi because of the fundamental laws of nature:
Something must happen, so the probabilities of all possibilities at any moment
must add up to one. Thus, whatever model we employ in order to describe
probabilistic choices, assignments, etc. the different options or possibilities are
“communicating” in some form via their probabilities: if one option becomes
more likely, another one must give up its chances to be executed/realised.

2 A Probabilistic Language

In the following we will denote by Var = {x1, . . . , xv} the set of all variables of
a program P and by Value(x) the range of possible values of a variable x.

Technical restriction: In this paper we assume that Value(x) is finite for all
x ∈ Var. We will allow below for variables as probabilities which thus also will
have to come from a finite set of (possible) values. From a computational point
of view probabilities should in any case perhaps be modeled as rational numbers
in [0, 1]. Using real numbers can, as always, create a number of fundamental
problems related to computability etc., e.g. [19].

To simplify the presentation we will go even a step further and only consider
positive integers in Z+ as “weights”1: Given several options with “weights” wi

these correspond to probabilities pi = wi/
∑

j wj . As we have to (re)normalise
probabilities in any case (even for static probabilities as constants, unless we
can trust the programmer that all probabilities in a choice or a probability
distribution always add up to one) this does not imply any restriction. It only
means that in effect we consider proportions or ratios rather than rational values.

Conceptual restriction: We do not allow for any kind of pure “non-determinism”
as part of the actual execution of the program. The reasons for this are: (i) From
a conceptual point of view it seems to be a contradiction to the notions like that
of a Turing machine as an unambiguous procedure (”Entscheidungsproblem”) to
allow for (e.g. angelic) “non-determinism”; (ii) we also do not believe that any
physical implementation of a purely “non-deterministic” choice exists (e.g. one
could use quantum devices to realise probabilistic but never “non-deterministic”
choices); and (iii) there are several mathematical (pseudo-)problems which disap-
pear when one eliminates “ non-determinism” during the execution of a program
(e.g. related to boundedness, etc. [7]).

However, our semantical model still accommodates “non-determinism” in
several aspects such as “non-determinism” as “under-specification” and “open-
ness”. Concretely, the semantical model provides for our language (pure) “non-
determinism” in two ways: (i) We leave it open which initial configuration will
be used, as we have no further interaction with the environment this can also be
seen as allowing for an “open” system; and (ii) we also allow for parameters as

1 Weights however have to be distinguished from priorities in other contexts



S ::= skip

| x := f(x1, . . . , xn)

| S1; S2

| choose p1 : S1 or p2 : S2 ro

| if b then S1 else S2 fi

| while b do S od

S ::= [skip]`

| [x := f(x1, . . . , xn)]`

| S1; S2

| [choose]` p1 : S1 or p2 : S2 ro

| if [b]` then S1 else S2 fi

| while [b]` do S od

Table 1. The syntax of pWhile

probabilities, i.e. our semantics allows for “under-specification” in the sense that
the concrete probabilities are only determined in a concrete implementation.

2.1 Syntax

The syntax of statements in our language pWhile is given in Table 1. We also
provide a labelled version of this syntax (cf. [14]) in order to be able to refer to
certain program points in a program analysis context, see also Table 1. We will
denote by Label the set of all labels of a program. For details on expressions
f(x1, . . . , xn) (also sometimes denoted simply by e) etc. we refer to e.g. [14, 5].

For this language we have the usual intuitive semantics: We have an “empty”
skip statement, assignment to variables, sequential composition as well as if

statements and while loops. The only probabilistic construct is the choose

statement which executes S1 or S2 according to the probabilities p1 and p2 (which
we assume to be normalised, i.e. p1 + p2 = 1, or which will be (re)normalised as
part of the execution of the program, mor below). The choose statement can
also be extended from its binary version to an n-ary one. We will not consider
in this core language random assignments – as in some of our other papers or,
e.g., [11] – but just note that obviously one can implement a random assignment
(involving finite values) using the choose construct.

2.2 Operational Semantics

The SOS semantics for pWhile is given in Table 2. We use the (additional)
statement stop to indicate successful termination and (re)normalise probabilities
in R7, otherwise these are the usual SOS rules for procedural languages. The
operational (SOS) semantics of pWhile is defined in terms of a probabilistic
transition system on configurations. A configuration is a pair 〈S, s〉 ∈ Conf
with S a statement in pWhile and s ∈ State a (classical) state, i.e. a function
Var → Value. The SOS semantics is essentially also the same for the labelled
version of the language, in this case we can however simplify the presentation
by identifying each statement S with the label of the initial block of S, i.e. a
configuration 〈S, s〉 is identified with the pair 〈s, init(S)〉 ∈ State× Label (for
a formal definition of init see e.g. [5]). Most transitions are in fact deterministic
(i.e. the associated probability is 1) just for choices, i.e. rules R7 do we use the
normalised probabilities p̃i (more on the actual normalisation procedure below).



R1 〈stop, s〉−→1〈stop, s〉
R2 〈skip, s〉−→1〈stop, s〉
R3 〈v := e, s〉−→1〈stop, s[v 7→ E(e)s]〉

R41
〈S1, s〉−→p〈S′

1, s
′〉

〈S1;S2, s〉−→p〈S′
1;S2, s

′〉

R42
〈S1, s〉−→p〈stop, s′〉
〈S1;S2, s〉−→p〈S2, s

′〉

R51 〈if b then S1 else S2 fi, s〉−→1〈S1, s〉 if E(b)s = true

R52 〈if b then S1 else S2 fi, s〉−→1〈S2, s〉 if E(b)s = false

R61 〈while b do S od, s〉−→1〈S; while b do S od, s〉 if E(b)s = true

R62 〈while b do S od, s〉−→1〈stop, s〉 if E(b)s = false

R71 〈choose p1 : S1 or p2 : S2 ro, s〉−→p̃1〈S1, s〉 with p̃1 = p1[p1,p2]
R72 〈choose p1 : S1 or p2 : S2 ro, s〉−→p̃2〈S2, s〉 with p̃2 = p2[p1,p2]

Table 2. The rules of the SOS semantics of pWhile (static)

The probabilistic transition system defined in Table 2 describes a Discrete
Time Markov Chain (DTMC) (cf. e.g. [15, 18]) as we obviously have a memo-
ryless process: the transitions in Rules R1 to R7 depend only on the current
configuration and not on the sequence of the configurations that preceded it. One
can also easy to show that the probabilities of out-going transitions from each
state sum up to one. It is well-known that the matrix of transition probabilities
of a DTMC on a countable state space is a stochastic matrix, i.e. a square (pos-
sibly infinite) matrix P = (pij) whose elements are real numbers in the closed
interval [0, 1], for which

∑
j pij = 1 for all i [18, 20]. We can therefore represent

the SOS semantics for a pWhile program P by the stochastic matrix on the
vector space over the set Conf of all configurations of a program P defined by
the rules in Table 2.

2.3 States and Observables

For our language we also allow for the specification of the range of possible values
of variables, i.e. Value(x), via declarations. Without going into the details of the
formal syntax, we distinguish between parameters, indicated by para, and proper
variables for which we specify their Value as a subset of the integers.

This allows us (also because Value(x) are assumed to be finite) to describe
the space of probabilistic states σ (of a program) as (probability) distributions
over classical states, i.e. σ ∈ D(State). We can also see σ simply as a vector in
the so-called free vector space V(State) over State (distributions correspond to
positive vectors with 1-norm 1) cf. [5, 7].

For a single variable x we have (the isomorphism) State = Value(x) and
when we consider several variables we can identify a classical state s with an
element in the Cartesian product Value(xi) × . . . ×Value(xv). When we con-
sider probabilistic states of a single variable x then we have σ ∈ D(State) ⊆
V(Value(x)). But for more than one variable we have σ ∈

⊗v
i=1 V(Value(xi)),

i.e. the so-called tensor product, rather than the Cartesian product of V(Value).
This unfortunately leads to a form of combinatorial explosion but is needed



accommodate all possible joint probability distributions as we have (the isomor-
phism) V(X1 × . . .×Xv) = V(X1)⊗ . . .⊗ V(Xv).

Concretely, the tensor product – more precisely, the Kronecker product, i.e.
the coordinate based version of the abstract concept of a tensor product – of two
vectors (x1, . . . , xn) and (y1, . . . , ym) is (x1y1, . . . , x1ym, . . . , xny1, . . . , xnym) i.e.
an nm dimensional vector. For an n × m matrix A = (Aij) and an n′ × m′

matrix B = (Bkl) we construct similarly an nn′×mm′ matrix A⊗B = (AijB),
i.e. each entry Aij in A is multiplied with a copy of the matrix or block B, for
further details we refer e.g to [16, Chap. 14].

In the following we also will use the notion of an observable which describes
properties a program or system might have (for further details see [7]). Formally,
an observable is a linear functional on the probabilistic state space, i.e. an el-
ement of its dual space. For finite dimensional spaces, as we have them here,
we can identify state and observable space. States and observables are related
to each other by the notion of expected value, E(x, σ), which gives the proba-
bility that we will observe a certain property x when the state of the system is
described by σ. In our finite setting (and by Riesz’s representation theorem) we
can utilise an inner product 〈., .〉 in order to to obtain E(x, σ) = 〈x, σ〉.

3 Static Probabilities

If the probabilities in the choose statement are required to be constants (or
parameters) then we can us a simple (re)normalisation procedure (at compile
time) in order to obtain the effective probabilities that a certain alternative is
executed, i.e. we (re) normalise probabilities in the SOS in Table 2 via:

p̃ = p[p1...pn] =
p

p1 + . . .+ pn
.

Not least because we will allow later also variable values pi we have to ad-
dress the issue whether p[p1...pn] is always well-defined. We will exclude negative
weights (if the nevertheless appear we could consider the absolute values). How-
ever, one problem remains, namely whether or not we allow for pi = 0. One
argument – which we will adopt – would be to allow this to indicate “blocked”
alternatives, especially when we consider (below) dynamical probabilities. This
implies another issue we need to consider, namely the case where all pi = 0. In
this case, normalisation would imply a division by zero. To overcome this we set
p̃ = p[p1...pn] = 0 if we have for all pi = 0.

3.1 Linear Operator Semantics (LOS)

The Linear Operator Semantics (LOS) in [4, 7] constructs the generator of the
DTMC which represents the dymanics of a program (executions) in a syntax
directed fashion. Like Kozen’s semantics [11] we can represent the LOS as an
operator on the vector space of probabilistic states, i.e. in the finite case as a
matrix.



{{[skip]`}}LOS = {〈I, `〉}
{{[x := e]`}}LOS = {〈U(x← e), `〉}
{{S1; S2}}LOS = ([[S1]] � init(S2)) ∪ [[S2]]

{{[choose]` p1 : S1 or p2 : S2 ro}}LOS = {p1[p1,p2] · I⊗E(`, init(S1))} ∪ {{S1}}LOS ∪
{p2[p1,p2] · I⊗E(`, init(S2))} ∪ {{S2}}LOS

{{if [b]` then S1 else S2 fi}}LOS = {〈P(b), `〉}� init(S1)} ∪ {{S1}}LOS ∪
{〈P(b)⊥, `〉}� init(S2)} ∪ {{S2}}LOS

{{while [b]` do S od}}LOS = {〈P(b), `〉}� init(S)} ∪ {{S}}LOS � `

∪{〈P(b)⊥, `〉}

Table 3. The LOS semantics of pWhile (static)

The LOS, [[P ]]LOS , of a program P is constructed by means of a set, {{P}}LOS

which associated to a program P is a set of linear operators which describe
local changes (at individual labels). From {{P}}LOS we can construct the DTMC
generator [[P ]]LOS then as a linear operator on V(Conf)

[[P ]]LOS : V(Valuen)⊗ V(Label)→ V(Valuen)⊗ V(Label)

or simply [[P ]]LOS ∈ L(V(Conf)). We obtain it by combining all the individual
effects which are described in {{P}}LOS :

[[P ]]LOS =
∑
{{P}}LOS =

∑
{G | G ∈ {{P}}LOS}.

The {{S}}LOS associated to a statement S is given by a set of global and local
operators, i.e. {{.}}LOS : Stmt→ P(Γ ∪Λ), cf Table3. Global operators are linear
operators on V(Conf) i.e. Γ = L(V(Valuen) ⊗ V(Label)) = L(V(Conf)), and
local operators are pairs of operators on V(State) and labels ` ∈ Label, i.e.
Λ = L(V(Valuen))× Label.

Global operators are providing information about how the computational
state changes at a label as well as the control flow, i.e. what is the label of the
next statement to be executed. Local operators are representing statements for
which the “continuation” is not yet known. In order to transform local operators
into global ones (once the “continuation” is known) we define a “continuation”
operation 〈F, `〉 � `′ = F ⊗ E(`, `′) which we extend in the obvious way to sets
of operators as {〈Fi, `i〉}} � `′ = {Fi ⊗ E(`i, `

′)} (for global operators we have
G� `′ = G). We denote by E(i, j) matrix units: (E(i, j))ij = 1 and 0 otherwise.

We use elementary update and test operators U and P (and its complement
P⊥ = I − P) as in Kozen’s semantics. However, the tensor product structure
allows us to define these operators in a different (but equivalent) way.

For a single variable the assignment to a constant value v ∈ Value is repre-
sented by the operator on V(Value) given by U(v) = 1 if v = i and 0 otherwise.



Testing if a single variable satisfies a boolean test b is achieved by a (diagonal)
projection operator on V(Value) with (P(b))ii = 1 if b(i) holds and 0 otherwise.
We extend these to the multivariable case, i.e. for |Var| = n > 1. For testing if
we are in a classical state s ∈ Valuen or if an expression e evaluates to a constant
v (assuming an appropriate evaluation function E : Expr → State → Value)
we have operators on V(Value)⊗n:

P(s) =

n⊗
i=1

P(xi = s(xi)) P(e = v) =
∑
E(e)s=v

P(s).

We also have operators on V(Value)⊗n for updating a variable xk in the context
of other variables to a constant v or to the value of an expression e:

U(xk ← v) =

k−1⊗
i=1

I⊗U(v)⊗
n⊗

i=k+1

I U(xk ← e) =
∑
v

P(e = v)U(xk ← v)

As we model the semantics of a program as DTMCs we are also adding a final
loop `∗ (for `∗ a fresh label not appearing already in P ) when we consider
a complete program (DTMC never terminate and thus we have to simulate
termination by an infinite repetition of the final state), i.e. we actually have to
use ({{P}}LOS � `∗)∪ {I⊗E(`∗, `∗)} when we construct [[P ]]LOS . In this way we
also resolve all open or dangling control flow steps, i.e. we deal ultimately with
a set containing only global operators.

As said, the operator [[P ]]LOS is the generator of a DTMC which implements
the dynamic behaviour or executions of the program P . In particular, we can take
any (initial) configuration c0, represented by a (point) distribution in V(Conf)
and compute the distribution over all configurations we will have after n steps
as cn = c0 · [[P ]]nLOS (using post-multiplication as our convention).

3.2 A Small Example

The LOS semantics specifies the semantics of a program as the generator of a
DTMC. We use a simple experimental tool – pwc – which “compiles” a pWhile
program into an octave [8] script which defines the different matrices/operators.
To illustrate this let us look at a simple example involving a probabilistic choice.

Example 1. The concrete program P we consider, for which we also provide the
labelling (which is in fact produced by the pwc tool) is given by:

var

p :para; x :{0,1};

begin

[choose]^1 1: [x:=0]^2 or 1: [x:=1]^3 or p: [skip]^4 ro;

[stop]^5

end



Here we deal with one parameter p, the value of this can be set to any (integer)
value before the program is actually executed, and one variable x which can take
two values in {0, 1}. The state space is thus given just by V({0, 1}) = R2 (as the
parameter p does not change we do not record its value as part of the state). The
program is made up from 5 blocks: [choose]1, [x := 0]2, [x := 1]3, [skip]4, [skip]5.
We thus have as the (probabilistic) space of configurations on which the LOS
operator acts V({0, 1} × V({`1, `2, `3, `4, `5}) = R2 ⊗ R5 = R10, i.e. [[P ]]LOS is
a 10 × 10 matrix which represents the generator of a DTMC on a space of 10
elements. Each dimension corresponds to a possible configuration, i.e. a tuple
〈si, `j〉 with s a (classical) state s : {x} → {0, 1} and a statement or block
identified by its label ` ∈ {`1, `2, `3, `4, `5}. Concretely we have the following
base vectors ei in R10 for the state spaces of the DTMC: e1 = 〈x 7→ 0, `1〉, e2 =
〈x 7→ 0, `2〉, . . . , e5 = 〈x 7→ 0, `5〉, e6 = 〈x 7→ 1, `1〉, . . . , e10 = 〈x 7→ 1, `5〉.

For each of the 5 blocks we have a local transfer operator F1, . . .F5 which
are (stochastic) 2 × 2 matrices, i.e. linear operators on our state space R2. For
blocks 4 and 5 these Fi are trivial, i.e. the identity 2× 2 matrix, for label `2 and
`3 the transfer operators are slightly more interesting:

F1 = F4 = F5 =

(
1 0
0 1

)
, F2 =

(
1 0
1 0

)
, F3 =

(
0 1
0 1

)
.

This allows us to specify the local LOS operators for each basic block:

{{[x := 0]2}}LOS = {〈F1, 2〉}, {{[x := 1]3}}LOS = {〈F1, 3〉},
{{[skip]4}}LOS = {〈F4, 4〉}, {{[skip]5}}LOS = {〈F5, 5〉}.

We could also consider explicitely {{[choose]1}}LOS = {〈F1, 1〉}, however this
will be covered when we consider the global operators.

The control flow of P is made up from 7 control-flow step triples 〈i, p, j〉,
where i is the initial label, p the transition probability and j the final label:

1− 〈1, 1, 2〉, 2− 〈1, 1, 3〉, 3− 〈1, p, 4〉,
4− 〈2, 1, 5〉, 5− 〈3, 1, 5〉, 6− 〈4, 1, 5〉, 7− 〈5, 1, 5〉.

For each of these control-flow steps we construct a global operator, typically the
tensor product of the local transfer operator Fi at the initial label i and a control-
flow step given by the matrix unit E(i, j), eventually weighted by a probability.
Here we have to consider the (global) operators: T1 = F1 ⊗ E(1, 2),T2 = F1 ⊗
E(1, 3),T3 = F1 ⊗ E(1, 4),T4 = F2 ⊗ E(2, 5),T5 = F3 ⊗ E(3, 5),T5 = F4 ⊗
E(4, 5),T7 = F5 ⊗E(5, 5). The first three operators allow us to define the LOS
of the choices statement. For this we have to specify a particular value for the
parameter p. For example, for p = 0 we get after renormalisation:

{{[choose]1 . . . ro}}LOS = {1

2
T1,

1

2
T2} ∪ {{[x := 0]2}}LOS ∪ {{[x := 1]3}}LOS .

If we instead take p = 1 we get after renormalisation:

= {1

3
T1,

1

3
T2,

1

3
T3, } ∪ {{[x := 0]2}}LOS ∪ {{[x := 1]3}}LOS ∪ {{[skip]4}}LOS .



The LOS {{[choose]1 . . . ro}}LOS contains global as well as local operators: The
global ones represent control-flow steps where the destination is already known,
while the local ones (here for the labels `2, `3 and `4 are still unresolved. How-
ever, when we consider the whole program then the operation � resolves the
destinations of local operators and turns them into global ones, e.g.

{{[x := 0]2}}LOS � `5 = {T4} = {F2 ⊗E(2, 5)}
{{[x := 1]3}}LOS � `5 = {T5} = {F3 ⊗E(3, 5)}
{{[skip]4}}LOS � `5 = {T6} = {F4 ⊗E(4, 5)}

Resolving the self-loop for label 5 using T7 we get the semantics for p = 0 as:

{{P}}LOS = {1

2
T1,

1

2
T2,T4,T5,T6,T7}

and for p = 1 we have (similarly also for other values of p):

{{P}}LOS = {1

3
T1,

1

3
T2,

1

3
T3,T4,T5,T6,T7}

The DTMC generator in both case is [[P ]]LOS =
∑
{T | T ∈ {{P}}LOS} .

4 Dynamical Probabilities

The main purpose of this work is to allow for “dynamical” probabilities in pro-
grams. That is we would like to allow for variables in choice constructs which
allow a change of their values in the course of a computation. Given that our LOS
semantics constructs a single operator [[P ]]LOS for every program P which does
not change during the execution, i.e. represents a (time) homogenous DTMC,
this seems to be a hopeless task. On the other hand, the state of the system does
obviously contain all the information which could influence how the execution
of a program should continue, so if it encodes the values of variables in choices,
then this information should somehow be exploitable.

For the SOS semantics it is still relatively easy to extend it towards vari-
able probabilities: We have to replace the normalisation condition in rules R7
in Tablle 2 by referrence to the current state s, i.e. p̃i = s(pi)/s(p1) + s(p2)
rather than constant values of pi. The way to introduce dynamical or variable
probabilities into the LOS semantics of the choice construct is to test or check
whether we are in a certain state where variables have certain concrete values,
if this is the case then the corresponding normalisation is applied.

4.1 Linear Operator Semantics (LOS)

In order to extend the LOS semantics as to allow for variable probabilities we
have to consider the way we construct the LOS operator for the choice statement
with static, i.e. constant, probabilities: {{[choose]` p1 : S1 or p2 : S2 ro}}LOS =



{p̃1 · I⊗E(`, init(S1))}∪{{S1}}LOS ∪{p̃2 · I⊗E(`, init(S2))}∪{{S2}}LOS , or more
general for n alternatives in a choice statement:

{{[choose]` p1 : S1 or . . . or pn : Sn ro}}LOS =

=

n⋃
i=1

{p̃i · I⊗E(`, init(Si))} ∪ {{Si}}LOS .

In these rules all pi are known, either because they are constants or because
they are constant parameters. We thus can compute the normalised probabilities
p̃i or, when we need to explicitely record the context in which we normalise,
p̃i = pi[p1...pn] in exactly the same way as in the operational semantics.

When it comes to dynamical probabilities then we need to consider all pos-
sible contexts, i.e. all possible values p1, . . . , pn could take, in which we might
need to normalise a probability. Formally we define a context for probabilities
p1, . . . , pn where each pi can be a constant value (incl. a parameter) or a variable
(name) as a set of sequences i1, . . . , in of integers:

C[p1, p2, . . . , pn] =


∅ if n = 0
{[p1]} if n = 1 and pi constant
{[c] | c ∈ Value(p1)} if n = 1 and pi a variable⋃

[i]∈C[p1]
{[i] · C[p2, . . . , pn]} otherwise, i.e. n > 1.

where “·” denotes the concatenation of integer sequences [i1, . . . , im] defined and
extended to sets of sequences in the obvious way.

Example 2. Assume we have a variable x with Value(x) = {0, 1} and a param-
eter p = 0 or p = 1 then contexts are given by:

C[x, 1, p] = {[0, 1, 0], [1, 1, 0]} and C[x, 1, p] = {[0, 1, 1], [1, 1, 1]}

With this we can now define an extended version of the LOS which also
allows for variables as choice probabilities:

{{[choose]` p1 : S1 or . . . or pn : Sn ro}}LOS =

=

n⋃
i=1

∑
cj∈pi

∑
[d1,...,dn]∈C[p1...pn]

cj [d1...dn]
·Ppi[p1...pn]

cj [d1...dn]
⊗E(`, init(Si))

 ∪ {{Si}}LOS .

To explain this construction: The LOS of the choices is given – as in the static
case – as the union of all (global) operators which implement the control-flow
step from label ` to one of the alternatives i = 1 . . . n together with the LOS
semantics of each of these alternatives defined by {{Si}}LOS . However, in the case
of static probabilities we have to weight the operator E(`, init(Si)) not just with
a normalised probability but instead we test if the values of the probabilities
(which can be variables, after all) are described by a particular context and
then apply the corresponding normalised weight cj [d1...dn]

. This test operator

P
pi[p1...pn]
cj [d1...dn]

is very similar to the test we apply in order to identify a particular



state, i.e. P(σ), except that in a context the same variable can appear several
times:

P
pi[p1...pn]
cj [d1...dn]

= P(pi = cj) ·

 ∏
k=1,...,n

P(pk = dk)

 .

The first sum is over all possible values of the guard probability pi, where we
use the short-hand notation cj ∈ pi for cj ∈ Value(pi) which for constants and
parameters reduces to a single term cj = pi. The second sum is over all possible
values of all probabilities in all possible contexts. It might be interesting to note
that if a variable appears twice it has to have the same value (as diag(ei) ⊗
diag(ej) = diag(ei) if and only if i = j and the zero matrix otherwise). For
constant values we can also omit the tests (as eiT = eidiag(ei)T for all T).

It is simple to show that the LOS semantics for choice with variable prob-
abilities is equivalent to the SOS semantics, for the other construct things are
unchanged [7].

4.2 A Small Example

In order to illustrate the LOS for dynamical variables let us again first consider
a very simple example, similar to Example 1.

Example 3. The program Q we consider is given by:

var

p :para; x :{0,1};

begin

[choose]^1 x: [x:=0]^2 or 1:[x:=1]^3 or p:[skip]^4 ro;

[stop]^5

end

As we have the same declarations, we have exactly the same state spaces as
in Example 1. Furthermore, we also have the same 5 blocks as in the previous
example and therefore the DTMC state space of configurations is again R10. We
also have the same transfer operators Fi (and local LOS operators for the basic
blocks). However, though the control flow has again 7 control-flow steps and it
is nearly identical, except for the step from `1 to `2 which here is guarded by a
variable probability x:

1− 〈1, x, 2〉, 2− 〈1, 1, 3〉, 3− 〈1, p, 4〉,
4− 〈2, 1, 5〉, 5− 〈3, 1, 5〉, 6− 〈4, 1, 5〉, 7− 〈5, 1, 5〉.

We can still use the same operators Ti from Example 1 but the complete LOS
semantics now looks slightly different. For p = 0 or p = 1 we need to work with
the contexts given in Example 2. For p = 0 we have C[x, 1, p] = {[0, 1, 0], [1, 1, 0]}
and thus get

{{Q}}LOS = { (P(x = 0) + 1
2P(x = 1))⊗E(1, 3),

( 1
2P(x = 1))⊗E(1, 4),T4,T5,T6,T7}.



and for the parameter value p = 1 we have C[x, 1, p] = {[0, 1, 1], [1, 1, 1]} and:

{{Q}}LOS = { ( 1
3P(x = 1))⊗E(1, 2),

( 1
2P(x = 0) + 1

3P(x = 1))⊗E(1, 3),
( 1
2P(x = 0) + 1

3P(x = 1))⊗E(1, 4),T4,T5,T6,T7}.

Note that test operators like P(x = 1) should actually be expressed as, for
example: P(x = 1)P(x = 1)P(1 = 1)P(p = 1). However, as said before, in the
case of constants (and parameters) these tests are redundant and as projections
are always idempotents we also have: P(x = 1) = P(x = 1)P(x = 1).

5 Example: Duel at High Noon

We illustrate the generation of the LOS semantics – i.e. the DTMC generator of
a probabilistic program – by considering an example given in [9, 10], see also [12,
p211], which concerns the kind of “duel” between two “cowboys” A and B. We
first reproduce essentially the results of [9, 10] regarding the chances that A (or
B) will win/survive the “duel” with static probabilities. We then also consider
the case where one the two duellists (here A) improves his hitting chances during
the contest. This situation obviously requires dynamical/changing probabilities.

5.1 Static Probabilities

The idea is that two “cowboys”, A (Adam) and B (Boris), have a duel. At each
turn one of them is allowed to shoot at the other, if he misses the other one
can try, if he also misses it is the first ones turn again until one is “successful”.
That is, at the beginning one of the two – either Adam or Boris – is allowed to
shoot at the other one. Which of the two starts is left open, i.e. decided non-
deterministically. We assume that there is a probability a for A hitting B and a
probability b that B manages to shoot A. More precisely, we have a = ak

ak+am for
a “killing” and a “missing” weight ak and bk, respectively (and similar for b).
In the original version it is non-deterministically decided whether A or B starts,
but in order to get simple numerical results we will flip a fair coin to determine
who has the first attempt. The concrete pWhile program is given on the left
hand side in Table 4.

The variable c determines whether the duel should be continued, if c = 1
the duel continues, otherwise it is over. This is essentially to simulate a until

statement using the while construct. The variable t determines which of the two
duellists is allowed to try to shoot, for t = 0 it is A’s turn, otherwise it is B’s
turn. As long as the duel is continued (i.e. c = 1) it is either A which gets a try
(if t = 0) or B (for t = 1). If it is A’s turn he will hit B with probability a – in
this case the duel is over and c is set to 0; and with probability 1 − a it might
be a miss – in this case the next round it will be B’s turn. Similarly, for t = 1
the duellist B gets his chance.

At the end of the duel the value of t determines who has lost/won – i.e whoes
turn it was when the loop terminated, i.e. c was set to zero. In order to extract



var

ak: para; # A kills

am: para; # A misses

bk: para; # B kills

bm: para; # B misses

t: {0,1}; # turn 0=A, 1=B

c: {0,1}; # continue 0=no, 1=yes

begin

# who’s first turn

choose 1:{t:=0} or 1:{t:=1} ro;

# continue until ...

c := 1;

while c == 1 do

if (t==0) then

choose ak: c:=0] or am: t:=1 ro

else

choose bk: c:=0 or bm: t:=0 ro

fi;

od;

stop; # terminal loop

end

var

ak: para; # A kills (initially)

am: para; # A misses (initially)

bk: para; # B kills

bm: para; # B misses

t: {0,1}; # turn 0=A, 1=B

c: {0,1}; # continue 0=no, 1=yes

akl: {0..10}; # A kills (learned)

aml: {0..10}; # A misses (learned)

begin

# initialise skills of A

akl := ak; aml := am;

# who’s first

choose 1:{t:=0} or 1:{t:=1} ro;

# continue until ...

c := 1;

while c == 1 do

if (t==0) then

choose akl: c:=0 or aml: t:=1 ro

else

choose bk: c:=0 or bm: t:=0 ro

fi;

akl:=@inc(akl); aml:=@dec(aml);

od;

stop; # terminal loop

end

Table 4. pWhile programs for the Duel at High Noon

information about the probability distribution describing a particular variable –
in our case t – at a given label `, i.e. program point `, we can use an abstraction
operator A`. This operator/matrix leaves the first variable (i.e. t) unchanged
and “forgets” about all other variables in a particular label `:

A` = I⊗Af ⊗ . . .⊗Af ⊗ (e`)
t

with I the identity matrix for the first variable (for t it is a 2 × 2 matrix),
Af a so-called “forgetfull abstraction” for the remaining variables and et` the
transposed (column) base vector in V(Label) which selects or projects the state
at label `. The operators Af are given by column vectors (or n × 1 matrices)
which only contain 1s, i.e. Af = (1, 1, 1, . . . , 1)t with n = dim(V(Value(x)) =
|Value(x)|. This is an instance of a more general framework of Probabilistic
Abstract Interpretation (PAI), cf. e.g. [6, 7, 5].

With this abstraction A` we can extract the probabilities that t is 0 or 1, i.e.
who has won the duel, if we take ` = `∗, i.e. the final label `8 of the program
once the program has “terminated”. For this we have to consider the (long-run)
input/output behaviour for an initial configuration c0 = s0 ⊗ e0, i.e. an initial



state s0 which determines the initial values of all variables at the initial label
`0. We then have to apply the LOS operator [[P ]]LOS until we reach a limit
limn→∞(s0 ⊗ e0)[[P ]]nLOS . This essentially gives Kozen’s input/output semantics
[11] of the program, cf. [7].

To obtain numerical results we can stop this iteration for a finite value of n,
in our case n = 100 is sufficient. Finally, we have to extract the state of t using
A`∗ and the observable w = (1, 0) which gives the probability that t = 0, i.e.
that the winner is A. In other words, the aim of the analysis is to determine:

ω = lim
n→∞

〈w, (s0 ⊗ e0) · [[P ]]nLOS ·A`∗〉 .

or a numerical approximation (for n = 100). In our case t and c are both
initialised, so ω is idependent of the initial state s0. If we consider the “non-
deterministic” version, i.e. dropping ‘choose 1: t:=0 or 1: t:=1 ro’, the value
of ω would depend on s0.

We use our tool pwc to construct [[P ]]LOS . The program has 13 labels or
elementary blocks (with `∗ = 13). The dimension of the DTMC is then 2× 2×
13 = 52 as t and c take two possible values. With this we can compute ω for
different values of the parameters ak, am, etc. The top left diagram in Figure 1
depicts the chances of A surviving the duel depending on a = ak/(ak+am) and
b = bk/(bk + bm).

5.2 Dynamic Probabilities

If we assume that probabilities (of hitting) are not constant, but that for example
one of the duellists is getting better during the shoot-out we have to consider a
different model as in the following pWhile program as on the right in Table 4.

Here we use the same parameters ak, etc. as in the static case. However for
A these are only the initial values. During the duel A will improve his shooting
skills (while B’s abilities do not change). The (learned) chances of A hitting is
given by akl and the chances of missing aml. These are changed using “external”
functions @inc and @dec which depend on a learning rate r defined directly in
octave as min(max(x+r,0),10) and min(max(x-r,0),10), respectively.

For different values of the parameters ak, am, etc. we can again construct the
LOS operator [[P ]]LOS . In this case we have 17 lables/blocks and two additional
variables akl and akm which each can have 11 possible values, thus we have to
consider a DTMC on 2× 2× 11× 11× 17 = 8228 states.

The survival chances for A can be computed in the same way as in the
static case, using the corresponding abstraction A17, the same w and based on
a numeric approximation based on n = 100 iterations of [[P ]]LOS . For different
learning rates r we depict the survival rate for A in Figure 1. For r = 0 we
get exactly the same as in the static case – after all, A is stuck with his initial
shooting abilities and does not improve at all.
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Fig. 1. Survival probabilities ω for A with learning rates 0, 1, 2 and 4

6 Conclusions

We presented a model for probabilistic programs which essentially encodes the
semantics of a program in terms of time homogenous DTMCs, i.e. the operator
representing the semantics is given by a time invariant, “eternal” stochastic
operator/matrix. Nevertheless, within this static model it is possible to also
realise changing probabilities.

The language we based this on is a simple procedural language. Nevertheless,
it is obvious that this model also applies to (proper) coordination languages like
pKLAIM [3, 2]. This concerns in particular concurrency aspects: The rules of
the duel in the cowboy example essentially implement an explicit round robin
scheduler and the extension to more general schedulers seems not to be difficult.
Surviving the duel itself can also be seen as an ultimate coordination problem
in which the role of probability normalisation is essential: Ones survival depends
not only on ones own (shooting) abilities but also on the one of the opponent.
A hit rate of 50% for A means almost sure survival for A if B is a bad shooter
with a 2% hit rate, but if B a perfect duelist with 100% hit rate then this will
give the same A no chance of survival if B begins the duel.

It seems also feasible to extend this “probability testing” approach to continu-
ous time models, continuous probabilities and hybrid systems, although this will



require more careful considerations of the underlying measure theoretic struc-
ture (Borel structure, σ-algebras, measures instead of distributions, integrals in
place of sums, etc.).
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