D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini, Software, Environments, and Tools. SIAM, 2013.

C. Beltrán, A continuation method to solve polynomial systems and its complexity, Numerische Mathematik 117.1, pp.89-113, 2011.
DOI : 10.1007/978-1-4612-0701-6

C. Beltrán and L. M. Pardo, On Smale's 17th Problem: A Probabilistic Positive Solution, Foundations of Computational Mathematics 8.1, pp.1-43, 2008.
DOI : 10.1007/s10208-005-0211-0

C. Beltrán and M. Shub, Complexity of Bezout???s Theorem VII: Distance Estimates in the Condition Metric, Foundations of Computational Mathematics 9.2, pp.179-195, 2009.
DOI : 10.1007/978-1-4612-2752-6_19

L. Blum, M. Shub, and S. Smale, On a Theory of Computation and Complexity over the Real Numbers: NP-Completeness, Recursive Functions and Universal Machines, In: Bulletin of the American Mathematical Society. N.S, vol.211, pp.1-46, 1989.

A. Bostan, Algorithmes Efficaces En Calcul Formel Frédéric Chyzak (self-pub, 2017.

P. Breiding and N. Vannieuwenhoven, The Condition Number of Join Decompositions, 2016.

I. Briquel, F. Cucker, J. Peña, and V. Roshchina, Fast computation of zeros of polynomial systems with bounded degree under finite-precision, Mathematics of Computation, vol.83, issue.287, pp.1279-1317, 2014.
DOI : 10.1090/S0025-5718-2013-02765-2

P. Bürgisser and F. Cucker, On a problem posed by Steve Smale, Annals of Mathematics, vol.174, issue.3, 2011.
DOI : 10.4007/annals.2011.174.3.8

P. Bürgisser and A. Lerario, Probabilistic Schubert Calculus, 2016.

J. Dedieu, Points Fixes, Zéros et La Méthode de Newton, Mathématiques & Applications, 2006.

J. Dedieu, G. Malajovich, and M. Shub, Adaptive step-size selection for homotopy methods to solve polynomial equations, IMA Journal of Numerical Analysis, vol.33, issue.1, pp.1-29, 2013.
DOI : 10.1093/imanum/drs007

URL : http://arxiv.org/pdf/1104.2084

A. Edelman, Eigenvalues and Condition Numbers of Random Matrices, USA: Massachusetts Institute of Technology, 1989.
DOI : 10.1137/0609045

J. D. Hauenstein and A. C. Liddell, Certified predictor???corrector tracking for Newton homotopies, Journal of Symbolic Computation 74, pp.239-254, 2016.
DOI : 10.1016/j.jsc.2015.07.001

URL : https://doi.org/10.1016/j.jsc.2015.07.001

J. D. Hauenstein and F. Sottile, Algorithm 921, ACM Transactions on Mathematical Software, vol.38, issue.4, pp.1-20, 2012.
DOI : 10.1145/2331130.2331136

J. Hillar and L. Lim, Most Tensor Problems Are NP-Hard, Journal of the ACM, vol.60, issue.6, pp.1-39, 2013.
DOI : 10.1145/2512329

URL : http://arxiv.org/abs/0911.1393

A. S. Householder, Unitary Triangularization of a Nonsymmetric Matrix, Journal of the ACM 5.4, pp.339-342, 1958.
DOI : 10.1145/320941.320947

URL : https://hal.archives-ouvertes.fr/hal-01316095

R. Howard, The kinematic formula in Riemannian homogeneous spaces, Memoirs of the, 1993.
DOI : 10.1090/memo/0509

URL : http://www.math.sc.edu/~howard/Reprints/kinematic.ps.gz

W. Kahan, Accurate Eigenvalues of a Symmetric Tri-Diagonal Matrix, 1966.

P. Lairez, A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time, Foundations of Computational Mathematics, vol.17, issue.5, pp.10-1007, 2017.
DOI : 10.1007/s00211-010-0334-3

URL : https://hal.archives-ouvertes.fr/hal-01178588

G. Malajovich, On generalized Newton algorithms: quadratic convergence, path-following and error analysis, Theoretical Computer Science 133.1, pp.65-84, 1994.
DOI : 10.1016/0304-3975(94)00065-4

URL : https://doi.org/10.1016/0304-3975(94)00065-4

J. Renegar, On the Efficiency of Newton's Method in Approximating All Zeros of a System of Complex Polynomials, Mathematics of Operations Research, vol.12, issue.1, pp.121-148, 1987.
DOI : 10.1287/moor.12.1.121

M. Shub, On the distance to the zero set of a homogeneous polynomial, Journal of Complexity, vol.5, issue.3, pp.303-30590027, 1989.
DOI : 10.1016/0885-064X(89)90027-7

M. Shub, Complexity of Bezout???s Theorem VI: Geodesics in the Condition (Number) Metric, Foundations of Computational Mathematics 9.2, pp.171-178, 2009.
DOI : 10.1137/0733008

M. Shub and S. Smale, Complexity of Bézout's Theorem. I. Geometric Aspects, Journal of the American Mathematical Society, vol.6, issue.2, pp.459-501, 1993.
DOI : 10.1006/jcom.1993.1002

URL : https://doi.org/10.1006/jcom.1993.1002

. Smale, On the Efficiency of Algorithms of Analysis, New Series 13.2, pp.87-121, 1985.

J. Zur-gathen and J. Gerhard, Modern Computer Algebra, 1999.
DOI : 10.1017/CBO9781139856065