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Figure 1: (a) Example pose where the actor’s hands come to a close distance. The same pose retargeted on a skeleton with
longer forearms by (b) simply transferring joint angles or (c) using our normalized Euclidean distance matrix approach.

ABSTRACT
In character animation, it is often the case that motions created or
captured on a specific morphology need to be reused on characters
having a different morphology while maintaining specific relation-
ships such as body contacts or spatial relationships between body
parts. This process, called motion retargeting, requires determining
which body part relationships are important in a given animation.
This paper presents a novel frame-based approach to motion retar-
geting which relies on a normalized representation of body joints
distances. We propose to abstract postures by computing all the
inter-joint distances of each animation frame and store them in
Euclidean Distance Matrices (EDMs). They 1) present the benefits of
capturing all the subtle relationships between body parts, 2) can be
adapted through a normalization process to create a morphology-
independent distance-based representation, and 3) can be used to
efficiently compute retargeted joint positions best satisfying newly
computed distances. We demonstrate that normalized EDMs can
be efficiently applied to a different skeletal morphology by using a
Distance Geometry Problem (DGP) approach, and present results
on a selection of motions and skeletal morphologies. Our approach
opens the door to a new formulation of motion retargeting prob-
lems, solely based on a normalized distance representation.
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1 INTRODUCTION
Character animation is nowadays largely used in movie and video
game industries. Typically, a 3D model and its associated skeletal
structure are designed by an artist, then animated either manually
or using recorded motion capture data. However, it is often the
case that motions created for a specific character, or captured from
a given actor, need to be reused on characters with a different
morphology, a process called motion retargeting. Examples include
adaptingmotions to preserve important relationships between body
parts (e.g., a character’s hand touching its chin when nodding) or
between body parts and the environment (e.g., ensuring that feet
remain planted on the ground during locomotion support phases).
Motion retargeting is especially important when using motion
capture data, where the differences between morphologies of the
human actor and of the character to animate raise adaptation issues.
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A classical human motion representation consists in sequences
of local rotations for each joint of the skeleton. Without specific
retargeting techniques, these local rotations are simply transferred
from the original to the target skeleton, which often leads to in-
correct results (see Figure 1, center). While multiple retargeting
techniques have been proposed, most require the prior identifica-
tion of body part relationships to be maintained, a step that remains
difficult to accurately and automatically determine. For this reason,
these relationships are still mostly manually specified by anima-
tors, and Inverse Kinematics is therefore commonly used in video
games to solve simple issues such as adapting the feet of a character
according to both ground shape and its morphology.

Instead of relying on this classical representation for motion
retargeting, we propose in this paper to explore a novel approach
solely based on joint distances. More precisely, we propose to com-
pute all the inter-joint distances for each frame of a motion in order
to abstract human postures in a structure called a Euclidean Dis-
tance Matrix (EDM) (see Figure 2), which possesses relevant prop-
erties for motion retargeting. First, because an EDM contains all
the inter-joint distances of a human posture, it accurately captures
all the subtle relationships between body parts, which is particu-
larly important to accurately retarget motions. Second, computing
the set of joint positions best representing a given EDM can be
efficiently performed using approaches from Distance Geometry
(DG), a field of research which explores Euclidean distance solving
problems [Liberti et al. 2014]. Finally, given that an EDM is specific
to the morphology of a given character, we propose a novel method
to normalize EDMs to create a morphology-independent distance-
based representation. We then demonstrate that these normalized
EDMs can be efficiently combined with a new skeletal morphology
to retarget motions using an existing Distance Geometry Problem
(DGP) approach [Mucherino and Gonçalves 2017].

The remainder of this paper is organized as follows. Section 2
presents related work on character animation and Distance Geom-
etry. Section 3 details our approach. Experimental results are then
presented in Section 4, and further discussed in Section 5. Finally,
Section 6 provides the concluding remarks.

2 RELATEDWORK
Character Animation has been an active field of research for decades,
exploring techniques ranging from example-based adaptations [Ko-
var et al. 2002;McCann and Pollard 2007] tomotion simulation [Hod-
gins et al. 1995; Popović and Witkin 1999]. In this Section, we will
be focusing on approaches most related to our work, i.e., related to
motion retargeting, and therefore refer the reader to a more general
review of the literature on human motion simulation [Guo et al.
2015]. It is also important to mention that some approaches explore
retargeting human motions onto non-humanoid characters [Abdul-
Massih et al. 2017; Hecker et al. 2008], or to transfer the style of
a particular individual on the motions of another [Hsu et al. 2005;
Yumer and Mitra 2016], but lie outside the scope of this paper.

Motion retargeting is the process of adapting the motion of a
source character to a target character with a different morphol-
ogy, i.e., usually with the same skeletal structure but different bone
lengths. Early motion retargeting approaches relied on space-time
constraints in order to preserve desirable qualities of the original

Figure 2: Example of an Euclidean Distance Matrix (EDM)
containing the inter-joint distances of a two-segment skele-
ton (e.g., arm). In ourmethod, each EDMcontains inter-joint
distances for the entire skeleton (27 joints in our examples).

motion [Gleicher 1998]. Others proposed to use Inverse Kinematics,
combined for instance with prioritized constraints [Le Callennec
and Boulic 2004], end-effector importances [Shin et al. 2001] or
intermediate/normalized skeletons [Kulpa et al. 2005; Monzani et al.
2000] to handle both motion adaptation and retargeting. Recently,
a new type of approach has also been proposed by Ho. et al [2010],
which is based on a new structure called Interaction Mesh. This
new structure is particularly efficiently to represent implicit spatial
relationships between body parts, and has also been extended to
account for relationships between human motions and its environ-
ment [Al-Asqhar et al. 2013; Ho and Shum 2013].

However, space-time constraints and Inverse Kinematics ap-
proaches depend upon determining or manually specifying which
constraints are important for retargeting motions, e.g., that the
hands are in contact. Instead of relying on such constraints, which
are difficult to automatically identify, our approach is based on
representing motions by computing all the inter-joint distances for
each frame and storing them in a Euclidean Distance Matrix, which
provides relevant information about joint configurations for every
frame of the motion. For instance, close interactions like clasping
hands will lead to small inter-joint distances. In a certain manner,
our approach is closer to the Interaction Mesh presented by Ho. et
al [2010], which relies on a Delauney tetrahedralization of the joint
positions to compute geometrical spatial relationships. However,
their approach prunes the inter-joint relationships that are not re-
quired to create the InteractionMesh, while our approach conserves
all the subtle inter-joint relationships in our EDM instead.

Because inter-joint distances depend on the character’s morphol-
ogy, these EDMs need to be adapted before retargeting motions.
We therefore propose to normalize and denormalize these EDMs
according to the length of each kinematic chain. Unlike [Kulpa
et al. 2005; Molla et al. 2017] who also propose to use a similar
normalization process, our approach involves the normalization of
all the inter-joint distances representing a given posture.

Finally, in order to retarget human motions using these EDMs,
we propose to use an optimization technique from the Distance
Geometry (DG) community to compute retargeted joint positions.
Technically, one of the main problems in DG consists in identifying
the coordinates of a set of points inK dimensions that best represent
a given distance matrix (K = 3 in our case). While such distance-
based approaches have been applied to several fields, including
sensor network localization [Biswas et al. 2006] or protein structure
identification [Lavor et al. 2013], it is to our knowledge the first
time it is applied to the problem of retargeting human motions.
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Figure 3: Overview of our method

3 DISTANCE-BASED MOTION RETARGETING
In this Section, we detail our normalized EDM-based representation,
together with our retargeting pipeline (summarized in Figure 3).

The cornerstone of our approach is a morphology-independent
representation of human motion solely based on distances through
a normalized Euclidean Distance Matrix (EDM). All the inter-joint
distances are first extracted from the original motion (Section 3.1),
therefore representing both skeletal information (joint pairs cor-
responding to bones) and motion information (other joint pairs).
These inter-joint distances are then stored in an EDM for each
frame of the original motion. In order to adapt these EDMs to the
target skeleton, we then propose a normalization/denormalization
procedure based on kinematic chain lengths.

Then, in order to solve for retargeted joint positions best satis-
fying the adapted EDM, we show how the retargeting of motions
can be expressed as a DGP for each frame of the animation (Sec-
tion 3.2). This optimization is based on a spectral-gradient method
coupled with a line-search technique to improve performance in
terms of CPU cost. Because all the distances do not have the same
importance in retargeting motions, we also assign a weight to each
element of the EDM, which is automatically computed from the
target skeleton morphology. For example, it is crucial to respect
bone lengths, but it may not be as important to respect exactly the
distance between a foot and a hand when they are quite far apart.

Finally, joint positions computed by our DGP solver are used to
reconstruct the local rotation of the skeletal joints, which are then
displayed for visualisation (Section 3.3).

3.1 Normalized Euclidean Distance Matrix
For each frame of the original motion, we compute all the inter-
joint Euclidean distances, and store them in our EDM Dor iдinal

(see example in Figure 2), of size N × N (where N is the number of
joints in the skeleton).

Assuming that X is our set of joint positions, each distance
d
or iдinal
uv ∈ Dor iдinal between joint u and v is defined as:

duv = ∥xu − xv ∥, xu ,xv ∈ X (1)

Given only the distances specified in Dor iдinal , it is possible to
reconstruct a posture X ′ satisfying all distance constraints, an in-
verse problem known in the scientific literature as the DGP, which
is at the core of our approach and detailed in the Section 3.2.

By definition, Dor iдinal contains both information about the
structure of the skeleton and information about the pose of the
character (motion), i.e., dor iдinaluv corresponds to the bone length
if joints u and v are connected by a bone and otherwise provides
information about the posture of the character, e.g., how close are
the hands from one other or from the head.

In order to retarget motions on a skeleton differing from the
original skeleton, it is therefore necessary to adapt distances in
Dor iдinal to reflect the new skeletal structure. Because posture-
based distances (i.e., non-bone inter-joint distances) are not com-
pletely independent from the skeletal structure, only adapting bone
distances would introduce large artifacts and incompatibilities. To
tackle this problem, we propose to normalize Dor iдinal using the
properties of the original skeleton, then to denormalize it using
the properties of the target skeleton. In particular, we propose to
normalize and denormalize distances based on the actual length τuv
of the kinematic chain Suv between joints u and v in the original
and target skeletons, in a way similar to [Molla et al. 2017]:

τuv =

|Suv |∑
i=1

si (2)

where |Suv | is the number of segments in the kinematic chain
connecting joints u and v , and si is the length of the ith segment
of the kinematic chain. A normalized distance matrix Dnormalized

is then computed according to:

∀{u,v} ∈ X , dnormalized
uv =

d
or iдinal
uv

τ
or iдinal
uv

(3)



MiG’17, November 2017, Barcelona, Spain A. Bernardin, L. Hoyet, A. Mucherino, D. Gonçalves, F. Multon

In particular, dnormalized
uv = 0 represents joint-to-joint contacts,

while dnormalized
uv = 1 represents a fully extended kinematic chain.

While the concept is similar to [Hecker et al. 2008; Kulpa et al.
2005; Molla et al. 2017], our approach normalizes all the inter-joint
distances representing a given posture.

Finally, we compute a denormalized distance matrix Dtarдet

according to the target skeleton morphology, using:

∀{u,v} ∈ X , d
tarдet
uv = τ

tarдet
uv · dnormalized

uv (4)

This normalisation process presents the advantage of correctly
reconstructing the bone lengths of the target skeleton, while si-
multaneously adapting the other inter-joint distances based on the
morphology of the target skeleton.

3.2 Distance Geometry Problem Approach
Once we have approximated the distance matrix for our target
skeleton, our goal is to reconstruct the target joint positions satisfy-
ing these inter-joint Euclidean distances. This type of problem can
be efficiently solved using approaches from the field of Distance
Geometry. In short, DGP solvers search for the set of coordinates
in K dimensions (in our case, K = 3 for joint positions in 3D space)
that best satisfy a given distance matrix.

In our DGP formulation, we consider an objective function σ (X )
that measures the violation of the distance constraints as follows:

σ (X ) =
∑

ωuv · (∥xu − xv ∥ − duv )2 (5)

where ωuv is a weight associated with each distance. Intuitively, in
this iterative optimization process, distances between joints that
are close in the skeletal structure (i.e corresponding to kinematic
chains with fewer bones) must be strongly satisfied. Conversely,
other distances, such as between the hand and a foot, are of less
importance. For this reason, a nonnegative weight ωuv , represent-
ing the “importance” of the distance with respects to the others, is
associated to each distance duv . Importance is expressed as a rela-
tion on the number of joints |Puv | encountered along the kinematic
chain from joint u to v , such as:

ωuv =
|Pmax | − |Puv | + 2

|Pmax |
, ωuv ∈ [0, 1] (6)

where |Pmax | is the number of joints of the longest kinematic chain.
In particular, ωuv is defined so that it is maximal in the case of
distances representing bones (|Puv | = 2), in order to avoid distor-
tion of these highly-constrained distances. In the contrary, ωuv
decreases with the length of the kinematic chain.

To conduct the optimization, we use an existing spectral gradient
algorithm [Glunt et al. 1993], which was previously used to solve
DG problems. In particular, it was demonstrated to provide faster
local convergence than classical gradient methods. It is further com-
bined with a non-monotone line-search strategy [Zhang and Hager
2004] in order to improve convergence (ensuring convergence in
linear computational time). In the following, we will refer to our
implementation of the non-monotone spectral gradient as our DGP
solver. More details about this implementation are given in our
Supplemental Material.

Finally, because our DGP solver consists in an optimization pro-
cess, results can depend on the initialization of our retargeted joint
positions. However, human postures do not vary dramatically from

a keyframe to the next, therefore we perform a warm start of our
frame-based optimization process and initialize it using the retar-
geted joint positions computed for the previous frame. Because
such a previous frame is not available for the first retargeted frame,
a rough initial guess of the target joint positions is provided using
joint positions of the first frame of the original motion.

3.3 From joint positions to joint transforms
The output of the DGP solver is a point cloud corresponding to a
set of retargeted joint positions for each frame of the animation.
For visualisation and animation purposes, we therefore recompute
the global transformation of each body segment using standard
animation techniques. In particular, we deduce from the positions
of successive joints in the kinematic chain the direction of each
bone, and compute normals on a bone-specific basis. For instance,
the normal vector of the shoulder and elbow joints are defined by
the normal of the half plane containing the shoulder, elbow and
wrist joints, similarly to [Kulpa et al. 2005]. While this approach
is effective for most bones, it is however currently not possible to
accurately determine the global rotation of the root joint, as well
as of the end-effector joints (hands, toes and head), a point further
discussed in Section 5.

4 EXPERIMENTAL RESULTS
Our method was implemented in a C++/OpenGL framework, and
tested on a selection of motion captured examples acquired with a
24-camera vicon system (27 joints per skeleton). Experiments were
run on an Intel Xeon@3.0GHz with 6GB RAM, runningWindows 7.

In the following experiments, we compare our distance-based
retargeting approach with the traditional local rotation transfer
method. Results are presented in Figure 4 on selected poses, and
retargeted motions are presented in the companion video. In par-
ticular, results presented in Figure 4 focus on a number of selected
poses retargeted using our approach on a target skeleton with 35%-
longer forearms (right). For visual comparison, we also include the
captured poses on the original skeleton (left), and a “traditional”
local rotation transfer on a target skeleton with 35%-longer fore-
arms. Our results show that motions involving close interactions
between body parts are accurately retargeted using our approach,
in comparison with a traditional local rotation transfer. For instance,
contacts between both hands are preserved in Example C, as well
as shoulder-hand relationships in Examples A and B. Moreover,
traditional local rotation transfer can lead to closer body-part re-
lationship in some cases (e.g., Examples D, E and F), which are
also better preserved using our distance-based approach. These
examples show that our approach is able to preserve close interac-
tions, while also avoiding incorrect close contacts (or even body
intersections) that could result from a naive method.

In terms of computation time, our frame-base retargeting ap-
proach takes on average 5±1ms to retarget a pose (max: 10ms,
min: 0.5ms). This average was computed on two dance motions
captured at 100Hz (total number of frames: 8568 frames) which
was retargeted on skeletons with longer forearms or upperarms
(+30%, +15%, -15%, -30%), and was not influenced by the percentage
of skeletal differences. Our fast computation times are due to both
using a spectral gradient method, which was demonstrated to have
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Example A Example B

Example C Example D

Example E Example F

Figure 4: Results on a number of example poses from a dancing capturedmotion using: (left) the captured pose on the original
skeleton, (center) local rotations transfered on a target skeleton with 35%-longer forearms, and (right) a pose retargeted using
our approach on a target skeleton with 35%-longer forearms.

large benefits in terms of CPU time, and to the warm start using the
retargeted joint positions from the previous frame, which provides
a close starting point for the optimization. However, it is important
to mention that computation time is significantly higher from the
first frame (50ms to 150ms), because the first initialization more
significantly differs from the target skeleton morphology. From the
same reason, while our optimization process is limited to 50 itera-
tions per frame, this limit is set to 1000 iterations for the first frame
to retarget in order to ensure a correct first retargeted posture.

5 DISCUSSION
Our experimental results demonstrate that our distance-based ap-
proach efficiently preserves important body-part relationshipswhile

retargeting human motions, without manually specifying the re-
lationships. In particular, it both preserves close interactions from
the original motion, while also avoiding incorrect contacts or body
part intersections that could result from a naive method. While we
demonstrate our results only for skeletal modifications of the upper
limbs, because these body parts most commonly present important
relationships with the rest of the body, our method is general and
can be applied to any modifications of the skeletal morphology.
Moreover, one of the strengths of our approach is that it is solely
based on inter-joint distances, which provides an abstraction of
human postures which is easy to implement, to compute and to
understand. Such an abstraction would also be valuable for general
motion editing in order to specify motion constraints in an more
intuitive manner. For instance, a hand touching another body part
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would simply be obtained by specifying a small distance between
the corresponding joints, which is intuitive to specify.

Because of the complexity of humanmotion, and the formulation
of the DGP, our method however suffers from some limitations. In
particular, a DGP solver computes a set of retargeted joint positions
which is invariant in translation and rotation, i.e., which does not
provide any information about the global position and orientation
of our character in the 3D space. However, the root global trans-
formation of the source motion could provide a good initial guess,
and be adapted using existing animation techniques. Similarly, our
approach cannot currently compute end-effector orientations, as
they are represented by only two positions in the skeletons we used
for experiments, which could be solved by using the original end
effector orientations, or by using additional reference points on
our end-effector segments (which could easily be included in our
approach given its generality).

Our distance-based representation proved to be efficient in cap-
turing relationships between body parts. However, computing re-
targeted joint positions relies on defining which distances are more
important. Our approach favors distances for kinematic chains
with fewer joints, because of inaccuracies introduced by the nor-
malization/denormalisation of longer kinematic chains. While we
found that this solution produced the best results, it still fails to
compute correct retargeted joint positions in some cases. In partic-
ular, inversions can occur for highly symmetrical postures, because
two different sets of joint positions will lead to a similar distance
matrix. Examples of such problems are presented in the supplemen-
tary video. Possible solutions involve accounting for joint limits
in the optimization process, or defining metrics measuring when
a retargeted posture differs excessively from the original posture
in order to readapt the optimization process. Also, we found that
extremely large skeletal differences often produced non-natural
configurations, e.g., with a spine extremely bended, in particular
when differences were applied on several body parts simultane-
ously. While such large differences are always difficult to take into
account, we think that smaller successive retargeting steps could
be considered in order to produce natural retargeted motions.

6 CONCLUSION AND FUTUREWORK
To conclude, we have presented in this paper a novel approach
based on joint distances to retarget human motions. More precisely,
it relies on abstracting human postures by computing all of the
inter-joint distances, which are stored in an EDM for each frame.
Such a distance matrix is simple to compute, while simultaneously
presenting relevant properties for motion retargeting. For instance,
it captures all the subtle relationships between body parts, and is
also used to efficiently compute retargeted joint positions using
approaches from Distance Geometry. We also proposed a manner
of normalizing these EDMs to account for differences in skeletal
morphologies, which is crucial in the retargeting process.

Our approach shows promising results, opening the door to a
new manner of tackling motion retargeting problems while also
raising a number of challenges. For instance, solely basing mo-
tion retargeting on a distance representation raises new challenges
to represent the relationships between a human posture and its

environment, or to further detail the subtle surface to surface re-
lationships between body parts. In the future, we are particularly
interested in including such additional information into the distance
matrix in order to further generalize our approach. The quality of
our retargeted motions should also be evaluated in order to validate
our results. In particular, we are now interested in comparing our
results with existing approaches such as [Ho et al. 2010; Kulpa et al.
2005] using objective and subjective evaluations. This approach
could also be relevant to the design of new motion capture sys-
tems using sensors providing only distances between body parts,
especially given that it runs in real time at approximately 200fps.
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