B. Alipanahi, A. Delong, B. J. Matthew-t-weirauch, and . Frey, Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning, Nature biotechnology, vol.33, issue.8, pp.831-838, 2015.

A. Ben-hur, . Cheng-soon, S. Ong, B. Sonnenburg, G. Schölkopf et al., Support vector machines and kernels for computational biology, PLoS Computational Biology, vol.4, issue.10, 2008.

A. Bietti and J. Mairal, Invariance and stability of deep convolutional representations, Advances in Neural Information Processing Systems (NIPS), pp.6210-6220, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630265

M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, Parseval networks: Improving robustness to adversarial examples, International Conference on Machine Learning, 2017.

A. Drouin, M. Sébastiengigù-ere, M. Déraspe, M. Marchand, . Tyers et al., Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons, BMC Genomics, vol.17, issue.1, p.754, 2016.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.

S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, and W. Noble, Quantifying similarity between motifs, Genome biology, vol.8, issue.2, p.24, 2007.

T. Håndstad, J. H. Arne, P. Hestnes, and . Saetrom, Motif kernel generated by genetic programming improves remote homology and fold detection, BMC bioinformatics, vol.8, issue.1, p.23, 2007.

S. Hanson, Y. Lorien, and . Pratt, Comparing biases for minimal network construction with backpropagation, Advances in Neural Information Processing Systems (NIPS), pp.177-185, 1989.

S. Henikoff, G. Jorja, and . Henikoff, Amino acid substitution matrices from protein blocks, Proceedings of the National Academy of Sciences, vol.89, pp.10915-10919, 1992.

S. Hochreiter, M. Heusel, and K. Obermayer, Fast model-based protein homology detection without alignment, Bioinformatics, vol.23, issue.14, pp.1728-1736, 2007.

T. Jaakkola, M. Diekhans, and D. Haussler, A discriminative framework for detecting remote protein homologies, Journal of Computational Biology (JCB), vol.7, issue.1-2, pp.95-114, 2000.

A. Jha, M. R. Gazzara, and Y. Barash, Integrative deep models for alternative splicing, Bioinformatics, vol.33, issue.14, pp.274-282, 2017.

M. Karimzadeh and M. M. Hoffman, Virtual chip-seq: Predicting transcription factor binding by learning from the transcriptome. bioRxiv, 2018.

J. David-r-kelley, J. Snoek, and . Rinn, Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks, Genome Research, vol.26, issue.7, pp.990-999, 2016.

Y. David-r-kelley, M. Reshef, D. Bileschi, C. Y. Belanger, J. Mclean et al., Sequential regulatory activity prediction across chromosomes with convolutional neural networks, Genome research, 2018.

P. Kheradpour and M. Kellis, Systematic discovery and characterization of regulatory motifs in encode tf binding experiments, Nucleic acids research, vol.42, issue.5, pp.2976-2987, 2013.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, 2015.

E. Pang-wei-koh, A. Pierson, and . Kundaje, Denoising genome-wide histone chip-seq with convolutional neural networks, Bioinformatics, vol.33, issue.14, pp.225-233, 2017.

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi et al., Profile-based string kernels for remote homology detection and motif extraction, Journal of bioinformatics and computational biology, vol.3, issue.03, pp.527-550, 2005.

P. Pavel-p-kuksa, V. Huang, and . Pavlovic, Scalable algorithms for string kernels with inexact matching, Advances in neural information processing systems, pp.881-888, 2009.

J. Lanchantin, R. Singh, B. Wang, and Y. Qi, Deep motif dashboard: Visualizing and understanding genomic sequences using deep neural networks, pp.254-265, 2017.

Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard et al., Backpropagation applied to handwritten zip code recognition, Neural computation, vol.1, issue.4, pp.541-551, 1989.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble, Mismatch String Kernels for SVM Protein Classification, Advances in Neural Information Processing Systems 15, 2003.
DOI : 10.1093/bioinformatics/btg431

URL : https://academic.oup.com/bioinformatics/article-pdf/20/4/467/476867/btg431.pdf

C. Leslie and R. Kuang, Fast string kernels using inexact matching for protein sequences, Journal of Machine Learning Research, vol.5, pp.1435-1455, 2004.

E. Christina-s-leslie, W. Eskin, and . Noble, The spectrum kernel: A string kernel for svm protein classification, Pacific Symposium on Biocomputing, vol.7, pp.566-575, 2002.

E. Christina-s-leslie, A. Eskin, J. Cohen, W. Weston, and . Noble, Mismatch string kernels for discriminative protein classification, Bioinformatics, vol.20, issue.4, pp.467-476, 2004.

L. Liao and W. Noble, Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships, Journal of computational biology, vol.10, issue.6, pp.857-868, 2003.

D. C. Liu and J. Nocedal, On the limited memory bfgs method for large scale optimization, Mathematical Programming, vol.45, issue.1, pp.503-528, 1989.

J. Mairal, End-to-end kernel learning with supervised convolutional kernel networks, Advances in Neural Information Processing Systems (NIPS), pp.1399-1407, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01387399

A. Morrow, V. Shankar, D. Petersohn, A. Joseph, B. Recht et al., Convolutional kitchen sinks for transcription factor binding site prediction, 2017.

A. Rahimi and B. Recht, Random features for large-scale kernel machines, Adv. in Neural Information Processing Systems (NIPS), pp.1177-1184, 2008.

H. Rangwala and G. Karypis, Profile-based direct kernels for remote homology detection and fold recognition, Bioinformatics, vol.21, issue.23, pp.4239-4247, 2005.

H. Saigo, J. Vert, N. Ueda, and T. Akutsu, Protein homology detection using string alignment kernels, Bioinformatics, vol.20, issue.11, pp.1682-1689, 2004.
DOI : 10.1093/bioinformatics/bth141

URL : https://hal.archives-ouvertes.fr/hal-00433587

B. Schölkopf and A. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond, 2002.

A. Shrikumar, P. Greenside, and A. Kundaje, Learning important features through propagating activation differences, International Conference on Machine Learning (ICML), pp.3145-3153, 2017.

A. Shrikumar, P. Greenside, and A. Kundaje, Reverse-complement parameter sharing improves deep learning models for genomics. bioRxiv, 2017.
DOI : 10.1101/103663

URL : https://www.biorxiv.org/content/biorxiv/early/2017/01/27/103663.full.pdf

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

J. Alexander, S. Stewart, J. B. Hannenhalli, and . Plotkin, Why transcription factor binding sites are ten nucleotides long, Genetics, vol.192, issue.3, pp.973-985, 2012.

K. I. Christopher, M. Williams, and . Seeger, Using the nyström method to speed up kernel machines, Advances in Neural Information Processing Systems (NIPS), pp.682-688, 2001.

H. Zeng, D. Matthew, G. Edwards, D. Liu, and . Gifford, Convolutional neural network architectures for predicting DNA-protein binding, Bioinformatics, vol.32, issue.12, pp.121-127, 2016.
DOI : 10.1093/bioinformatics/btw255

URL : https://doi.org/10.1093/bioinformatics/btw255

J. Zhou and O. Troyanskaya, Predicting effects of noncoding variants with deep learning-based sequence model, Nature Methods, vol.12, issue.10, pp.931-934, 2015.
DOI : 10.1038/nmeth.3547

URL : http://europepmc.org/articles/pmc4768299?pdf=render

C. Zhu, H. Richard, P. Byrd, J. Lu, and . Nocedal, Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software (TOMS), vol.23, issue.4, pp.550-560, 1997.
DOI : 10.1145/279232.279236