
HAL Id: hal-01632929
https://inria.hal.science/hal-01632929

Submitted on 10 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Nonrecursive Datalog Rewritings of Linear
TGDs and Bounded (Hyper)Tree-Width Queries

Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladislav Ryzhikov,
Michael Zakharyaschev

To cite this version:
Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladislav Ryzhikov, Michael Zakharyaschev.
Optimal Nonrecursive Datalog Rewritings of Linear TGDs and Bounded (Hyper)Tree-Width Queries.
DL: Description Logics, Jul 2017, Montpellier, France. �hal-01632929�

https://inria.hal.science/hal-01632929
https://hal.archives-ouvertes.fr

Optimal Nonrecursive Datalog Rewritings of Linear
TGDs and Bounded (Hyper)Tree-Width Queries

M. Bienvenu1, S. Kikot2, R. Kontchakov2, V. Ryzhikov3, and M. Zakharyaschev2

1 CNRS & University of Montpellier, France (meghyn@lirmm.fr)
2 Birkbeck, University of London, UK ({kikot,roman,michael}@dcs.bbk.ac.uk)

3 Free University of Bozen-Bolzano, Italy (ryzhikov@inf.unibz.it)

Abstract. Our concern is answering ontology-mediated queries (O, q), where O
is a set of linear tgds and q a conjunctive query (CQ) of bounded hypertree width.
Assuming that the arity of predicates is bounded, we show that polynomial-size
nonrecursive Datalog rewritings can be constructed and executed in (i) LOGCFL
for OMQs with ontologies of bounded existential depth; (ii) NL for OMQs with
ontologies of bounded depth and CQs whose hypertree decompositions have a
bounded number of leaves; (iii) LOGCFL for OMQs with acyclic CQs whose
join trees have a bounded number of leaves.

1 Introduction

As shown in [3, 4, 13], the optimal combined complexity (LOGCFL and NL) of an-
swering ontology-mediated queries (OMQs) with OWL 2 QL ontologies of bounded
depth and conjunctive queries (CQs) of bounded treewidth can be achieved by means
of rewriting them into nonrecursive datalog (NDL) queries, though not via positive-
existential rewritings. (Note that in these cases the complexity of OMQs matches the
complexity of evaluating the underlying CQs.) Our recent experiments have demon-
strated that such NDL rewritings, reformulated as Spark SQL queries with views, are
efficiently executed by Apache Spark taking advantage of their parallelisable structure.

The aim of this paper is to extend the above mentioned results to ontologies and
CQs with predicates of arbitrary fixed arity. We consider ontologies that consist of
linear TGDs (linear existential rules or atomic-hypothesis rules) [2, 6, 11, 12], which
are instances of finite unification sets [18, 15, 16]. Our interest in this problem is also
motivated by the system ETAP [5] designed to answer natural language questions by
translating them into SPARQL and executing—along with background knowledge—
over RDF data extracted from texts. To illustrate, suppose that the data contains the
atoms Purchased(j, c) and Car(c) representing the sentence ‘John purchased a car’.
To answer the question ‘has a car been sold?’ ETAP utilises the ontology rules (with
omitted universal quantifiers)

Purchased(x, y)→ ∃vz
(
Purchase(v) ∧ hasAgent1(v, x) ∧

hasObject(v, y) ∧ hasAgent2(v, z)
)
,

Purchase(v) ∧ hasAgent1(v, x) ∧ hasObject(v, y) ∧ hasAgent2(v, z)→
∃v′
(
Sale(v′) ∧ hasAgent1(v′, z) ∧ hasObject(v′, x) ∧ hasAgent2(v′, y)

)
,

where v and v′ represent the acts of purchase and sale, respectively. The rules are clearly
beyond the limitations of OWL 2 QL ; however, the knowledge they represent can also
be captured by means of linear TGDs with ternary predicates:

Purchased(x, y)→ ∃z Purchase(x, y, z), Purchase(x, y, z)→ Sale(z, y, x),

which are enough to answer the query ∃xyz (Car(y) ∧ Sale(x, y, z)).
We classify OMQs Q = (O, q) with linear TGDs and predicates of any fixed arity

n < ω along three axes: (1) the existential depth d of O, that is, the maximal depth of
Skolem terms in the chases of O over arbitrary data (cf. [8]), (2) the hypertree width t
of q, and (3) the number ` of leaves in the tree underlying a hypertree decomposi-
tion of q. Thus, OMQ(p1, p2, p3) denotes the class of OMQs in which parameter (i)
is bounded by pi ∈ N ∪ {∞}. We show that, for any fixed d, t, ` < ω, answering
OMQs in the classes OMQ(d, t,∞) and OMQ(∞, 1, `) can be done in LOGCFL (for
combined complexity) by means of NDL-rewritings, and even in NL for OMQ(d, t, `).
On the other hand, one can show that answering OMQs in OMQ(∞, t, `), for t, ` ≥ 2,
is NP-hard by observing that the sequence of tree-shaped CQs from the proof of [3,
Theorem 20] is of path width 2. Thus, we obtain a full classification of the classes
OMQ(p1, p2, p3), for pi ∈ N ∪ {∞}, with respect to combined complexity.

2 Preliminaries

Ontology-mediated queries. Let Σ be a relational schema with the maximum arity
ar(Σ) of its predicates bounded by n. By writing P (x), for a predicate name P and an
n-tuple x of variables (with possible repetitions), we mean that P is n-ary. By writing
γ(x), we mean that the free variables of formula γ are x, where x contains no repeti-
tions. If the meaning is clear from the context, we use set-theoretic notation for lists.

A data instance, D, over Σ is any finite set of ground atoms P (a) with predicate
symbols P from Σ. We denote by ind(D) the set of individual constants in D. An
ontology is any finite set, O, of sentences of the form

∀x (γ0(x)→ ∃y γ1(x′,y)) and ∀x (γ0(x)→ γ2(x
′)),

where γ0, γ1 and γ2 are atoms with predicate symbols from Σ and x′ ⊆ x, for disjoint
sets x and y of variables. When writing rules, we omit the universal quantifiers.

An ontology-mediated query (OMQ) Q(x) is a pair (O, q(x)), in which O is an
ontology and q(x) a conjunctive query (CQ), that is, a formula of the form ∃y ϕ(x,y),
where ϕ is a conjunction of atoms P (z) over Σ with z ⊆ x∪y. A tuple a ∈ ind(D)|x|
is a certain answer to Q(x) over D if M |= q(a), for every model M ofO∪D; in this
case we writeO,D |= q(a). If the list x of answer variables is empty, a certain answer
to Q overD is ‘yes’ if M |= q, for every model M ofO∪D, and ‘no’ otherwise. OMQs
and CQs without answer variables are called Boolean. We often regard CQs as sets of
their atoms. We abuse notation and use sets of variables in place of sequences assuming
that they are ordered in some (fixed) way. Also, given c ∈ ind(D)|z| and z ∈ z, we
write c(z) to refer to the component of c that corresponds to z.
Canonical models. An important property of tgds is the fact [1] that, for any O and D,
there is a (possibly infinite) canonical (or universal) model CO,D such that, for every

CQ q(x) and a ∈ ind(D)|x|, we haveO,D |= q(a) iff CO,D |= q(a). Such a canonical
model can be constructed by the following (oblivious) chase procedure that, intuitively,
‘repairs’ D with respect to O (though not in the most economical way). With each
rule % of the form γ0(x) → ∃y γ1(x′,y), where x = (x1, . . . , xn), y = (y1, . . . , yk)
and k > 0, we associate the k-tuple s% = (s1%, . . . , s

k
%) of distinct n-ary Skolem function

symbols. An application of % to D under a map h : x → ind(D) such that h(γ0) ∈ D
adds h′(γ1) to D, where h′ is defined by taking h′(xi) = h(xi), for 1 ≤ i ≤ n, and
h′(yj) = sj%(h(x)), for 1 ≤ j ≤ k. An application of a rule γ0(x)→ γ2(x

′) toD under
such an h adds h(γ2) to D. The chase algorithm applies these two rules exhaustively
to O and D in a breadth-first manner. More precisely, we set C0

O,D = D and say that
the atoms in C0

O,D are of (derivation) level 0. Assuming that Cn−1O,D has already been
constructed, we define CnO,D as follows. Take some enumeration of all distinct pairs
(%i, hi) such that %i ∈ O with γi on the left-hand side is applicable to Cn−1O,D under hi. If
none of the atoms in the hi(γi) is of level n− 1, then we set CnO,D = Cn−1O,D. Otherwise,
we apply the %i under hi to Cn−1O,D one after the other and say that the newly added
atoms are of (derivation) level n; the resulting extension of Cn−1O,D is denoted by CnO,D.
The canonical model CO,D is then the union of all CnO,D, for n < ω.

The domain ∆CO,D of CO,D consists of terms built from the constants in D using
Skolem functions sj%, for % ∈ O. The depth of such a term is the maximal number of
nested occurrences of function symbols in it. We say that O is of depth k ≤ ω if k is
the minimal ordinal such that ∆CO,D contains no terms of depth > k, for any data D.
For an ontology O and a ground atom P (a), we set termO(P (a)) = ∆CO,{P (a)} \ a.
We denote by termO the union of termO(P (a)), for all possible (up to renaming the
constants) atoms P (a) with predicates in O (assuming that distinct P (a) do not share
constants). It should be clear thatO is of finite depth iff termO is finite. By counting the
number of possible linear derivations of Skolem terms, we see that, for O of depth k,
| termO | ≤ (ar(Σ)ar(Σ)|O|)k . We assume that any constant a occurring in termO has
a twin variable ã and denote by ã the result of replacing all constants in a with their
twin variables. Given a tuple b ⊆ ind(D), we denote by a/b(ã) the substitution that
maps each a in a to the corresponding b(ã) in b.

NDL-rewritings. A datalog program, Π , is a finite set of Horn clauses of the form
∀z (γ0 ← γ1 ∧ · · · ∧ γm), where each γi is an atom Q(y) with y ⊆ z or an equality
(z = z′) with z, z′ ∈ z. (As usual, we omit ∀z from clauses.) The atom γ0 is the
head of the clause, and γ1, . . . , γm its body. All variables in the head must occur in
the body, and = can only occur in the body. The predicates in the heads of clauses in
Π are IDB predicates, the rest (including =) EDB predicates. A predicate Q depends
on P in Π if Π has a clause with Q in the head and P in the body. Π is a nonrecursive
datalog (NDL) program if the (directed) dependence graph of the dependence relation
is acyclic. The size |Π| of Π is the number of symbols in it. An NDL query is a pair
(Π,G(x)), where Π is an NDL program and G a predicate. A tuple a ∈ ind(D)|x| is
an answer to (Π,G(x)) over a data instanceD ifG(a) holds in the first-order structure
with domain ind(D) obtained by closing D under the clauses in Π; in this case we
write Π,D |= G(a). The problem of checking whether a is an answer to (Π,G(x))
over D is called the query evaluation problem. The depth of (Π,G(x)) is the length,
d(Π,G), of the longest directed path in the dependence graph for Π starting from G.

An NDL query (Π,G(x)) is an NDL-rewriting of an OMQ Q(x) = (O, q(x)) in case
O,D |= q(a) iff Π,D |= G(a), for any D and any a ∈ ind(D)|x|. Every OMQ is
known to have an NDL-rewriting [2, 6].
Tree decomposition. A tree decomposition of a CQ q with variables var(q) is a pair
(T, λ) of an (undirected) tree T = (V,E) and λ : V → 2var(q) such that

– for any atom P (z) ∈ q, there exists v ∈ V with z ⊆ λ(v);
– for any variable z in q, the set of vertices {v ∈ V | z ∈ λ(v)} is connected in T .

We call λ(v) the bag for v. The width of (T, λ) is maxv∈V |λ(v)| − 1. The treewidth
of q is the minimum width over all tree decompositions of q. It is known [9] that,
for CQs of bounded arity n, the notions of bounded treewidth and bounded hypertree
width [10] are interchangeable. Indeed, in this case, every hypertree decomposition of
width t induces a tree decomposition of width t · n. A CQ q is called acyclic if it has
a join tree whose nodes are the atoms of q and, whenever atoms γ1 and γ2 share a
variable, this variable occurs in all atoms along the (unique) path in the tree linking γ1
and γ2. It is known [10] that a CQ q is acyclic iff q is of hypertree width 1.

3 NL and LogCFL Fragments of NDL

In this section we present two classes of NDL queries that enjoy NL- and LOGCFL-
complete evaluation. First, observe that if the number of variables in each clause of an
NDL query is bounded, then the size of its grounding (obtained by replacing variables
by all possible combinations of constants) is polynomial. So, evaluation of such NDL
queries is tractable. However, if we bound the number of variables in clauses of NDL
rewritings of OMQs, then we will also effectively impose a bound on the number of
answer variables in their CQs. To avoid this limitation, we treat answer variables of the
CQs (and the predicate positions they occur in) differently from all other variables in
the NDL-rewritings. Intuitively, answer variables get their values fixed by a candidate
certain answer and thus do not cause an exponential blowup of groundings.

Formally, an NDL query (Π,G(x)) is called ordered if each of its IDB predicatesQ
has a fixed list of variables xQ ⊆ x, the parameters of Q, such that

– the parameters of G are x and, in every clause, the parameters of the head include
all the parameters of the predicates in the body;

– the parameters xQ of each Q occupy the last |xQ| positions in every occurrence
of Q in Π; they can, however, occur in other positions too.

The width w(Π,G) of an ordered (Π,G(x)) is the maximum number of non-parameter
variables in a clause of Π . Observe that Boolean NDL queries are trivially ordered
(their IDB predicates have no parameters), and the width of such queries is simply
the maximum number of variables in a clause of Π . As all the NDL-rewritings we
construct are ordered, with their parameters being the answer variables, in the sequel
we will consider only ordered NDL queries. We say that a class of NDL queries is of
bounded width if there is w > 0 such that w(Π,G) ≤ w, for all (Π,G(x)) in the class.
As we observed above, evaluation of NDL queries of bounded width is P-complete.

Our first subclass of NDL queries is based on linear rules. An NDL program is
linear [1] if the body of its every clause contains at most one IDB predicate.

Theorem 1. Evaluation of linear NDL queries of bounded width is NL-complete for
combined complexity.

Our second subclass was inspired by semi-unbounded fan-in circuits. Recall that the
class LOGCFL of problems reducible in logarithmic space to context-free languages
can equivalently be defined in terms of L-uniform families of semi-unbounded fan-
in circuits (where OR-gates have arbitrarily many inputs, and AND-gates two inputs)
of polynomial size and logarithmic depth. Alternatively, LOGCFL can be defined us-
ing nondeterministic auxiliary pushdown automata (NAuxPDAs) [7], which are non-
deterministic Turing machines with an additional work tape constrained to operate as
a pushdown store. Sudborough [17] proved that LOGCFL coincides with the class of
problems that are solved by NAuxPDAs in logarithmic space and polynomial time (the
space on the pushdown tape is not subject to the logarithmic bound). Moreover, there
is an algorithm that, given a semi-unbounded fan-in circuit C and an input, computes
the output using an NAuxPDA in logarithmic space in the size of C and exponential
time in the depth of C [19, pp. 392–397]. Using these results, it can be shown that any
(Π,G(x)) with at most two atoms in the body of any clause can be evaluated on a data
instance D by an NAuxPDA in space log |Π|+ w(Π,G) · log |D| and time 2O(d(Π,G))

(thus, in LOGCFL provided the query width is bounded and its depth is logarithmic).
In the rewritings we propose in Sections 5 and 7, however, the number of atoms in

the clauses is not bounded. We require the following to generalise the idea. A function
ν from the predicate names in Π to non-negative integers N is called a weight function
for an NDL query (Π,G(x)) if, for any clause Q(z) ← P1(z1) ∧ · · · ∧ Pk(zk) in Π ,
we have

ν(Q) > 0 and ν(Q) ≥ ν(P1) + · · ·+ ν(Pk),

Note that ν(P) can be 0 for an EDB predicate P . To illustrate, we consider NDL queries
with the following dependency graphs:

The one on the left has a weight function bounded by the number of predicates (i.e.,
linear in the size of the query); intuitively, this function corresponds to the number
of directed paths from a vertex to the leaves. In contrast, any NDL query with the
dependency graph on the right can only have a weight function whose values (numbers
of paths) are exponential. Linear NDL queries have weight functions bounded by 1.

Let eΠ be the maximum number of EDB predicates in a clause of Π . The skinny
depth sd(Π,G) of (Π,G(x)) is the minimum value of

2d(Π,G) + log ν(G) + log eΠ

over possible weight functions ν. One can show, using Huffman coding, that any NDL
query (Π,G(x)) can be transformed into an equivalent skinny NDL query (Π ′, G(x))
of depth not exceeding sd(Π,G) and such that |Π ′| = O(|Π|2) and w(Π ′, G) ≤
w(Π,G). We say that a class of NDL queries has logarithmic skinny depth if there is
c > 0 such that sd(Π,G) ≤ c log |Π|, for all (Π,G(x)) in the class. We now obtain:

Theorem 2. Evaluation of NDL queries of logarithmic skinny depth and bounded width
is LOGCFL-complete for combined complexity.

3.1 NDL Rewritings over (Complete) Data

We say that a data instance D is complete for an ontology O if O,D |= P (a) implies
P (a) ∈ D, for any ground atom P (a), where P in Σ and a ⊆ ind(D). An NDL query
(Π,G(x)) is an NDL-rewriting of an OMQ Q(x) = (O, q(x)) over complete data in
case O,D |= q(a) iff Π,D |= G(a), for any D complete for O and any a ⊆ ind(D).

Given an NDL-rewriting (Π,G(x)) of Q(x) over complete data, we denote by Π∗

the result of replacing each EDB predicate P in Π with a fresh IDB predicate P ∗ of
the same arity and adding the clauses P ∗(z) ← γ for every atom γ with a predicate
symbol from O such that O |= γ → P (z), where z is a tuple of variables (with
possible repetitions). Clearly, (Π∗, G(x)) is an NDL-rewriting of Q(x) over arbitrary
data instances and |Π∗| ≤ |Π|+ ar(Σ)ar(Σ) · |O|2.

We say that a class of OMQs is skinny-reducible if there are c > 0 and w > 0 and
an LLOGCFL-transducer that, given any OMQ Q(x) in the class, computes its NDL-
rewriting (Π,G(x)) over complete data with sd(Π,G) ≤ c log |Π| and w(Π,G) ≤ w.
Theorem 2 and the transformation ∗ give the following:

Corollary 1. Answering OMQs is in LOGCFL for combined complexity for any skinny-
reducible class.

The transformation ∗, however, does not preserve linearity because it replaces oc-
currences of EDB predicates P by IDB predicates P ∗. A more involved ‘linear’ con-
struction is given in the proof of the following, where a possible increase of the width
is due to the ‘replacement’ of atoms P (z) by atoms γ whenever O |= γ → P (z):

Lemma 1. Fix any w > 0. There is an LNL-transducer that, for a linear NDL-rewriting
(Π,G(x)) of an OMQ Q(x) over complete data with w(Π,G) ≤ w, computes its lin-
ear NDL-rewriting (Π ′, G(x)) over arbitrary data with w(Π ′, G) ≤ w + ar(Σ).

4 Conditional Rewritings

Let Q(x) = (O, q(x)) be an OMQ with an ontology of finite depth. Intuitively, we
recursively split q(x) into subqueries qD based on subtrees D of a tree decomposition
of q and combine the rewritings of qD into a rewriting of q. To guarantee ‘compatibil-
ity’ of the rewritings of the subqueries, we take account of the types of points on the
boundaries of the qD. So, for each D and each type w, we take a fresh IDB predicate
Gw
D to represent the conditional rewriting of qD provided that its boundary satisfies the

type. We now give formal definitions.
A type is a partial map s from the variables of q to termO ∪{ε}; its domain is

denoted by dom(s). The unique partial type with dom(ε) = ∅ is denoted by ε. We use
types to represent how variables are mapped into the canonical model: s(z) = ε means
that z is mapped to an individual constant and s(z) = f(a), for a Skolem term f(a),
means that z is mapped to an element of the form f(c), for some c ⊆ ind(D). Given a
type s and a tuple z = (z1, . . . , zn) ⊆ dom(s), we denote the tuple (s(z1), . . . , s(zn))
by s(z). A type s is compatible with a bag λ(t) if s(x) = ε, for all x ∈ x ∩ dom(s),
and, for every S(z) ∈ q with z ⊆ λ(t) ∩ dom(s), one of the following applies:

(d) s(z) ⊆ {ε};

(b) there is P (a) such that s(z) ⊆ termO(P (a)) ∪ {ε} but neither s(z) ⊆ {ε} nor
s(z) ⊆ termO(P (a));

(i) there is P (a) such that s(z) ⊆ termO(P (a)) and S(s(z)) ∈ CO,{P (a)}.

Given a type s, we take a tuple of variables var(s) that contains, for z ∈ dom(s) \ x,

variable z, if s(z) = ε, and variables ã, if s(z) ∈ termO(P (a)).

Denote the answer variables that occur in dom(s) by xs. Our rewritings use conjunc-
tions Ats(var(s),xs) of the following formulas, for all S(z) ∈ q with z ⊆ dom(s):

(d′) S(z) if s(z) ⊆ {ε};
(b′) the disjunction

∨
g : z′→a

[
P (ã) ∧

∧
z∈z′ and g(z)=a

(z = ã)
]

over grounding functions g : z′ → a such that z′ = {z ∈ z | s(z) = ε} 6= ∅,
z′′ = {z ∈ z | s(z) ∈ termO(P (a))} 6= ∅ and CO,{P (a)} contains the result of
replacing z′ and z′′ in S(z) by g(z′) and s(z′′), respectively;

(i′) P (ã) if s(z) ⊆ termO(P (a)).

Strictly speaking, the resulting rewritings will not be NDL programs because of dis-
junctions in (b′), but we can get rid of them using an extra predicate and (if needed)
the construction from the proof of Lemma 1 keeping the size and the execution time
polynomial.

5 LOGCFL Rewritings for OMQ(d, t,∞)

We now construct skinny-reducible NDL rewritings for the CQs of bounded treewidth.

Theorem 3. For any d ≥ 0 and t ≥ 1, the class OMQ(d, t,∞) is skinny-reducible.

Fix a connected CQ q(x) and a tree decomposition (T, λ) of its Gaifman graph.
Let D be a subtree of T . The size of D is the number of nodes in it. A node t of D is
called boundary if T has an edge {t, t′} with t′ /∈ D. We denote by ∂D the union of
all λ(t) ∩ λ(t′) for boundary nodes t of D and its neighbours t′ in T outside D. The
degree deg(D) of D is the number of its boundary nodes (so, the only subtree of T of
degree 0 is T itself). We say that a node t splits D into subtrees D1, . . . , Dk if the Di

partition D without t: each node of D except t belongs to exactly one Di.

Lemma 2. Let D be a subtree of T of size n > 1.
If deg(D) = 2, then there is a node t splitting D into subtrees of size ≤ n/2 and
degree ≤ 2 and, possibly, one subtree of size < n− 1 and degree 1.
If deg(D) ≤ 1, then there is t splitting D into subtrees of size ≤ n/2 and degree ≤ 2.

We define recursively a set R of subtrees of T , a binary ‘predecessor’ relation ≺
on R, and a function β on R indicating the bag of the splitting node. We begin by
adding T to R. Take any D ∈ R that has not been split yet. If D is of size 1, then
β(D) = λ(t) for the only node t of D. Otherwise, by Lemma 2, we find a node t in D

that splits it intoD1, . . . , Dk. We set β(D) = λ(t) and, for 1 ≤ i ≤ k, addDi to R and
set Di ≺ D; then, we apply the procedure to each of D1, . . . , Dk. For each D ∈ R, we
recursively define a set of atoms

qD =
{
S(z) ∈ q | z ⊆ β(D)

}
∪
⋃

D′≺D
qD′ .

Let xD be the set of variables from x that occur in qD. By the definition of tree decom-
position, qT = q and xT = x.

We now define an NDL-rewriting of Q(x) = (O, q(x)). Fix D ∈ R and a type
w with dom(w) = ∂D. Let Gw

D(var(w),xD) be a fresh IDB predicate with parame-
ters xD. As we described above, a node is selected inD to split it into smaller trees (pro-
vided that it contains more than one node). We extend the type w to cover the variables
β(D) of the selected bag: more precisely, we consider types s with dom(s) = β(D)
such that they are compatible with bag β(D) and agree with w on their common do-
main. Observe that, if D′ is a subtree resulting from splitting D, then the domain of
the extended type, s ∪ w, includes ∂D′, and thus ∂D′ coincides with the domain of
the restriction of s ∪ w to ∂D′, denoted (s ∪ w) �∂D′ . Now, for each type s with
dom(s) = β(D) such that s is compatible with bag β(D) and agrees with w on their
common domain, the NDL program ΠLOG

Q contains

Gw
D(var(w),xD)← Ats(var(s),xs) ∧

∧
D′≺D

G
(s∪w)�∂D′
D′ (var((s ∪w)�∂D′),xD′).

By induction on ≺, one can now show that (ΠLOG
Q , Gε

T) is a rewriting of Q(x).

Example 1. Let q(x0, x3) = ∃x1x2
(
S(x0, x1)∧R(x1, x2)∧R(x2, x3)

)
andO consist

of the following linear rules:

% : U(x, y)→ ∃v T (x, v, y), T (x, v, y)→ R(v, x),

T (x, v, y)→ R(y, v), T (x, v, y)→ S(x, y).

The subtree structure of the tree decomposition of q(x0, x3) and the canonical model
are as follows:

D

D1 D2

x0

x1

x1

x2

x2

x3

S R R

a1 a2

f%(a1, a2)

U

R RS

The goal predicate for the rewriting of q(x0, x3) is Gε
D(x0, x3) with parameters x0

and x3. For the type s for the middle bag sending x1 to ε and x2 to f%(a1, a2), we have

Gε
D(x0, x3)← Gx1 7→ε

D1
(x1, x0) ∧ U(ã1, ã2) ∧ (x1 = ã2) ∧G

x2 7→f%(a1,a2)
D2

(ã1, ã2, x3),

where and ã1 and ã2 are the twin variables in var(s). Note that the type forGx2 7→f%(a1,a2)
D2

has no non-twin variables, and we have the following rule for this predicate

G
x2 7→f%(a1,a2)
D2

(ã1, ã2, x3)← U(ã1, ã2) ∧ (x3 = ã1).

Lemma 3. For anyD complete forO, any predicateGw
D and any b ∈ ind(D)|var(w)|+|xD|,

we have ΠLOG
Q ,D |= Gw

D(b) iff there is a homomorphism h : qD → CO,D such that

h(z) =

{
b(z), for all z ∈ xD and all z ∈ ∂D with w(z) = ε,

w(z)[a/b(ã)], for all z ∈ ∂D with w(z) ∈ termO(P (a)).

6 NL Rewritings for OMQ(d, t, `)

For OMQs based upon bounded leaf queries and bounded depth ontologies, we establish
the following theorem:

Theorem 4. Let d ≥ 0, t ≥ 1 and ` ≥ 2 be fixed. There is an LNL-transducer that,
given any OMQ in OMQ(d, t, `), constructs its polynomial-size linear NDL-rewriting
of width ≤ `(t+ 1).

Let O be an ontology of finite depth d and q(x) a CQ with a tree decomposition
(T, λ) of width ≤ t having ≤ ` leaves. Fix one of the nodes of T as root, and let M
be the maximum distance to a leaf from the root. For 0 ≤ n ≤ M , by an n-slice we
mean the set of all nodes of T located at distance n from the root. Denote by yn the
union of all bags λ(t) for a node t in the n-slice. For 1 ≤ n ≤ M , let zn be the
union of all λ(t) ∩ λ(t′) for a node t in the n-slice and its predecessor t′ in T (which
is in (n − 1)-slice), and let z0 = ∅. By definition, zn+1 ⊆ yn+1 ∩ yn and, clearly,
|zn| ≤ |yn| ≤ `(t+1). Denote by qn(z

n
∃ ,x

≥n) the query consisting of all atoms S(z)
of q with z ⊆

⋃
k≥n y

k, where zn∃ = zn \ x and x≥n = x ∩
⋃
k≥n y

k. These queries
and sets of variables for the CQ from Example 1 are shown below:

q2q1q0

x0

x1

x1

x2

x2

x3

S R R

y2 = {x2, x3} z2 = {x2} x2 = {x3}
y1 = {x1, x2} z1 = {x1} x1 = ∅
y0 = {x0, x1} z0 = ∅ x0 = {x0}

A type for zn is a total map w from zn to termO ∪{ε}. Likewise, a type for yn is a
total map s from yn to termO ∪{ε}. We say s compatible with yn if it is compatible
with every bag λ(t) in the n-slice.

Consider the NDL program ΠLIN
Q defined as follows. For every 0 ≤ n < M and

every type w for zn, we introduce a new IDB predicateGw
n (var(w),x≥n) with param-

eters x≥n. For each type s for yn such that s is compatible with yn and agrees with w
on zn, the program ΠLIN

Q contains the clause

Gw
n (var(w),x

≥n)← Ats(var(s),xs) ∧Gs�zn+1

n+1 (var(s�zn+1),x
≥n+1).

For every type w for zM and every type s for yM such that s is compatible with yM

and agrees with w on zM , we include the clause

Gw
M (var(w),x

≥M)← Ats(var(s),xs).

Finally, we use Gε
0 with parameters x as the goal predicate (note that z0 = ∅, and so

the domain of any type for z0 is empty).

Lemma 4. For anyD complete forO, any predicateGw
n , any b ∈ ind(D)|var(w)|+|x≥n|,

we have ΠLIN
Q ,D |= Gw

n (b) iff there is a homomorphism h : qn → CO,D such that

h(z) =

{
b(z), for all z ∈ x≥n and all z ∈ zn∃ with w(z) = ε,

w(z)[a/b(ã)], for all z ∈ zn∃ with w(z) ∈ termO(P (a)).

It should be clear that ΠLIN
Q is a linear NDL program of width ≤ `(t + 1) and

containing ≤ |q| · | termO |`(t+1) predicates. Moreover, it takes only logarithmic space
to store a type w, which allows us to show that ΠLIN

Q can be computed by an LNL-
transducer. We apply Lemma 1 to obtain an NDL-rewriting for arbitrary data instances,
and then use Theorem 1 to conclude that the resulting program can be evaluated in NL.

7 LOGCFL Rewritings for OMQ(∞, 1, `)

Unlike the previous two classes, answering OMQs from the class OMQ(∞, 1, `) can
be harder—LOGCFL-complete—than evaluating their CQs, which can be done in NL.

Theorem 5. For any fixed ` ≥ 2, the class OMQ(∞, 1, `) is skinny-reducible.

For OMQs with ontologies of unbounded depth and acyclic CQs whose join trees
have a bounded number of leaves, our rewriting uses the notion of Skolem witness that
generalises tree witnesses [14].

Let Q(x) = (O, q(x)) be an OMQ, let s = (s1r , . . . , s
n
r , si) be a tuple of disjoint

sets of variables in q(x) such that si 6= ∅ and si ∩ x = ∅, and let sr = s1r ∪ · · · ∪ snr ,

qs =
{
S(z) ∈ q | z ⊆ sr ∪ si and z 6⊆ sr

}
.

If qs is a minimal subset of q containing every atom of q with at least one variable from
si and such that there is a homomorphism h : qs → CO,{P (a)} with a = (a1, . . . , an)
and h−1(aj) = sjr for 1 ≤ j ≤ n, then we call s a Skolem witness for Q(x) generated
by P (a). Intuitively, s identifies a minimal subset of q that can be mapped to the Skolem
part of the canonical model CO,{P (a)} consisting of Skolem terms: the variables in sr
are mapped to constants from a and the variables in si to Skolem terms in termO(P (a)).

The logarithmic-depth NDL-rewriting for OMQ(∞, 1, `) is based on the following:

Lemma 5. Every tree T of size n has a node splitting it into subtrees of size ≤dn/2e.

Let Q(x0) = (O, q0(x0)) be an OMQ with an acyclic CQ having a join tree T0. We
repeatedly apply Lemma 5 to decompose the CQ into smaller and smaller subqueries.
Formally, for an acyclic CQ q, we denote by γq a vertex in the join tree T for q that
satisfies the condition of Lemma 5. Let Q be the smallest set containing q0(x0) and the
following CQs, for every q(x) ∈ Q with at least one existentially quantified variable:

(1) the CQs qi(xi) corresponding to the connected components Ti with root γqi
adja-

cent to γq of the result of removing γq from T , where xi consists of the restriction
of x to the variables in qi together with the common variables of γqi

and γq;

(2) for each Skolem witness s for (O, q(x)) with sr 6= ∅ and γq ∈ qs, the CQs
qs
1(x

s
1), . . . , q

s
k(x

s
k) that correspond to the connected components T s

i of the re-
sults of removing qs from T (note that qs is connected in T), where each xs

i is the
set of variables in x ∪ sr that occur in qs

i .

The NDL program ΠSW
Q uses IDB predicates Gq(x), for q(x) ∈ Q, whose parameters

are the variables in x0 that occur in q(x). For each q(x) ∈ Q that has no existentially
quantified variables, we include the clause Gq(x) ← q(x). For any q(x) ∈ Q with
existential variables, we include

Gq(x) ← γq ∧
∧

1≤i≤n
Gqi

(xi),

where q1(x1), . . . , qn(xn) are the subqueries obtained by splitting q by γq in (1),
and, for any Skolem witness s of (O, q(x)) with sr 6= ∅ and γq ∈ qs and any P (a)
generating s, the clause

Gq(x) ← P (ã) ∧
∧

z∈sjr
(z = ãj) ∧

∧
1≤i≤k

Gqs
i
(xs
i),

where qs
1, . . . , q

s
k are the connected components of q without qs. Finally, if q0 is

Boolean, then we include Gq0
← P (ã) for all atoms P (a) such thatO, {P (a)} |= q0.

Lemma 6. For any OMQ with an acyclic CQ, any data D complete for O, any query
q(x) ∈ Q and any b ∈ ind(D)|x|, we have ΠSW

Q ,D |= Gq(b) iff there is a homomor-
phism h : q → CO,D with h(x) = b.

Now fix ` > 1 and consider Q(x) = (O, q0(x)) from the class OMQ(∞, 1, `)
(remember that we have fixed arity n). The size of the program ΠSW

Q is polynomially
bounded in |Q| since q0 has polynomially-many subtrees of Tq0

and O(|q0|`) Skolem
witnesses (there are at mostO(|q0|` · |Σ| · nn) pairs of a Skolem witness s and its gen-
erating atom P (a)). It is readily seen that the function ν defined by ν(Gq) = |q|, for
each q ∈ Q, is a weight function for (ΠSW

Q , Gq0
(x)) with ν(Gq0

) ≤ |Q|. Moreover, by
Lemma 5, d(ΠSW

Q , Gq0
) ≤ log ν(Gq0

)+1; also, w(ΠSW
Q , Gq0

) ≤ `+1. Finally, we note
that, since the number of leaves is bounded, it is in NL to decide whether a vertex satis-
fies the conditions of Lemma 5, and in LOGCFL to decide whetherO, {P (a)} |= q(a),
for bounded-leaf acyclic CQs q(x) (see the full version1), or whether a (logspace) rep-
resentation of a possible Skolem witness is indeed a Skolem witness. This allows us to
show that (ΠSW

Q , Gq0
(x)) can be generated by an LLOGCFL-transducer. By Corollary 1,

the obtained NDL-rewritings can be evaluated in LOGCFL.

8 Conclusion

We presented NDL rewritings for three classes of OMQs with CQs of bounded (hyper)-
tree width and ontologies given as linear TGDs. These NDL rewritings can be con-
structed and evaluated in LOGCFL, NL and LOGCFL, respectively (provided that the
arity of predicates is bounded). Since the three upper bounds match the lower bounds
inherited from the OWL 2 QL setting [4], the proposed rewritings are theoretically op-
timal.

1 http://www.dcs.bbk.ac.uk/˜kikot/DL17-1-full.pdf

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables:

Walking the decidability line. Artificial Intelligence 175(9–10), 1620–1654 (2011)
3. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Ryzhikov, V., Zakharyaschev, M.:

The complexity of ontology-based data access with OWL 2 QL and bounded treewidth
queries. In: Proc. of the 26th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS (2017)

4. Bienvenu, M., Kikot, S., Podolskii, V.V.: Tree-like queries in OWL 2 QL: succinctness and
complexity results. In: Proc. of the 30th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2015. pp. 317–328. IEEE Computer Society (2015)

5. Boguslavsky, I., Dikonov, V., Iomdin, L., Lazursky, A., Sizov, V., Timoshenko, S.: Semantic
analysis and question answering: a system under development. In: Computational Linguistics
and Intellectual Technologies. Papers from the Annual International Conference Dialogue.
p. 21. No. 14 (2015)

6. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. Journal of Web Semantics 14, 57–83 (2012)

7. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers.
Journal of the ACM 18(1), 4–18 (1971)

8. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.:
Acyclicity notions for existential rules and their application to query answering in ontologies.
Journal of Artificial Intelligence Research 47, 741–808 (2013)

9. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: Questions and
answers. In: Proc. of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS (2016)

10. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. Jour-
nal of Computer and System Sciences 64(3), 579–627 (2002)

11. Gottlob, G., Manna, M., Pieris, A.: Polynomial Rewritings for Linear Existential Rules, pp.
2992–2998. In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI (2015)

12. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological databases.
ACM Transactions on Database Systems 39(3), 25:1–25:46 (2014)

13. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: On the succinctness of query
rewriting over shallow ontologies. In: Proc. of the Joint Meeting of the 23rd EACSL Annual
Conf. on Computer Science Logic (CSL 2014) and the 29th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2014). pp. 57:1–57:10. ACM (2014)

14. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2012). pp. 275–285. AAAI (2012)

15. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: Sound, complete and minimal UCQ-
rewriting for existential rules. Semantic Web 6(5), 451–475 (2015)

16. König, M., Leclere, M., Mugnier, M.-L.: Query rewriting for existential rules with compiled
preorder. In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI (2015)

17. Sudborough, I.H.: On the tape complexity of deterministic context-free languages. Journal
of the ACM 25(3), 405–414 (1978)

18. Thomazo, M.: Compact rewriting for existential rules. In: Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence, IJCAI (2013)

19. Venkateswaran, H.: Properties that characterize LOGCFL. Journal of Computer and System
Sciences 43(2), 380–404 (1991)

