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ABSTRACT

We propose a new blind source separation algorithm based on mix-
tures of alpha-stable distributions. Complex symmetric alpha-stable
distributions have been recently showed to better model audio sig-
nals in the time-frequency domain than classical Gaussian distribu-
tions thanks to their larger dynamic range. However, inference of
these models is notoriously hard to perform because their probabil-
ity density functions do not have a closed-form expression in gen-
eral. Here, we introduce a novel method for estimating mixture of
alpha-stable distributions based on random moment matching. We
apply this to the blind estimation of binary masks in individual fre-
quency bands from multichannel convolutive audio mixes. We show
that the proposed method yields better separation performance than
Gaussian-based binary-masking methods.

Index Terms— Blind Source Separation, Binary Masking,
Alpha-Stable, Generalized Method of Moments

1. INTRODUCTION

This paper is concerned with source separation, which is a topic in
applied mathematics that aims at processing mixture signals so as to
recover their constitutive components, called sources [1]. It is a field
of important and widespread practical applications, notably in bio-
logical signal processing [2] and in audio. In audio, it is traditionally
exemplified by the cocktail party problem, which consists in isolat-
ing some specific discussion within the recording of a crowd [3, 4].
Apart from such speech processing scenarios, source separation also
enjoyed much interest in the music processing literature, due to its
important applications in the entertainment industry [5]

From the perspective of this paper, it is worth mentioning that a
significant portion of the research on source separation first makes
some assumptions on the sources signals and then picks some mixing
model. While the former usually stands on probabilistic grounds, the
latter often comes from physical assumptions and explains how the
observed mixtures are generated from the sources.

Historically, the overdetermined linear case was considered, for
which more mixtures than sources are available [1]. The interest-
ing fact about such mixing models is they can be inverted easily,
allowing to recover the sources from the mixtures, provided their
parameters are known. The breakthrough brought in by source sep-
aration is to allow identification of such mixing parameters with
only very general assumptions about the sources. These assump-
tions are mostly either that sources are both independent, identically
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distributed (i.i.d.) and non-Gaussian, as in Independent Components
Analysis (ICA, [6]), or that they are Gaussian but not i.i.d. as in
Second-Order Blind Identification (SOBI [7]). Going in the fre-
quency domain allowed to extend such approaches to convolutive
mixtures, i.e. for which the sensors capture the sources after some
acoustic propagation whose duration is not negligible.

The validity of the mixing model and its invertibility is cru-
cial for applying separation methods that make only broad assump-
tions on the sources. When such assumptions are violated, those
approaches are not applicable. This typically happens in the under-
determined scenario, where fewer mixtures than sources are avail-
able, which is classical in audio. In that case, separation may only
be achieved through more involved source models and time-varying
filtering procedures [5]. For this reason, it is natural that research
in underdetermined separation focused on highly parameterized and
tractable source models. In short, a huge part of the models proposed
in the literature stands on Gaussian grounds, where one wants to es-
timate time-varying power-spectral densities and steering vectors for
building the corresponding multichannel Wiener filters [8, 9]In that
framework, estimation is typically achieved through maximization
of likelihoods, including the celebrated Expectation-Maximization
algorithm [10]. This line of thought leaves room for much flexibility
and a large community strived to provide effective audio spectro-
gram models, from sophisticated linear factorization [11] to recent
developments in deep learning [12, 13].

An intrinsic weakness of the Gaussian processes for modeling
audio sources is to require many parameters to faithfully represent
sophisticated signals. This is made unavoidable by their light-tails,
which only allow for small explorations around averages and stan-
dard deviations. One typically has to pick a different Gaussian
distribution for each time and frequency to obtain a good model [9],
and precise estimation of all parameters is required for good perfor-
mance. This inevitably makes all related estimation methods very
sensitive to initialization. Using distributions with heavier-tails than
the Gaussian for underdetermined separation is yet at its infancy,
although it is common practice in the overdetermined case [14, 15].
Among such distributions, the α-stable distribution [16] enjoyed
some interest in signal processing [17]and more particularly in
source separation recently, because it was shown to straightfor-
wardly yield effective filters with better perceived audio quality than
the standard Wiener [18, 19].

However, the delicate question of how to estimate the parame-
ters of α-stable source models remains quite an open issue. It ap-
pears to be very challenging because such distributions do not pro-
vide an analytical expression for their likelihood, which prevents
standard methodologies. Two alternative options were considered
so far. First, Markov Chain Monte Carlo methods [20] are applica-
ble and effective at yet a high computational cost. Second, classical
moment-matching methods were proposed [21] that are effective,
but somehow ad-hoc and hard to translate into the multichannel case



of several mixtures.

In this paper, we use a variant of the recent algorithm introduced
in [22] for the estimation of mixture models by generalized moment
matching, to exploit mixtures of multivariate α-stable distributions
in the context of audio source separation. This algorithm, referred
to as Compressive Learning-Orthogonal Matching Pursuit with Re-
placement (CL-OMPR), is a greedy, heuristic method that was ini-
tially used in the context of sketching [22], to estimate mixture mod-
els on large-scale databases using only a collection of generalized
moments computed in one pass. Sketching thus enjoyed several suc-
cessful applications in machine learning [23], but also for source lo-
calization [24]. Here, we exploit instead the capacity of CL-OMPR
to successfully estimate exotic mixture models from a collection of
generalized moments, and show for the first time how it may be use-
ful to devise time-varying filters able to achieve good performance
for source separation.

2. ALPHA-STABLE UNMIXING

2.1. Alpha-stable mixture model

Let us consider a mixture of K sound sources observed through M
channels. We denote by {sk(f, t)}Kk=1 the emitted source spectro-
grams and by {xm(f, t)}Mm=1 the observed channel spectrograms
in the complex short-time Fourier domain, where f ∈ [1 . . . F ]
and t ∈ [1 . . . T ] denote the discrete frequency and time indexes.
Assuming time-domain convolutive filters from sources to channels
which are short compared to the Fourier windows, the mixing model
at (f, t) can be written

x(f, t) =

K∑
k=1

ak(f)sk(f, t) (1)

where x(f, t) ∈ CM is the observed vector, s(f, t) ∈ CK the
source vector and ak(f) ∈ CM source k’s steering vector.

Now, we choose an original probabilistic model for the source
signals, inspired by recent research onα-harmonizable processes [18,
24]. All {sk(f, t)}Tt=1 are assumed independent and identically dis-
tributed (i.i.d.) with respect to (wrt.) a symmetric complex and
centered α-stable distribution of unit scale parameter and character-
istic exponent αk(f), which we write:

p(sk(f, t);αk(f)) = Sc(sk(f, t);αkf ). (2)

In short, the symmetric centered α-stable distribution generalizes
the Gaussian isotropic [25], while providing significantly heavier
tails as its characteristic exponent αkf ∈]0, 2] gets small, αkf = 2
corresponding to the Gaussian case. An interesting feature of our
model is to be time-invariant, contrasting with classical Gaussian
models [8, 9]. This is because the Sc distribution enables impor-
tant dynamics for sk(f, t). In short, (2) corresponds to a model for
the marginal distribution of the sources. Such ideas have already
been considered in [24]. The particularity of our approach in this re-
gard is to feature a frequency-dependent characteristic exponent αkf
for increased expressive power. The choice of a unit scale for the dis-
tribution comes with no loss of generality: any frequency-dependent
scaling is incorporated in the steering vectors ak(f).

We highlight that the probability density function (pdf) of
sk(f, t) in (2) does not have a closed-form expression except for

αkf = 1 (Cauchy) and αkf = 2 (Gaussian). However, its charac-
teristic function, defined as the Fourier transform of its pdf does. We
have [16, 18]:

∀ω ∈ C,E{exp(iRe [ω?sk(f, t)])} = exp(−|ω|αkf ). (3)

At this point, we make one important simplifying assumption:
we suppose only one source is significantly active at each time-
frequency (TF) point. More specifically, let w(f, t) be the index of
the source that has the strongest magnitude |sk(f, t)| at TF bin (f, t).
Our assumption is: all other sources have a magnitude close to 0.
This is less strong than the so called W-disjoint orthogonality as-
sumption [4] where a single source is assumed to be active. This
allows us to assume weak sources are approximately distributed wrt
a Gaussian distribution. Indeed, even if it lacks an analytical ex-
pression, the pdf for a symmetric α-stable distribution is infinitely
derivable close to the origin [16], justifying this second order ap-
proximation for weak sources.

As a result of these assumptions, we take our mixture as:

x(f, t) =

K∑
k=1

I(z(f, t) = k){ak(f)sk(f, t) + ek(f, t)}, (4)

where I is the indicator function and ek(f, t) ∈ CM is a residual
Gaussian term containing all non-dominating signals (other than k)
and possible additional noise. For convenience, we neglect the inter-
channel correlations coming from weak sources, to simply assume
that ek is composed of iid entries with variance σkf :

p(ek(f, t)|z(f, t) = k;σ2
kf ) = Nc(ek(f, t);0, σ2

kf IM ) (5)

where Nc denotes the multivariate complex circular-symmetric
Gaussian distribution [25], IM is the M−dimensional identity ma-
trix and σ2

kf is the residual variance at frequency f when source k
dominates. Furthermore, the indexes w(f, t) of the strongest source
for each TF bin are modelled as iid multinomial variables:

p(z(f, t) = k;πf ) = πkf (6)

where πkf is the probability of source k dominating at frequency f ,
and

∑
k πkf = 1.

From all the preceding assumptions and dropping the in-
dexes (f, t) for convenience, we deduce the characteristic functions
of aksk, ek and x|z = k, where ω ∈ CM :

ψaksk (ω) = exp(−|a?kω|αk ) (7)

ψek (ω) = exp(−σ2
k‖ω‖22) (8)

ψx|z=k(ω) = exp(−|a?kω|αk − σ2
k‖ω‖22) (9)

Combining (6) and (9), we deduce that {x(f, t)}t follows a mix-
ture model parameterized by

θf = {αkf , σ2
kf ,ak(f), πkf}Kk=1. (10)

Following the two-stage approach of [26], the proposed blind source
separation method consists in clustering observations x(f, t) inde-
pendently at each frequency according to this mixture model. The
resulting classical source permutation ambiguity across frequencies
is left aside here (section 2.4), and a binary mask is then obtained
for each source. The special Gaussian case αfk = 2 is discussed in
section 2.2 while a parameter estimation method for the general case
is given in section 2.3.



2.2. Special case αfk = 2

Let us consider the special Gaussian case where αfk = 2 for all
f, k. The observation model at each frequency becomes

p(xt|wt = k;θ) = Nc(xt;0,aka?k + σ2
kIM ) (11)

where frequency indexes have been dropped for convenience. The
parameters θ of this mixture model can be straightforwardly esti-
mated via an expectation-maximization (EM) procedure [27]. Inter-
estingly, using the re-parameterization ak ← σkak and σ2

k ← 2σ2
k,

it turns out that these EM updates match those of the blind source
separation model proposed in [26], up to a small additive constant
for σ2

k. A key difference is that in [26], the observations are normal-
ized so that ‖xt‖22 = 1. As such, [26] belongs to the class of spatial-
feature clustering-based methods, similarly to DUET [4], while our
method operates in the signal domain.

2.3. General parameter estimation via moment matching

The estimation of the general α-stable model is done by generalized
moment matching, that is, minimizing the difference between the
empirical and theoretical values of a finite number of generalized
moments. Since the characteristic function of our model (9) has a
closed-form expression, these moments are selected as a sampling
the characteristic function at some frequency vectors ωj ∈ CM ,
j ∈ [1...m]. Following the methodology in [22], these frequencies
are drawn randomly according to some probability distribution Λ,
in practice designed automatically from the data using the method
prescribed in [22].

More precisely: given the data points to cluster x1, ...,xT ∈
CM (where the index f has been dropped), the estimation is per-
formed as follows:

1. Draw m random frequency vectors ωj
i.i.d.∼ Λ for j ∈ [1...m];

2. Compute the empirical characteristic function at these frequen-
cies y =

[
1
T

∑T
t=1 e

iRe(ω?
jxt)

]m
j=1
∈ Cm;

3. Estimate the model parameters (10) by (approximately) solving

min
θ

∥∥∥y − [ψx|z=k(ωj)
]m
j=1

∥∥∥2
2

(12)

where ψx|z=k(ω) is defined by (9), parameterized by θ.

CL-OMPR. The moment matching minimization (12) is carried out
by a modified version of the CL-OMPR algorithm [22] adapted to
our model. It is a greedy, heuristic algorithm precisely designed to
perform mixture model estimation by generalized moment matching.
Although it offers limited theoretical guarantees except for very par-
ticular settings [28], it has been empirically shown to perform well
for a large variety of models [22]. In particular, it is applicable as
soon as the considered mixture model has a closed-form characteris-
tic function with respect to the parameters of the model. Initially de-
signed for performing mixture model estimation for large databases,
here we advocate that it is also efficient for estimating more exotic,
problem-tailored models such as the one proposed in this paper.

The CL-OMPR algorithm is a variant of Orthogonal Matching
Pursuit (OMP), a classical greedy algorithm in compressive sensing.
It iteratively adds a component to the mixture model by maximizing
its correlation to the residual signal, and alternates with a non-convex

descent on (12). It also performs more iterations than OMP and in-
cludes a Hard Thresholding step to maintain the number of com-
ponents at K. This allows for replacing spurious components, and
has been demonstrated to greatly enhance the algorithm over similar
approaches that do not integrate the Hard Thresholding step [22].

The CL-OMPR algorithm is described in detail in previous pa-
pers [22], where it is applied to GMM estimation. Replacing the
GMM by our alpha-stable model is easily implemented and only re-
quires computation of the gradient of ψ(x|z = k) with respect to the
different parameters. The code is available at [the code will be made
available for the camera-ready version of the paper].

Approximate clustering. A drawback of the alpha-stable model,
and major lead for future work, is that the pdf p(x|z = k) does
not have an explicit expression, and therefore the clustering of the
data points xt cannot be done by exactly maximizing the posterior
p(xt|z = k) with respect to k.

Although a few methods may exist to approximately compute
this posterior using approximate numerical integration [29], in prac-
tice we found them to be extremely unstable and time consuming.
Instead, we decided to cluster the data as if the model was Gaussian,
i.e. with αk = 2, since the likelihood is then computable. Hence,
the “clustering” part (and therefore the final source separation re-
sults) of both EM (Section 2.2) and the alpha-stable model is in fact
the same: it uses only the parameters (ak, σk, πk). The difference
between the two lies in the parameters estimation: our hope is that,
by using the more realistic α-stable source model, steering vectors
ak will be estimated more precisely.

2.4. Frequency permutation ambiguity

Once clustering is performed at each frequency, a permutation am-
biguity remains as the assignment of frequency masks to sources is
not known. This is a classical problem in blind source separation
referred to as permutation alignment. It notably occurs when using
ICA [6] and clustering-based methods [9, 26]. A number of tech-
niques have been proposed to tackle it, based on temporal activation
patterns [26], steering vector models [9] or adjacent frequency bands
similarity [30]. The selection and tuning of a specific permutation
technique highly depends on the type of signal and mixing model
considered, which is out of the scope of this study. For this reason
and for fairness, all methods evaluated in the next section benefited
from the same oracle permutation scheme. At each frequency, the
permutation minimizing the mean-squared error between estimated
and true source images is selected.

3. EVALUATION AND RESULTS

We use two datasets for evaluation. First, the QUASI database1,
which consists in 10 musical excerpts of 30s. For each excerpt, we
produced stereo (M = 2) mixes of K = 4 musical tracks (vocals,
bass, drums, electric guitar, keyboard,...) using random pure gains
and delays. Second, the TIMIT speech database2, from which we
created 10 tracks of 30s. For each experiment we mix K = 3 of
them selected at random into M = 2 channels, again with random
pure gains and delays. In all cases, the gain differences between the
two channels are at most 5dB and the delay is at most 20 samples.
Note that none of the tested methods make assumption on the spe-
cific convolutive filters used for mixing, as long as they are relatively

1www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
2catalog.ldc.upenn.edu/ldc93s1

www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
catalog.ldc.upenn.edu/ldc93s1


SDR (dB) SIR (dB) MER (dB)
Mix −5.96± 4.96 −5.49± 4.85 N/A

Oracle 8.33± 3.16 18.3± 4.13 N/A
[26] 1.26± 2.44 2.88± 3.82 10.5± 9.84
EM 3.50± 2.87 9.04± 4.92 12.3± 11.0

CF-GMM 3.80± 2.53 8.60± 3.62 12.3± 9.90
CF-α 4.11± 2.59 9.17± 3.51 12.65± 9.73

(a) QUASI database (music), K = 4

SDR (dB) SIR (dB) MER (dB)
Mix −3.14± 1.91 −3.13± 1.90 N/A

Oracle 11.9± 0.980 25.9± 1.05 N/A
[26] 2.16± 1.33 4.90± 2.54 22.0± 6.57
EM 0.541± 0.504 1.44± 1.21 12.0± 3.64

CF-GMM 1.60± 1.10 4.13± 2.46 14.8± 3.32
CF-α 2.70± 1.74 6.11± 3.31 18.9± 2.72

(b) TIMIT database (speech), K = 3

Table 1: Separation results withK sources andM = 2 channels, for
the four clustering algorithms as well as oracle and mixture results.
Each slot contains the mean and standard deviation over the 100
trials and K sources, i.e. over 100K values.

small compared to the Fourier analysis window. The STFT parame-
ters were fixed to 64ms windows at 16kHz with 75% overlap.

Each experiment is averaged over 100 trials: each of the 10
songs in the QUASI is selected 10 times, and at each trial random
speech tracks are picked from TIMIT and mixed. The results are
evaluated using the classical bss eval toolbox [31], and expressed
in terms of Source to Distorsion Ratio (SDR), Source to Interfer-
ences Ratio (SIR), which evaluate the quality of the reconstructed
source signals, and Mixing Error Ratio (MER), which evaluates the
estimation of the steering vectors ak, all in dB.

We compare the four following clustering algorithms (recall that
in each case the binary masks are then created using the oracle per-
mutation method of Sec. 2.4):

• EM: the clustering to form the binary mask is done with a GMM
as described in Sec. 2.2. The EM algorithm is repeated 10 times
and the result that yields the best log-likelihood is kept.

• [26]: This is our implementation of the method of Sawada et al.,
as described in section 2.2. The EM is also repeated 10 times.

• CF-GMM: the clustering is formed with the moment matching
method of Sec. 2.3, but with all the αk fixed to 2. Hence the
estimated model is Gaussian. Note that EM and CF-GMM thus
estimate models belonging to the same family, however with a dif-
ferent cost function: EM through maximization of likelihood and
CF-GMM through moment matching of the characteristic func-
tion.

• CF-α: the clustering is done with the mixture of α-stable distribu-
tions of Sec. 2.3. As mentioned before, recall that the clustering
part is done by approximating the model is Gaussian, only the
estimation of the parameters is different.

To put the results in context, we also outline the “best” and “worst”
possible results, denoted respectively: oracle: the separation is per-
formed with the binary mask formed by considering the source that
has the highest energy at each TF bin (with oracle knowledge of each
source signal); and mix: the result are obtained by directly feeding
the mixture signal into the function bss eval images.

EM CF-GMM CF-alpha

-6

-4

-2

0

2

×10
4 QUASI, K = 4

EM CF-GMM CF-alpha

-6

-4

-2

0

2

×10
4 TIMIT, K = 3

Fig. 1: Log-likelihood of the data at each frequency index for each
trial (i.e. 100F values), for the EM, CF-GMM and CF-α. For read-
ability the low end of the y-axis has been cut at −7.104, the CF-
GMM and CF-α algorithms have outliers that go down to, respec-
tively, approximately −2.1010 and −3.1010.

Separation results. In Table 1 we show the separation results for
all algorithms. We see that CF-α outperforms the other approaches,
both on musical and speech signal. In particular, it seems to be es-
pecially efficient on speech signal compared to the other algorithms.
Since the clustering of CF-α is done using the same Gaussian pos-
teriors as with CF-GMM, the superiority of CF-α must come from
a better estimation of the steering vectors, as indicated by the MER.
The algorithm of [26] performs well on speech data (it even out-
performs CF-α in terms of MER on speech but has a high standard
deviation, while CF-α is very stable), but generally fails on musical
signals. On the contrary, the EM algorithm is untroubled by musical
signals, but fails on speech data.

Relevance of log-likelihood. This last observation is somewhat sur-
prising: on speech data in particular, CF-GMM is seen to outperform
EM by a non-negligible margin, despite the fact that both estimate a
GMM. In Fig. 1 we compare the log-likelihood results obtained with
the three algorithms during the clustering phase subsequent to the es-
timation of the parameters (recall that all three algorithms have the
same clustering phase). As expected, EM significantly outperforms
the two other algorithms on this criterion. This is not surprising
since EM precisely aims at maximizing the log-likelihood while the
two CF algorithms consider only the characteristic function. Since
the CF approaches outperforms EM in terms of separation results,
we conclude that maximization of the log-likelihood, while natural,
might not be the most appropriate approach to estimate the mixture
parameters in this case, which is an interesting lead for future work.

4. CONCLUSION

We presented a novel method for multichannel the blind separa-
tion of audio sources using an α−stable model for source signals,
combined with the assumption that only one source dominates each
(t, f) point. The parameters of the proposed model, including dis-
tinct scale and α values for each source, are estimated at each fre-
quency using a novel method based on random-moment matching.
Results show that using oracle permutations, the proposed model
performs better than Gaussian models, and that the proposed estima-
tion method outperforms EM even with the same Gaussian model.
Future work will further investigate the α and scale values estimated
by our method. In particular, it would be interesting to see if they can
be constrained or exploited to resolve permutation ambiguities. The
potential of random moment matching versus maximum likelihood
methods in source separation should also be further studied.
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