
HAL Id: hal-01633469
https://inria.hal.science/hal-01633469

Submitted on 13 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructions for efficient Private Information Retrieval
protocols

Julien Lavauzelle

To cite this version:
Julien Lavauzelle. Constructions for efficient Private Information Retrieval protocols. WCC 2017 -
The Tenth International Workshop on Coding and Cryptography, INRIA; SUAI; Skoltech, Sep 2017,
Saint-Petersbourg, Russia. pp.1-12. �hal-01633469�

https://inria.hal.science/hal-01633469
https://hal.archives-ouvertes.fr

Constructions for efficient Private Information Retrieval
protocols

Julien Lavauzelle

Laboratoire LIX, École Polytechnique, Inria & CNRS UMR 7161
Université Paris-Saclay

julien.lavauzelle@inria.fr

Abstract. Private Information Retrieval (PIR) protocols aim at ensuring a user that
he can retrieve some part Di of a distributed database D without revealing the index i
to the server(s). Most of known PIR protocols focus on decreasing the communication
complexity between the client and the server(s). Recently, the use of PIR codes by
Fazeli et. al. also lead to a huge reduction of the storage overhead supported by the
servers.
However, only a few works address the issue of the computational complexity of the
servers. In this paper, we show that transversal designs and their generalizations pro-
vide PIR schemes achieving simultaneously reasonable communication complexity, low
storage overhead, optimal computational complexity for the servers, and resistance
to a collusion of some of them.

1 Introduction

1.1 Private Information Retrieval

A Private Information Retrieval (PIR) protocol allows a user to retrieve entries of a database
without revealing the identity of the desired item. Such protocols can be applied in medical
data storage where, for example, physicians could access parts of the genome while hiding
the specific gene they analyse. The PIR paradigm was originally introduced Chor, Goldreich,
Kushilevitz and Sudan in [6, 7].
A naive solution is to download the entire database each time the user wants a single symbol.
In this setting the communication complexity is overwhelming, so we look for PIR protocols
which exchange less bits. However, Chor et. al. proved that, when the n-bit database is
stored on a single server, a PIR protocol cannot be information-theoretically secure with less
than Θ(n) bits of communication [7]. Two alternatives were then considered: restricting the
protocol to a computational security (initiated by Chor and Gilboa [5]), or allowing several
servers to store the database. Our work focuses on the last one.
In most of such PIR protocols, the database is replicated on the servers, and each server
is asked to compute some partial information related to a random query sent by the user
— this query shall hide the index of the symbol the user wants. Then the user collects all
the servers’ answers and retrieves the desired symbol with an appropriate algorithm. For
example, Chor et. al. [7] used XOR properties on log(n)-dimensional vectors to hide queries
and retrieve data symbols. A few years later, Katz and Trevisan showed in [13] that any
smooth locally decodable code (LDC) gives rise to a PIR protocol whose number of servers
and communication complexity correspond to the LDC locality (Yekhanin gives a good
survey on LDCs in [17]). Building on this idea, many PIR schemes (notably [3, 16, 10, 9])
successively decreased the communication complexity to O(n

√
log logn/ logn). However, only

few of them tried to lighten the computational and storage cost on the server side.
By preprocessing the database, Beimel, Ishai and Malkin [4] were the first to address
the minimization of the server storage/computation. Then, initiated by Fazeli, Vardy and
Yaakobi [11], recent works used the concept of PIR codes to transform a k-server replication-
based PIR protocol into a more-than-k-server PIR protocol which uses less storage. The idea

is to encode the database into a codeword and distribute parts of this codeword among the
servers. Through this transformation, both communication complexity and computational
cost keep the same order of magnitude, but the overall storage overhead ratio is reduced to
the PIR code one, which can be arbitrarily brought to 1 when sufficiently many servers are
used. Again, while the storage drawback seems to be solved, a huge computational cost may
still represent a barrier to PIR practicality.

1.2 Motivations and results

As pointed out by Yekhanin [17], “the overwhelming computational complexity of PIR
schemes (...) currently presents the main bottleneck to their practical deployment”. Indeed,
if public database is frequently queried (for instance, consider a database storing stock ex-
change prices), one cannot afford a PIR protocol with, for each query, a linear computational
complexity in the length of the database.
Naively, this computational cost could be drastically reduced by letting the user precompute
and send to the servers all the possible answers to its queries. Of course, storing all these
answers dramatically increases the needed storage, and we prefer to focus on another con-
struction due to Augot, Levy-dit-Vehel and Shikfa [2] that we shortly explain in the next
section.
In this work, we generalize the construction from [2] by modelling the PIR security constraints
in terms of block designs, and build linear codes upon them. It leads to PIR schemes with low
communication complexity, low storage overhead and constant computational complexity
which can be generalized in order to resist to collusions of servers.

2 Definitions and related constructions

2.1 Definitions

In all what follows, let U be the owner of a database D = (Di)i∈I ∈ F|I|q , and S1, . . . , S` be
` servers involved in the PIR protocol. The standard definition of (information-theoretically
secure) replication-based PIR protocols is the following:

Definition 1 (standard, or replication-based PIR protocol). Assume that each server
Sj stores a copy of the database D. An `-server standard PIR protocol is a set of three
algorithms P = (Q,A,R) which run the following steps on input i ∈ I:
1. Query generation: the randomized algorithm Q generates ` queries (q1, . . . , q`) = Q(i).

Query qj is sent to the server Sj.
2. Servers’ answer: each server Sj computes an answer aj = A(qj , D) and sends it back to

the user1.
3. Reconstruction: the user reconstructs r = R(i, (aj), (qj)).
The PIR protocol is said:
– correct if r = Di when the servers follow the protocol.
– t-private if, for every (i, i′) ∈ I2 and T ⊆ [1, `] such that |T | ≤ t, the distributions Q(i)|T
and Q(i′)|T are the same. We also say that the PIR protocol resists to t collusions.

We call communication complexity the number of bits sent between the user and the servers,
and server (resp. user) computational complexity the overall number of Fq-operations made
by A in order to compute every answer aj (resp. made by both Q and R).

We now want to model a PIR protocol where the database can be encoded and distributed
over the servers. Thus, from now on, D = (Di)i∈I denotes the encoding of a database.
Besides, we assume that I = [1, n] × [1, `] and for readability we write D(i1,i2) = D

(i2)
i1

and
D(i2) = (D

(i2)
k)k∈[1,n].

1 algorithm A := Aj may generically depend on j

Definition 2 (distributed PIR protocol). Assume that for 1 ≤ j ≤ `, the server Sj holds
the part D(j) of the database. An `–server distributed PIR protocol is a set of three algorithms
P = (Q,A,R) running the following steps on input i ∈ I:
1. Query generation: the randomized algorithm Q generates ` queries (q1, . . . , q`) = Q(i).

Query qj is sent to the server Sj.
2. Servers’ answer: each server Sj computes an answer aj = A(qj , D(j)) and sends it back

to the user.
3. Reconstruction: the user reconstructs r = R(i, (aj), (qj)).
The correctness and privacy properties are identical to the standard protocol. Finally, as the
database D has been previously encoded, we call storage overhead the number of redundancy
bits stored by the servers.

2.2 Partition of the database into several servers

Based on [13], we briefly recall how to design a standard PIR protocol based on a perfectly
smooth locally decodable code (LDC, see [17] for a formal definition of these codes). With
the previous notations, let us say the user wants to privately retrieve entries of a database
D ∈ F|I|q , and assume there exists C ⊂ Fnq , a perfectly smooth LDC of dimension |I| and
locality `. A replication-based `-server PIR protocol based on the code C is described in
Figure 1.

We will use the local decoding algorithm D of the code C. Assume the user wants to
retrieve the symbol Di for i ∈ I, and denote by C(D) the encoding of D via C.
1. Queries generation. Using the local decoder D, the user U generates at random queries

(q1, . . . , q`) for decoding Di. Query qj is sent to server Sj .
2. Server answers. Each server Sj computes the symbol C(D)qj and sends it back to the

user.
3. Reconstruction. The user runs the local decoder D on the (C(D)qj)j∈[1,`] and retrieves

Di.

Fig. 1: A standard PIR protocol based on a perfectly smooth locally decodable code.

Augot, Levy-dit-Vehel and Shikfa motivated their work [2] with the perspective of reducing
of the total storage carried by the servers. Their construction uses a specific family of LDCs
called multiplicity codes [14]. But instead of replicating the database on several servers, they
split an encoded version c of the database D and share the parts on these servers. Without
going into technicalities — see [2, 14] for more details — we give a sketch of the idea.
Multiplicity codes have the property that a codeword c can be seen as the evaluation of a
polynomial fc and its derivatives over the space Fmq . Now, on every affine line there exist
relations between fc and its derivatives, leading to a local decoder which, when decoding a
symbol in position i ∈ Fmq , picks random affine lines passing through i and computes linear
combinations of the symbols indexed by these lines.
Augot et. al. [2] then realized that partitionning Fmq into q hyperplanes gives rise to storage
improvements. By splitting a codeword according to these hyperplanes and giving one part
to each of the q servers, they obtained a huge cutdown on both the total storage and the num-
ber of servers, while keeping a reasonable communication complexity. Their transformation
induces a minor modification of the query generation process (the only server which holds
the desired symbol must receive a random query), but the PIR scheme they built was at that
time the only one to let the servers store less than twice the size of the database. Moreover,
the precomputation of the encoding of the database ensures a constant-time computational
complexity to the servers.
In the subsequent sections, we will focus on this “codeword support splitting” idea and
reformulate it in terms of block designs. It produces a large family of codes leading to PIR
schemes with low storage and low computational complexity on the server side.

3 Transversal designs and codes

Let us recall the definition of some combinatorial structures and linear codes based on them.
See the following books for complementary details: [1], [15] and [8].

Definition 3 (Block design). A block design is a pair D = (X,B) where X is a finite set
called the points, and B is a set of non-empty subsets of X called the blocks.

Definition 4 (Incidence matrix). Let D = (X,B) be a block design. The incidence matrix
MD of D is the |B| × |X| matrix whose (i, j)-entry is:{

1 if the block i contains the point j
0 otherwise ∀i ∈ B, j ∈ X .

The i-th row of this matrix is called incidence vector of the block Bi ∈ B, and denoted 1Bi
.

We also call q-rank of MD the rank of MD over the field Fq.

Example 1. Let A2(F3) the affine plane over F3, and X be the 9 points in A2(F3). We define
12 blocks in B as the set of lines in A2(F3). Then the (12×9)–incidence matrix of D = (X,B)
is

MD =



1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


.

Over F2, MD has full-rank 9, while over F3, it has rank 6.

Definition 5 (Transversal design). Let n, k ≥ 2 and λ ≥ 1 be integers. A transversal
design, denoted TDλ(k, n), is a block design (X,B) equipped with a partition G of X called
the groups such that:
– |X| = nk;
– any group in G has size n and any block in B has size k;
– any unordered pair of elements from X is contained in exactly one group or in exacly λ
blocks, but not both.

When λ = 1, we simply write TD(k, n).

Remark 1. There are k groups and λn2 blocks in TDλ(k, n). Notice that a block cannot
be secant to a group with multiplicity more than 1, otherwise the third condition of the
definition would be disproved. Moreover, as the block size equals the number of groups, any
block must meet any group. Thus the following holds:

∀(B,G) ∈ B × G, |B ∩G| = 1 .

Example 2. Start from the design D = (X,B) defined in Example 1. Define G to be a set
of 3 parallel lines from B which partitions the point set X. Then the design (X,B \ G,G) is
a TD(3, 3). Generally, for any prime power q, a TD(q, q) can be built with the affine plane
A2(Fq).

Definition 6 (Code of a design). Let Fq be a finite field, and D = (X,B) be a block
design. The code Codeq(D) is the Fq-linear code of length |X| whose dual code is spanned by
the rows of the incidence matrix MD of the design D. The dimension over Fq of Codeq(D)
is n− rankp(MD) where p is the characteristic of the field Fq.

Example 3. The design from Example 1 gives a linear code over F3 of length 9 and dimension
3. One may notice that this code is indeed the generalized Reed-Muller code of degree 1 and
order 2 over F3.

4 Construction of 1-private PIR protocols based on transversal
designs

In this section we present our PIR protocol construction which relies on transversal designs.
This first idea leads to PIR protocols which are 1-private — see section 5 for t-private PIR
with t > 1.

4.1 The distributed PIR protocol

To comply with standard coding theory notations, we now denote by ` the number of groups
of a transversal design (k usually represents the dimension of a code). Let T = (X,B,G)
be a transversal design TD(`, n) and N = |X| = `n. Denote by C = Codeq(T) ⊆ FNq the
associated Fq-linear code, and write k = dimFq

C. Our PIR protocol is defined in Figure 2
and the overall construction is summarized in Figure 3.

1) Initialisation step.

1. Encoding. The database D ∈ Fk
q is encoded into a codeword c ∈ C = Codeq(T) of

length N = `n.
2. Distribution. Denote by c|Gj

the symbols of c whose support is the group Gj ∈ G.
Each server Sj receives c|Gj

.

2) Retrieving step. For each symbol ci the user U wants to retrieve, denote by j∗ ∈ [1, `]
the index of the unique group Gj∗ which contains i. Also denote by B∗ the set of blocks
which contains i. The three steps of the distributed PIR protocol are:

1. Queries generation. The user U uniformly picks a random block B ∈ B∗. For every
server Sj with j 6= j∗, the user sends to Sj the unique index qj in B ∩Gj . The server
Sj∗ receives a random query qj∗ uniformly picked in Gj∗ . To sum up,

B
$←− B∗

Q(i)j∗ = qj∗
$←− Gj∗

Q(i)j = qj ∈ B ∩Gj , j 6= j∗

2. Servers’ answer. Each server Sj (including Sj∗) reads aj = cqj and sends it back to
the user:

A(qj , c(j)) = cqj .

3. Reconstruction. The user U computes x = −
∑

j 6=j∗ aj and outputs x.

Fig. 2: A 1-private distributed PIR protocol based on a transversal design T =
(X,B,G)

Transversal design
incidence
matrix //

Design-based
linear code

database
encoding // Distributed PIR scheme

Fig. 3: The generic transversal-design-based PIR scheme.

4.2 Analysis

We analyse our PIR scheme by proving the following theorem:

Theorem 1. Let D be a database with k entries over a field Fq, and T = TD(`, n) be a
transversal design, whose incidence matrix has rank `n − k over Fq. Then, there exists a
distributed `-server 1-private PIR protocol with:
– only 1 symbol to read for each server,
– `− 1 field operations for the user,

– ` log(nq) bits of communication,
– a storage overhead of (`n− k) log q bits on the servers.

Proof. Correctness. Let C = Codeq(T). From the definition of the code, the incidence
vector 1B of a block B ∈ B belongs to the dual code C⊥. So 1B · c = 0 which leads to∑
j∈B cj = 0. So our PIR is correct as long as there is no error on the symbols aj returned

by the servers.
Security (1-privacy). We prove that for all j ∈ [1, `], it holds that P(i | qj) = P(i), where
probabilities are taken over the randomness of B ← B∗. Hence we have

P(i | qj) = P(i | qj and i ∈ Gj)P(i ∈ Gj) + P(i | qj and i /∈ Gj)P(i /∈ Gj)
= P(i | i ∈ Gj)P(i ∈ Gj) + P(i | i /∈ Gj)P(i /∈ Gj) = P(i) .

Above, the reasons why we eliminated the random variable qj in the conditional probabilities
are:
– in the case i ∈ Gj (that is, j = j∗), by the very construction of the PIR we know qj and
i are independent;

– in the case i /∈ Gj , by definition of a transversal design, there are as many blocks
containing both qj and i as there are blocks containing qj and any i′ in X \Gj . Indeed,
by definition of a transversal design the number of such blocks is always λ. So once
again, the value of the random variable qj is irrelated to i.

Communication complexity. For each server, exactly 1 position in [1, n] and 1 symbol
from Fq are exchanged. So the overall communication complexity is ` × (log(n) + log(q))
bits.
Storage overhead. The number of bits stored on a server is N

` log |Fq| = n log q, giving a
storage overhead of (`n− k) log q = (N − k) log q.
Computation complexity. Each server just needs to read the queried symbol, hence our
protocol incurs no extra cost. ut

4.3 Explicit constructions

Theorem 1 shows that, if we want to optimize the practical parameters of our PIR scheme,
we basically need to decrease `, the number of groups. However, the dimension k of the code
strongly depends on ` and n, and tiny values of ` can lead to trivial or very small codes.
Thus, the rest of the section is devoted to the construction of transversal designs leading to
codes and PIR protocols with good parameters.

4.3.1 From affine geometries. Transversal designs can be built through incidence
properties of subspaces. Let Am(Fq) be the affine space of dimension m over Fq, and
H = (H1, . . . ,Hq) be q hyperplanes that partition Am(Fq). We define a transversal design
TA(m, q) as follows:
– the point set X consists in all the points in Am(Fq);
– the groups G are the so-called parallel class H;
– the blocks B are all the 1-dimensional affine subspaces (lines) which do not entirely lie

in one of the Hi.
Such a design is a TD(q, qm−1) because a line is either contained in one of the Hi, or is
1-secant to each of them. To complete the study of the parameters, it remains to compute
the dimension of Code(TA(m, q)).
First notice that all blocks from TA(m, q) are contained in the block set of the affine geometry
design AG1(m, q), the incidence structure of points and lines in Am(Fq). It implies that
Codep(AG1(m, q)) ⊆ Codep(TA(m, q)) for any field Fp. The benefit to consider AG1(m, q) is
that the p-rank of its incidence matrix has been well-studied [12, 1]. Besides, when p and q
are coprimes, it has been proved that this design-based code has dimension 0 or 1 (Theorem

2.4.1 in [1]). Hence, to have better codes we will assume that p is the characteristic of the
field Fq.
In this setting (q = pe), Hamada [12] gives a generic formula to compute the p-rank of
a design coming from affine and projective geometries. Although asymptotics are hard to
derive from Hamada’s formula, we can compute specific values of some p-ranks, which give
us lower bounds on the dimension of our transversal-design-based codes presented in Table 1.

m ` = q N = n` = qm dim C (lower bound) R = dim C/N (lower bound)
2 8 64 37 0.578
2 64 4096 3367 0.822
2 1024 1 048 576 989 527 0.944
2 4096 16 777 216 16 245 775 0.968
2 65 536 4 294 967 296 4 251 920 575 0.990

3 64 262 144 118 873 0.453
3 256 16 777 216 9 263 777 0.552
3 1024 1 073 741 824 680 200 873 0.633
3 8192 549 755 813 888 400 637 408 211 0.729

4 64 16 777 216 2 717 766 0.162
4 256 4 294 967 296 890 445 921 0.207

5 64 1 073 741 824 44 281 594 0.041

Table 1: Lower bounds on the dimension and the rate of codes arising
from the transversal designs TA(m, q) built on affine spaces — we recall that
dimCodep(TA(m, pe)) ≥ pem − rankpAG1(m, pe). Here, q is a power of 2, and these
codes can be defined over any extension of F2. Remind that in the PIR settings, R is related
to the server storage overhead and q = ` is essentially the communication complexity and
the number of servers.

For example, the two following PIR instances arise from our construction:
– choosing m = 2 and ` = 4096, there exists a PIR protocol on a ' 2.0 MB database with

only 6 kB of communication and 3.2% storage overhead;
– for a ' 46 GB file (m = 3, ` = 8192), we obtain a PIR protocol with 27.1% storage
overhead and 39kB of communication.

4.3.2 From projective geometries. Projective geometries are closely related to affine
geometries, but contrary to them, there is no generic hyperplane-partition of the projective
space (because every pair of hyperplanes intersects in a projective space of co-dimension 2).
To tackle this problem, the idea is to consider the hyperplanes Hi which intersect on a fixed
subspace of co-dimension 2 (call it Π∞). Then, all the sets Hi \Π∞ are disjoint, and their
union gives exactly Pm(Fq) \ Π∞. Besides, any projective line disjoint from Π∞ is either
contained in one of the Hi, or is secant to all of them with multiplicity one. Hence we can
define the following transversal design TP (m, q):
– the point set X = Pm(Fq) \Π∞;
– the group set G = {hyperplanes H ⊂ Pm(Fq), Π∞ ⊂ H};
– the block set B = {projectives lines L ⊂ Pm(Fq), L ∩Π∞ = ∅ and ∀H ∈ G, L 6⊂ H} .

This is a TD(q + 1, (q + 1)qm−1), and, as in the affine case, its p-rank can be bounded
by that of PG1(m, q), the design of point-line incidences in the projective space Pm(Fq).
Instead of presenting a table of parameters, we draw the results in Figure 4 and show that
the parameters obtained in the affine and projective stettings are essentially the same.

4.3.3 From orthogonal arrays.

Definition 7 (Orthogonal array). An orthogonal array A = OAλ(t, `, s) is an array with
λst rows of length ` with entries in a set S of size s, with the property that in any subarray
of A formed by t columns, every row vector from St appears exactly λ times. We call λ the
index of the orthogonal array, t its strength and ` its degree. If t (resp. λ) is omitted, it is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

210 220 230 240

` =
√
N

` = N1/3

` = N1/4

` = N1/5

Fig. 4: Rate of codes presented in subsections 4.3.1 (red line) and 4.3.2 (blue line).
The x-axis represents the length N in log scaling.

understood to be 2 (resp. 1). When both these parameters are omitted we write A = OA(`, s).
For convenience we also restrict the definition to orthogonal arrays with no repeated column
and no repeated row.

Construction of transversal designs from orthogonal arrays.We can build a TD(`, n)
from an OA(`, n) with the following construction, given as a remark in [8, II.2]. Let A be an
OA(`, n) with symbols in S, |S| = n, and denote by Rows(A) the n2 rows of A. We define a
point set X = S × [1, `], and a block set B as follows:

B = {{(ci, i), i ∈ [1, `]}, c ∈ Rows(A)} .

Finally, let G = {S × {i}, i ∈ [1, `]}. Then (X,B,G) is a transversal design TD(`, n).

Remark 2. It is well-known that orthogonal arrays are closely related to codes (see again [8]).
Listed in rows, all the codewords of a (possibly non-) linear code C give rise to an orthogonal
array with strength t = d′ − 1, where d′ is the dual distance of C.

Example 4. Let x = {x1, . . . , x`} be a subset of Fq and denote by RS(x, 2) the Reed-Solomon
code of length ` and dimension 2 over Fq with evaluation points x:

RS(x, 2) = {(f(x1), . . . , f(x`)), f ∈ Fq[X], deg f < 2} .

Then, all the codewords of RS(x, 2) form an orthogonal array A = OA(`, q). Now, use the
previous construction to exhibit a transversal design TD(`, q). The point set isX = Fq×[1, `],
and the blocks are “labeled Reed-Solomon codewords”, that is, sets of the form {(ci, i), i ∈
[1, `]} with c ∈ RS(x, 2). The ` groups correspond to the ` coordinates of the code: Fq ×{i},
1 ≤ i ≤ `.

As in previous constructions, for PIR application we can build a code based on a transversal
design – itself constructed with an orthogonal array which in turn comes from a code C0. We
call C0-coded-queries code such a stacked construction, which is summarized in Figure 5.
Orthogonal arrays from linear MDS codes of dimension 2. We recall that a [n, k, d]
linear code is said maximum distance separable (MDS) if it reaches the Singleton bound
n+1 = k+ d. In this paragraph we analyse the coded-queries codes given by MDS codes of
dimension 2. In order to simplify our study, we first prove some results.

Lemma 1. All [`, 2, `− 1] MDS codes over Fq with 2 ≤ ` ≤ q are generalized Reed-Solomon
codes (GRS codes).

Base code C0 oo
equivalence (Rem. 2) // Orthogonal array

“classic”
transformation [8, II.2]
tt

Transversal design
incidence
matrix

// C0-coded-queries code
database
encoding

// Distributed PIR scheme

Fig. 5: A distributed PIR scheme using the coded-queries code construction.

Proof. First GRS codes are MDS. Now let C be an [`, 2, ` − 1]q code with 2 ≤ ` ≤ q. The
weight distribution of an MDS code ensures there exists a codeword c ∈ C with Hamming
weight `. Let u ∈ C such that {c, u} generates C. We denote by c ∗ u the coordinate-
wise product (c1u1, . . . , c`u`) and 1 the all-one vector of length `. Then c = 1 ∗ c and
u = c ∗ (c−1 ∗ u), where c−1 is the coordinate-wise inverse of c through ∗. Hence, the code C
can be written c ∗ C′ where C′ has G′ =

(
1

c−1∗u
)
as generator matrix. It means that C is the

GRS code with evaluation points x = c−1 ∗ u, multipliers y = c and dimension 2. ut

A map φ : X → X ′ is an isomorphism between transversal designs (X,B,G) and (X ′,B′,G′)
if it preverses their structure, that is, if φ is invertible on the points, on the blocks (φ(B) = B′)
and on the groups (φ(G) = G′), and if φ preserves the incidence relations between them.

Lemma 2. Let C, C′ be two codes such that C′ = y ∗ C for some y ∈ (F×q)`. Denote by
OAC and OAC′ their associated orthogonal arrays and by TDC , TDC′ the transversal designs
defined through them. Then these two transversal designs are isomorphic.

Proof. Write TDC = (X,B,G) and TDC′ = (X ′,B′,G′). By definition X = X ′ = Fq × [1, n]
and G = G′ = {Fq × {i}, 1 ≤ i ≤ `}. Now focus on the block sets. We see that B =
{{(ci, i), 1 ≤ i ≤ `}, c ∈ C} and B′ = {{(yici, i), 1 ≤ i ≤ `}, c ∈ C}. Let:

φy : Fq × [1, `]→ Fq × [1, `]
(x, i) 7→ (yix, i)

The vector y is ∗-invertible so the map φy is one-to-one on the point set X. Now remark that
φy maps G to itself, and that φy(B) is exactly B′. Hence φy(TDC) = TDy∗C = TDC′ . ut

Proposition 1. Let 2 ≤ ` ≤ q and C be an [`, 2, ` − 1]q linear (MDS) code. The C-coded-
queries code over Fp is permutation-equivalent to a RS(x, 2)-coded-queries code, with x ∈ F`q,
xi 6= xj.

Proof. Lemma 1 shows that all [`, 2, ` − 1]q linear codes C can be written y ∗ RS(x, 2) for
some x ∈ F`q. Moreover, with the previous notations φy(TDRS(x,2)) = TDy∗RS(x,2), so we
have u ∈ Codep(TDy∗RS(x,2)) if and only if u ∈ Codep(φy(TDRS(x,2))). Now, let:

φ̃y : FXp → FXp
u = (ux)x∈X 7→ (uφy(x))x∈X

.

Clearly φ̃y(Codep(TDRS(x,2))) = Codep(φy(TDRS(x,2))) and φ̃y is a permutation of the
coordinates of the code. So Codep(TDC) is permutation-equivalent to Codep(TDRS(x,2))
which proves the result. ut

If we plan to search for MDS codes leading to high-rate coded-queries codes, then the
previous proposition allows us to focus only on Reed-Solomon codes RS(x, 2). It can even
be proved, when C0 = RS(Fq, 2), that the C0-coded-queries code is identical to the code
presented in subsection 4.3.1.
On the other hand, considering vectors x of length ` < q is equivalent to shortening
Codep(TDTA(2,q)) on the coordinates corresponding to some groups. Then, a further di-
rection of research would be to analyse, for a given length ` < q, which evaluation points
x ⊆ F`q lead to the largest coded-queries codes. For instance, an exhaustive search shows that,
when considering the 4368 different supports x ∈ F5

16, 48 of the codes Code16(TDRS(x,2))
have dimension 24 while the 4320 others have dimension 22.

5 PIR with better privacy

When servers are colluding, the PIR protocol based on a simple transversal design does
not give a sufficient privacy, because the knowledge of two points on a block gives some
information on it. To solve this issue, we propose to use orthogonal arrays with higher
strength t.

5.1 Generic construction and analysis

In the previous section, classical (t = 2) orthogonal arrays were used to build transversal
design. Considering higher values of t, we naturally generalize the latter as follows:

Definition 8 (t-transversal designs). Let t ≥ 1. A t-transversal design is a block design
D = (X,B) equipped with a group set G = {Gi}1≤i≤` partitionning X such that:
– |X| = n`;
– any group has size n and any block has size `;
– for any T ⊆ [1, `] with |T | = t and for any (x1, . . . , xt) ∈ GT1

× . . . × GTt
, there exist

exacly λ blocks B ∈ B such that {x1, . . . , xt} ⊂ B.
A t-transversal design with parameters n, `, t, λ is denoted t-TDλ(`, n), or t-TD(`, n) when
λ = 1.

Given a t-transversal design, we can build a (t−1)-private PIR protocol with exactly the same
steps as in section 4: build the code C associated to the design and follow the algorithm given
in Figure 2. As a t-transversal design is also a 2-transversal design for t ≥ 2, the analysis
remains identical for every feature, except for the security where it is very similar.
Security ((t−1)-privacy). Let T be a collusion of servers of size |T | ≤ t−1. For varying i,
the distributions Q(i)|T are the same because there are exactly λnt−1−|T | ≥ 1 blocks which
contain both i and the queries known by the servers in T .
To sum up, the following theorem holds:

Theorem 2. Let D be a database with k entries over a field Fq, and T = t-TD(`, n) be a
t-transversal design, whose incidence matrix has rank `n− k over Fq. Then, there exists an
`-server (t− 1)-private PIR protocol with:
– only 1 symbol to read for each server,
– `− 1 field operations for the user,
– ` log(nq) bits of communication,
– a storage overhead of (`n− k) log q bits on the servers.

5.2 Instances and results

t-transversal designs from orthogonal arrays of strength t. Let A be an orthogonal
array OAλ(t, `, s) on a symbol set S. We define the following design:
– points X = S × [1, `];
– groups G = {S × {i}, 1 ≤ i ≤ `};
– blocks B = {{(ai,j , i), 1 ≤ i ≤ `}, 1 ≤ j ≤ λst}.

Proposition 2. This design is a t-TDλ(`, s).

Proof. It is clear that G is a partition ofX and that the blocks and groups have the right size.
Now focus on the incidence property. Let T ⊂ [1, `] with |T | = t, and let (x1, . . . , xt) ∈ GT1×
. . .×GTt . We need to prove that there are exactly λ blocks B ∈ B such that {x1, . . . , xt} ∈ B.
Consider the map from blocks in B to rows of A given by:

ψ : B → Rows(A)
Bj = {(ai,j , i), 1 ≤ i ≤ `} 7→ (a1,j , . . . , a`,j)

As we assumed that orthogonal arrays have no repeated rows, the map ψ is one-to-one.
Denote by x′ = (x′1, , . . . , x

′
t) ∈ St the vector formed by the first coordinates of (x1, , . . . , xt) ∈

Xt. From the definition of an orthogonal array of strength t and index λ, we know that x′
appears exactly λ times in the submatrix of A defined by the columns indexed by T . These
λ appearances have λ preimages in B which proves the result. ut

MDS codes of dimension t have dual distance t+1, so they correspond to orthogonal arrays
of strength t through which we can build a t-transversal design. In Figure 6 we present how
the rate of such C0-coded-queries codes varies according to the value of t.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	6 	8 	10 	12 	14 	16 	18 	20

t=1

t=2

t=4

t=log(q)

t=q1/2

t=q/8

t=q/2

t=q-1

Fig. 6: Rate of C0-coded-queries codes used for t-private PIR, with various parameters
of C0. The code C0 is a full-length Reed-Solomon code of dimension t+1 (dual distance
t + 2) over Fq. The PIR protocol then needs q servers. The x-axis represents log2N
where N = q2 is the code length.

6 Conclusion

We showed that codes from transversal designs give rise to the construction of distributed
PIR protocols with low burden on the server side. We point out that our scheme is compu-
tationnally optimal for the servers, in a sense that they just have to read one symbol of the
word they hold. Moreover, the recovering step is also easy for the user which just needs to
compute a linear combination of the symbols it receives.
The genericity of our construction naturally leads to the question of finding transversal de-
signs with the most practical PIR parameters. Indeed, while affine and projective geometries
give excellent PIR parameters for the servers (taken individually), their moderate commu-
nication and relatively huge number of servers leaves room for improvements and future
research.

Acknowledgement

This work is partially funded by French ANR-15-CE39-0013-01 “Manta”. The author would
like to thank Daniel Augot and Françoise Levy-dit-Vehel for their very helpful comments
and corrections on the paper.

References

1. Edward F. Assmus and Jennifer D. Key. Designs and Their Codes. Cambridge University Press,
1992.

2. Daniel Augot, Françoise Levy-dit-Vehel, and Abdullatif Shikfa. A storage-efficient and robust
private information retrieval scheme allowing few servers. In Dimitris Gritzalis, Aggelos Kiayias,
and Ioannis G. Askoxylakis, editors, Cryptology and Network Security - 13th International
Conference, CANS 2014, Heraklion, Crete, Greece, October 22-24, 2014. Proceedings, volume
8813 of Lecture Notes in Computer Science, pages 222–239. Springer, 2014.

3. Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Breaking the
o(n1/(2k−1)) barrier for information-theoretic private information retrieval. In 43rd Sympo-
sium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver,
BC, Canada, Proceedings, pages 261–270. IEEE Computer Society, 2002.

4. Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computation in private
information retrieval: PIR with preprocessing. J. Cryptology, 17(2):125–151, 2004.

5. Benny Chor and Niv Gilboa. Computationally private information retrieval. In Frank Thomson
Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 304–313. ACM, 1997.

6. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wiscon-
sin, 23-25 October 1995, pages 41–50. IEEE Computer Society, 1995.

7. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-
trieval. J. ACM, 45(6):965–981, 1998.

8. Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial Designs, Second Edition.
Chapman & Hall/CRC, 2006.

9. Zeev Dvir and Sivakanth Gopi. 2-server PIR with subpolynomial communication. J. ACM,
63(4):39:1–39:15, 2016.

10. Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

11. Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for distributed PIR with low storage
overhead. In IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong,
China, June 14-19, 2015, pages 2852–2856. IEEE, 2015.

12. Noboru Hamada. The rank of the incidence matrix of points and d-flats in finite geometries.
Journal of Science of the Hiroshima University, Series A-I (Mathematics), 32(2):381–396, 1968.

13. Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR,
USA, pages 80–86. ACM, 2000.

14. Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. J. ACM, 61(5):28:1–28:20, 2014.

15. Douglas R. Stinson. Combinatorial Designs - Constructions and Analysis. Springer, 2004.
16. Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM,

55(1):1:1–1:16, 2008.
17. Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer

Science, 6(3):139–255, 2012.

	Constructions for efficient Private Information Retrieval protocols

