
HAL Id: hal-01633674
https://inria.hal.science/hal-01633674

Submitted on 13 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mining Hierarchical Temporal Roles with Multiple
Metrics

Scott D. Stoller, Thang Bui

To cite this version:
Scott D. Stoller, Thang Bui. Mining Hierarchical Temporal Roles with Multiple Metrics. 30th IFIP
Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2016, Trento, Italy.
pp.79-95, �10.1007/978-3-319-41483-6_6�. �hal-01633674�

https://inria.hal.science/hal-01633674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Mining Hierarchical Temporal Roles with
Multiple Metrics?

Scott D. Stoller and Thang Bui

Department of Computer Science, Stony Brook University, USA

Abstract. Temporal role-based access control (TRBAC) extends role-
based access control to limit the times at which roles are enabled. This
paper presents a new algorithm for mining high-quality TRBAC poli-
cies from timed ACLs (i.e., ACLs with time limits in the entries) and
optionally user attribute information. Such algorithms have potential to
significantly reduce the cost of migration from timed ACLs to TRBAC.
The algorithm is parameterized by the policy quality metric. We consider
multiple quality metrics, including number of roles, weighted structural
complexity (a generalization of policy size), and (when user attribute
information is available) interpretability, i.e., how well role membership
can be characterized in terms of user attributes. Ours is the first TRBAC
policy mining algorithm that produces hierarchical policies, and the first
that optimizes weighted structural complexity or interpretability. In ex-
periments with datasets based on real-world ACL policies, our algorithm
is more effective than previous algorithms at their goal of minimizing the
number of roles.

1 Introduction

Role-based access control (RBAC) offers significant advantages over lower-level
access control policy representations, such as access control lists (ACLs). RBAC
policy mining algorithms have potential to significantly reduce the cost of mi-
gration to RBAC, by partially automating the development of an RBAC policy
from an access control list (ACL) policy and possibly other information, such
as user attributes [4]. The most widely studied versions of the RBAC policy
mining problem involve finding a minimum-size RBAC policy consistent with
(i.e., equivalent to) given ACLs. When user attribute information is available, it
is also important to maximize interpretability (or “meaning”) of roles—in other
words, to find roles whose membership can be characterized well in terms of user
attributes. Interpretability is critical in practice. Researchers at HP Labs report
“the biggest barrier we have encountered to getting the results of role mining to
be used in practice” is that “customers are unwilling to deploy roles that they

? This material is based on work supported in part by NSF under Grants CNS-1421893,
CCF-1248184, and CCF-1414078, ONR under Grant N00014-15-1-2208, and AFOSR
under Grant FA9550-14-1-0261. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of these agencies.

can’t understand” [2]. Algorithms for mining meaningful roles are described in,
e.g., [8,11].

Temporal RBAC (TRBAC) extends RBAC to limit the times at which roles
are enabled [1]. TRBAC supports an expressive notation, called periodic expres-
sions, for expressing sets of time intervals during which a role is enabled. A role’s
permissions are available to members only while the role is enabled. This allows
tighter enforcement of the principle of least privilege.

This paper presents an algorithm for mining hierarchical TRBAC policies. It
is parameterized by a policy quality metric. We consider multiple policy quality
metrics: number of roles, weighted structural complexity (WSC) [8], a generaliza-
tion of syntactic policy size, interpretability (INT) [8,11], described briefly above,
and a compound quality metric, denoted WSC-INT, that combines WSC and
INT. Our algorithm is the first TRBAC policy mining algorithm that produces
hierarchical policies, and the first that optimizes WSC or interpretability.

Our algorithm is based on Xu and Stoller’s elimination algorithm for RBAC
mining [11] and some aspects of Mitra et al.’s pioneering algorithm for mining flat
TRBAC policies (i.e., policies without role hierarchy) with minimal number of
roles [6,7], which inspired our work. Our algorithm has four phases: (1) produce a
set of candidate roles, (2) merge candidate roles where possible, (3) organize the
candidate roles into a role hierarchy, and (4) remove low-quality candidate roles.
The generated policy is not guaranteed to have optimal quality. Fundamentally,
this is because the problem of finding an optimal policy is NP-complete (this
follows from NP-completeness of the untimed version of the problem ([8]).

To evaluate the algorithm, we created datasets based on real-world ACL
policies from HP, described in [2] and used in several evaluations of role mining
algorithms, e.g., [8,11,7]. We could simply extend the ACLs with temporal in-
formation to create a temporal user-permission assignment (TUPA), and then
mine a TRBAC policy from the TUPA and attribute data. However, it would
be hard to evaluate the algorithm’s effectiveness, because there is nothing with
which to compare the quality of the mined policies. Therefore, we adopt a similar
methodology as Mitra et al. [7]. For each ACL policy, we mine an RBAC policy
from the ACLs and synthetic attribute data using Xu and Stoller’s elimination
algorithm [11], pseudorandomly extend the RBAC policy with temporal infor-
mation numerous times to obtain TRBAC policies, expand the TRBAC policies
into equivalent TUPAs, mine a TRBAC policy from each TUPA and fixed at-
tribute data, and compare the average quality of the resulting TRBAC policies
with the quality of the original TRBAC policy, with the goal that the former is
at least as good as the latter.

We created two datasets, using different temporal information when extend-
ing RBAC policies to obtain TRBAC policies. For the first dataset, we use simple
periodic expressions, each of which is a range of hours that implicitly repeats
every day. For the second dataset, we use more complex periodic expressions
based on a hospital staffing schedule.

In experiments using number of roles as the policy quality metric, Mitra et
al.’s algorithm, designed to minimize number of roles, produces 34% more roles

than our algorithm, on average. In experiments using WSC-INT as the policy
quality metric, our algorithm succeeds in finding the implicit structure in the
TUPA, producing policies with comparable (for the first dataset) or moderately
higher (for the second dataset) WSC and better interpretability, on average,
compared with the original TRBAC policy.

We explored the effect of different inheritance types on the quality of the
mined policy and found that weakly restricted inheritance leads to policies with
significantly better WSC and slightly better interpretability, on average. We
experimentally evaluated the benefits of some design decisions and quantified
the cost-quality trade-off provided by a parameter to our algorithm that limits
the number of candidate roles.

2 Background on TRBAC

An RBAC policy is a tuple 〈User ,Perm,Role,UA,PA,RH 〉, where User is a set
of users, Perm is a set of permissions, Role is a set of roles, UA ⊆ U×Role is the
user-role assignment, PA ⊆ Role ×Perm is the permission-role assignment, and
RH ⊆ Role×Role is the role inheritance relation (also called the role hierarchy).
Specifically, 〈r, r′〉 ∈ RH means that r is senior to r′, hence all permissions of r′

are also permissions of r, and all members of r are also members of r′. A role r′

is junior to role r if rRH +r′, where RH + is the transitive closure of RH .

A periodic expression (PE) is a symbolic representation for an infinite set of
time intervals. The formal definition of periodic expressions in [1,7] is standard
and somewhat complicated; instead of repeating it, we give a brief intuitive
version. A calendar is an infinite set of consecutive time intervals of the same
duration; informally, it corresponds to a time unit, e.g., a day or an hour. A
sequence of calendars C1, . . . , Cn, Cd defines the sequence of time units used in
a periodic expression, from larger to smaller. A periodic expression has the form∑n
k=1Ok · Ck B d · Cd where O1 = all , Ok is a set of natural numbers or the

special value all for 2 ≤ k ≤ n, and d is a natural number. The first part of a PE
(before B) identifies the set of starting points of the intervals represented by the
PE. The second part of the PE (after B) specifies the duration of each interval.

For example, consider the sequence of calendars Quadweeks, Weeks, Days,
hours, where a Quadweek is four consecutive weeks—similar to a month, but
with a uniform duration. The periodic expression [all · Quadweeks + {1,3} ·
Weeks + {1,2,3,4,5} · Days + {10} · Hours B 8 · Hours] represents the set of
time intervals starting at 9am (the time intervals in each calendar are indexed
starting with 1, so for Hours, 1 denotes the hour starting at midnight, 2 denotes
the hour starting at 1am, etc.) and ending at 5pm (since duration is 8 hours) of
every weekday (assuming days of the week are indexed with 1=Monday) during
the first and third weeks of every quadweek.

A bounded periodic expression (BPE) is a tuple 〈[begin, end], pe〉, where begin
and end are date-times, and pe is a periodic expression. A BPE represents the
set of time intervals represented by pe except limited to the interval [begin, end].

A role enabling base (REB) is a set of BPEs, representing the union of the
sets of time intervals represented by the BPEs.

A temporal RBAC (TRBAC) policy is a tuple 〈User ,Perm,Role,UA,PA,RH ,
IT ,REBA〉, where the first six components are the same as for an RBAC policy,
IT is the inheritance type (described below), and REBA is the role enabling
base assignment (REBA), which is a mapping from roles in Role to REBs [1]. A
role r is enabled during the set of time intervals represented by REBA(r).

We consider two types of inheritance [5]. In both cases, a senior role r inherits
permissions from each of its junior roles r′. With weakly restricted inheritance,
denoted by IT = WR, a permission inherited from r′ is available to members
of r during the time intervals specified by REBA(r). With strongly restricted
inheritance, denoted by IT = SR, a permission inherited from r′ is available to
members of r during the time intervals specified by REBA(r′).

A temporal user-permission assignment (TUPA) is a set of triples of the form
〈u, p, reb〉, where u is a user, p is a permission, and reb is a REB (even though
reb is not associated with a role, we call it a REB, because it has the same type
as a REB). We refer to such a triple as an entitlement triple. Such a triple means
that u has permission p during the set of time intervals represented by reb. A
TUPA should contain at most one entitlement triple for each user-permission
pair. A TUPA can therefore be regarded as a mapping from user-permission
pairs to REBs.

The meaning of a role r in a TRBAC policy π, denoted [[r]]π, is a TUPA that
expresses the entitlements granted by r, taking inheritance into account. The
meaning [[π]] of a TRBAC policy π is a TUPA that expresses the entitlements
granted by π.

3 The Relaxed TRBAC Policy Mining Problem

A policy quality metric is a function from TRBAC policies to a totally-ordered
set, such as the natural numbers. The ordering is chosen so that small values
indicate high quality.

Number of roles is a simplistic but traditional policy quality metric.
Weighted Structural Complexity (WSC) is a generalization of policy size [8].

We adapt WSC to TRBAC. For a TRBAC policy π of the above form, the
WSC of π is defined by WSC(π) = w1|Role| + w2|UA| + w3|PA| + w4|RH | +
w5WSC(REBA), where the wi are user-specified weights, |s| is the size (cardi-
nality) of set s, and WSC(REBA) is the sum of the sizes of the REBs in REBA.
The size of an REB is the sum of the sizes of the BPEs in it. The size of a BPE
is the size of the PE in it (the beginning and ending date-times are always the
same size, so we ignore them). The size of a PE is the sum of the sizes of the
sets in it plus 1 for the duration, with the special value all counted as a set of
size 1.

Interpretability is a policy quality metric that measures how well role mem-
bership can be characterized in terms of user attributes. User-attribute data is a
tuple 〈A, f〉, where A is a set of attributes, and f is a function such that f(u, a)

is the value of attribute a for user u. An attribute expression e is a function from
the set A of attributes to sets of values. A user u satisfies an attribute expression
e iff (∀a ∈ A. f(u, a) ∈ e(a)). For example, if A = {dept , level}, the function e
with e(dept) = {CS} and e(level) = {2, 3} is an attribute expression, which can
be written with syntactic sugar as dept ∈ {CS} ∧ level ∈ {2, 3}. We refer to
the set e(a) as the conjunct for attribute a. Let [[e]] denote the set of users that
satisfy e. For an attribute expression e and a set U of users, the mismatch of
e and U is defined by mismatch(e, U) = | [[e]] 	 U |, where the symmetric differ-
ence of sets s1 and s2 is s1 	 s2 = (s1 \ s2) ∪ (s2 \ s1). The attribute mismatch
of a role r, denoted AM(r), is mine∈E mismatch(e, asgndU(r)), where E is the
set of all attribute expressions, and asgndU(r) = {u | 〈u, r〉 ∈ UA}. We define
policy interpretability INT as the sum over roles of attribute mismatch, i.e.,
INT(π) =

∑
r∈Role AM(r).

Compound policy quality metrics take multiple aspects of policy quality into
account. We combine metrics by Cartesian product, with lexicographic ordering
on the tuples. Let WSC-INT(π) = 〈WSC(π), INT(π)〉.

A TRBAC policy π is consistent with a TUPA T if they grant the same
permissions to the same users for the same sets of time intervals. When the
given TUPA contains noise, it is desirable to weaken this requirement. A TRBAC
policy π is ε-consistent with a TUPA T , where ε is a natural number, if they
grant the same permissions to the same users for the same sets of time intervals,
except that, for at most ε entitlement triples 〈u, p, reb〉 in T , the policy π either
does not grant p to u or grants p to u at fewer times than reb [7]. Note that
consistency is a special case of ε-consistency, corresponding to ε = 0.

The relaxed TRBAC policy mining problem is: given a TUPA T and a policy
quality metric Qpol , find a TRBAC policy π that is ε-consistent with T and
has the best quality, according to Qpol , among policies consistent with T . Note
that auxiliary information used by the policy quality metric, e.g., user-attribute
data, is implicitly considered to be part of Qpol in this definition. Note that the
temporal part of T strongly influences π, even using WSC with w5 = 0, because
it determines how entitlements can be grouped in roles.

Suggested role assignments for new users. The system can compute and store a
best-fit attribute expression er for each role r, i.e., an attribute expression that
minimizes the attribute mismatch for r. When a new user u is added, the system
can suggest that u be made a member of the roles for which u satisfies the best-
fit attribute expression, and it presents these suggested roles in descending order
of the attribute mismatch.

4 TRBAC Policy Mining Algorithm

Inputs to the algorithm are the TUPA T , the type of inheritance IT to use in the
generated policy, the consistency threshold ε, and the policy quality metric Qpol .
User attribute data, if available, is used only indirectly, via the policy quality
metric, if it considers interpretability.

Rinit = new Set()
for u in U
for 〈P, reb〉 in permREB(u, T)

∪ permREB+(u, T)
addRole(Rinit, {u}, P, reb)
for bpe in reb

addRole(Rinit, {u}, P, {bpe})

permREB(u, T) =
{〈P, reb〉 | (∃p.〈u, p, reb〉 ∈ T)

∧ P = {p | 〈u, p, reb〉 ∈ T}}

permREB+(u, T) =
{〈P, reb〉 | (∃p.〈u, p, reb〉 ∈ T)

∧ P = {p | 〈u, p, reb′〉 ∈ T
∧reb v reb′}}

function addRole(R,U, P, reb)
// if there is an existing role with
// permissions P and REB reb,
// add users in U to it, otherwise
// create a new role with users U ,
// permissions P , and REB reb.
if U , P , or reb is empty

return
if ∃ r in R s.t. asgndP0(r) = P

∧ REBA(r) = reb
asgndU0(r).addAll(U)

else
r = new Role()
asgndP0(r) = P
asgndU0(r) = U
REBA(r) = reb
R.add(r)

Fig. 1. Phase 1.1: Generate initial roles. “s.t.” abbreviates “such that”.

Phase 1: Generate roles. Phase 1 generates initial roles and then creates addi-
tional candidate roles by intersecting sets of initial roles.

Phase 1.1: Generate initial roles. Pseudocode for generating initial roles appears
in Figure 1. The set of permissions P that each user u has for exactly the same
REB reb are grouped to form the permissions of an initial role; this is the effect
of using permREB in Figure 1. If there are any permissions that u has for a REB
that semantically contains reb, then we also create another role that has those
permissions in addition to permissions in P ; this is the effect of using permREB+.
In addition, for each BPE bpe in reb, we create an initial role with permissions
P and with REB {bpe}. The algorithm uses a semantic containment relation v
on PEs, BPEs, and REBs: x1 v x2 iff the set of time instants represented by x1
is a subset of the set of time instants represented by x2.

Phase 1.2: Intersect roles. Phase 1.2 starts to construct a set Rcand of candi-
date roles, by adding to Rcand all of the initial roles in Rinit and all non-empty
intersections of all subsets of the initial roles. In other words, for each subset of
initial roles, if the intersection of their permission sets is a non-empty set P , and
the intersection of their REBs is a non-empty REB reb, then create a candidate
role with permissions P , REB reb, and the union of their user sets. REBs are
intersected semantically, not syntactically; for example, if reb1 represents 9am-
5pm on Mondays and Wednesdays, and reb2 represents 1pm-2pm on Mondays
and Fridays, then their intersection is a REB that represents 1pm-2pm on Mon-
days. This phase is similar to role intersection in CompleteMiner [10] and the
elimination algorithm [11].

This phase is expensive for large datasets. We use two techniques to reduce
the cost when necessary; they provide a trade-off between cost and policy quality.

(1) Compute intersections for all pairs (instead of all subsets) of initial roles,
as in FastMiner [10]. This reduces the worst-case complexity of this step and
the overall algorithm from exponential to quadratic. (2) Compute intersections
involving only the largest roles, specifically, roles whose relative size is in the top
RIC (mnemonic for “role intersection cutoff”), where 0 ≤ RIC ≤ 1. For example,
RIC = 0.3 means that intersections are computed among roles whose size is in
the top 30%. Role size is quantified as covEntit(r), defined below.

Phase 2: Merge roles. Phase 2 merges candidate roles to produce a revised set
of candidate roles. We use three types of merges. (1) If candidate roles r and
r′ have the same same set of users U and the same REB reb, then they are
replaced with a new role with users U , permissions asgndP0(r) ∪ asgndP0(r′),
and REB reb. (2) If candidate roles r and r′ have the same users U and same
permissions P , then they are replaced with a new role with users U , permissions
P , and REB reb(r) t reb(r′). The function t denotes semantic union of REBs;
in other words, reb1 t reb2 is a REB that represents the set of time instants
represented by reb1 or reb2. We distinguish two sub-cases. (2a) If reb1 and reb2

represent disjoint sets of time intervals, then reb1treb2 is simply reb1∪reb2. (2b)
If reb1 and reb2 represent sets of overlapping or consecutive time intervals, then
BPEs in them are merged, if possible, to simplify the result. For example, if reb1

represents 9am-noon on weekdays, and reb2 denotes noon-5pm on weekdays,
then reb1 t reb2 contains a single BPE denoting 9am-5pm on weekdays.

Phase 3: Construct role hierarchy. Phase 3 organizes the candidate roles into
a role hierarchy with full inheritance. A TRBAC policy has full inheritance if
every two roles that can be related by the inheritance relation are related by
it, i.e., ∀r, r′ ∈ R. [[r]]π ⊇ [[r′]]π ⇒ 〈r, r′〉 ∈ RH ∗. Guo et al. call this property
completeness in the context of RBAC [3].

Phase 3.1: Compute inheritance. Phase 3.1 determines inheritance relationships
between candidate roles, based on the requirement of full inheritance. Function
isAncestorFullInher(r′, r) tests whether r′ is an ancestor of r with full inher-
itance; if IT = WR, the function avoids inheritance relationships that would
lead to cycles in the role hierarchy.

isAncestorFullInher(r′, r) =
asgndP0(r′) ⊆ asgndP0(r) ∧ asgndU0(r) ⊆ asgndU0(r′)
∧ (IT = SR⇒ REBA(r′) v REBA(r))
∧ (IT = WR⇒ ¬(asgndP0(r) ⊂ asgndP0(r′) ∧ asgndU0(r′) ⊂ asgndU0(r)))

This function is called for every pair of candidate roles. If isAncestorFullInher(r′, r)
is true, and there is no intervening role r̄ such that isAncestorFullInher(r′, r̄)
isAncestorFullInher(r̄, r), then r′ is a parent of r. This phase produces maps
parents and children, such that parents(r) and children(r) are the sets of par-
ents and children of r, respectively.

Phase 3.2: Compute assigned users and permissions. Phase 3.2 computes the
directly assigned users asgndU(r) and directly assigned permissions asgndP(r) of
each role r, by removing inherited users and permissions from the role’s originally
assigned users asgndU0(r) and originally assigned permissions asgndP0(r).

Phase 4: Remove roles. Phase 4 removes roles from the candidate role hierarchy
if the removal preserves consistency with the given ACL policy and improves
policy quality. When a role r is removed, the role hierarchy is adjusted to preserve
inheritance relations between parents and children of r, and the sets of directly
assigned users and permissions of other roles are expanded to contain users and
permissions that they previously inherited from r.

The order in which roles are considered for removal affects the final result.
We control this ordering with a role quality metric Qrole , which maps roles to
an ordered set, with the interpretation that large values denote high quality
(note: this is opposite to the interpretation of the ordering for policy quality
metrics). Low-quality roles are considered for removal first. We use a role quality
metric that is a temporal variant of the role quality metric in [11] that gave the
best results in their experiments. Specifically, Qrole(r) = 〈redun(r), clsSz(r)〉,
where redun(r) and clsSz(r) are defined next, and the ordering on these tuples
is lexicographic order.

The redundancy of a role r measures how many other roles also cover the
entitlement triples covered by r. We say that a role r covers an entitlement
triple t if t ∈ [[r]]π. Removing a role with higher redundancy is less likely to
prevent subsequent removal of other roles, so we eliminate roles with higher
redundancy first. The redundancy of role r, denoted redun(r), is the negative
of the minimum, over entitlement triples 〈u, p, reb〉 covered by r, of the number
of removable roles that cover 〈u, p, reb〉 (we take the negative so that roles with
more redundancy have lower quality). A role is removable in policy π, denoted
removable(r) (the policy is an implicit argument), if the policy obtained by
removing r is ε-consistent with T .

The clustered size of a role r measures how many entitlements are covered
by r and how well they are clustered. A first attempt at formulating this metric
(ignoring clustering) might be as the fraction of entitlement triples in T that are
covered by r. As discussed in [11], it is better for the covered entitlement triples
to be “clustered” on (i.e., associated with) fewer users rather than being spread
across many users. The clustered size of r is defined to equal the fraction of the
entitlements of r’s members that are covered by r. In the temporal case, each
entitlement triple 〈u, p, reb〉 is weighted by the fraction of the time represented
reb that is covered by REBA(r).

covEntit(r) =
∑

u∈asgndU(r)
p∈asgndP(r)

dur(REBA(r))

dur(T (u, p))
clsSz(r) =

covEntit(r)

|entitlements(asgndU(r), T)|

where T (u, p) is the REB reb such that 〈u, p, reb〉 ∈ T , dur(reb) is the fraction
of one time unit in calendar C1 that is covered by reb, and entitlements(U, T) is

the set of entitlement triples in T for a user in U . For example, if the sequence of
calendars is C1 = Year, . . . , Cn = Hour, Cd = Hour, and reb is 9am-5pm every
day, then dur(reb) = 1/3, since reb covers 1/3 of the time in a year.

Our algorithm may remove a role even if the removal worsens policy quality
slightly. Specifically, we introduce a quality change tolerance δ, with δ ≥ 1,
and we remove a role if the quality Q′ of the RBAC policy resulting from the
removal is related to the quality Q of the current RBAC policy by Q′ < δQ
(recall that, for policy quality metrics, smaller values are better). Choosing δ > 1
partially compensates for the fact that a purely greedy approach to policy quality
improvement is not an optimal strategy.

Pseudocode for removing roles appears in Figure 2. It repeatedly tries to
remove all removable roles, until none of the attempted removals succeeds in
improving the policy quality. The policy π is an implicit argument to auxiliary
functions such as removeRole and addRole. Function addRole(r) adds role r to
the candidate role hierarchy: inheritance relations involving r are added, and
the assigned users and assigned permissions of r’s newly acquired ancestors and
descendants are adjusted by removing inherited users and permissions. Removing
a role r and then restoring r using addRole leaves the policy unchanged.

The following auxiliary functions are used in removeRole. isDescendant(r,r′)
holds if r is a descendant of r′, as determined by following the parent-child re-
lations in the children map. The set of authorized users of r, denoted authU(r),
is the set of users in asgndU(r) or asgndU(r′) for some r′ senior to r; this is the
same as in RBAC. The notion of authorized permissions must be defined differ-
ently in TRBAC than RBAC, because, with strongly-restricted inheritance, the
inherited permissions of a role r may be associated with REBs different than
REBA(r). With strongly-restricted inheritance, the set of authorized permis-
sions of r, denoted authP(r), is the set of permission-REB pairs 〈p, reb〉 such
that (1) each directly assigned permission of r is paired with REBA(r) and
(2) each permission p inherited by r is paired with the semantic union of the
REBs of the junior roles from which it is inherited. With weakly-restricted in-
heritance, authP(r) is the set of permission-REB pairs 〈p,REBA(r)〉 such that
p is in asgndP(r) or asgndP(r′) for some r′ junior to r; we use a set of pairs for
uniformity with the case of strongly-restricted inheritance.

5 Datasets

Our datasets are based on real-world ACL policies from HP, described in [2],
and the high-fit synthetic attribute data for these ACL policies described in
[11]; see those references for general information about the policies. As outlined
in Section 1, for each ACL policy, we mine an RBAC policy from the ACLs
and the attribute data using Xu and Stoller’s elimination algorithm [11], and
pseudorandomly extend the RBAC policy with temporal information several
times to obtain TRBAC policies. For each ACL policy except americas small,
we create 30 TRBAC policies. For americas small, which is larger, we create only
10 TRBAC policies, to reduce the running time of the experiments. We extend
the RBAC policies in two ways, using different temporal information.

π = policy from Phase 3
q = Qpol(π)
workL = list of removable roles in π
changed = true
while ¬empty(workL) ∧ changed

sort workL in ascending order by Qrole

changed = false
for r in workL

removeRole(r)
// if ε-consistency is violated,
// restore r.
if |T \ [[π]] | > ε

addRole(r)
workL.remove(r)

else
// if policy quality improved,
// keep the change.
if Qpol(π) < δq
changed = true
q = Qpol(π)
workL.remove(r)

else
// undo the change, i.e., restore r
addRole(r)

function removeRole(r)
for parent in parents(r)

// remove r from its parents
children(parent).remove(r)
for child in children(r)

// if child is not a descendant of parent
// after removing r, add an inheritance
// edge between child and parent.
if ¬ isDescendant(child,parent)
children(parent).add(child)
parents(child).add(parent)

for u in asgndU(r)
// if u is not authorized to parent after
// removing r, add u to assigned users
// of parent.

if u 6∈ authU(parent)
asgndU(parent).add(u)

for child in children(r)
parents(child).remove(r)
for p in asgndP(r)

// if p is not fully authorized to child
// after removing r, add p to assigned
// permissions of child.
if 〈r,REBA(child)〉¬ ∈ authP(child)

asgndP(child).add(p)
Rcand.remove(r)

Fig. 2. Phase 4: Remove roles.

Dataset with simple PEs. A simple PE is a range of hours (e.g., 9am-5pm)
that implicitly repeats every day. This dataset uses the same simple PEs as in
[7], namely, [6, 11], [7, 10], [8, 9], [8, 11], [9, 11], [10, 11], [10, 12], [11, 13], [14, 15],
[16, 17]. These PEs are designed to cover various relationships between intervals,
such as overlapping, consecutive, disjoint, and nested. We choose the number of
PEs in each REB pseudorandomly using a similar probability distribution as in
[7], namely, pr(1) = 0.78, pr(2) = 0.2, pr(3) = 0.02. We choose the specific PEs
in each REB pseudorandomly using a uniform distribution.

Dataset with complex PEs. For this dataset, we use periodic expressions based
on a hospital staffing schedule, based on discussions with the Director of Time-
keeping at Stony Brook University Hospital. The periodic expressions are not
taken directly from the hospital’s staffing schedule, but they reflect its general
nature. The schedule does not repeat every week, but rather every few weeks, be-
cause weekend duty rotates. Clinicians may work 3 days/week for 12 hours/day
starting at 7am or 7pm, or 5 days/week for 8.5 hours/day starting at 7am, 3pm,
or 11pm. We create two instances of each of these five types of work schedules,
by pseudorandomly choosing the appropriate number of days of the week in each

of the four weeks of a Quadweek. Each REB is based on exactly one of the re-
sulting 10 work schedules. Multiple PEs are needed to represent work schedules
that wrap around calendar units; for example, a 7pm-7am shift is represented
using two PEs, with time intervals 7pm-midnight and midnight-7am. The PEs
are based on the following sequence of calendars: C1=Quadweeks, C2=Days,
C3=Hours, Cd=Hours. The days in a Quadweek are numbered 1..28. Including
Week in the sequence of calendars is not helpful, because most workers’ schedules
do not repeat on a weekly basis.

6 Evaluation

The experimental methodology is outlined in Section 1. All experiments use
quality change tolerance δ = 1.001 (this value gave the best results for the
experiments in [11]), ε = 0, All and wi = 1 for all weights in WSC. The policy
quality metric is WSC-INT, and the inheritance type is weakly restricted, except
where specified otherwise.

Our Java code, datasets, and an extended version of the paper are available
at www.cs.stonybrook.edu/ stoller/policy-mining/. Periodic expressions are an
abstract data type with two implementations: (1) simple PEs, as defined in Sec-
tion 5, and implemented as pairs of integers, and (2) (general) PEs, as defined in
Section 2, and implemented as arrays of arrays of integers. These implementa-
tions are used in the experiments in Sections 6.1 and 6.2, respectively. Running
times include the cost of an end-to-end correctness check that checks equivalence
of the input TUPA and the meaning of the mined TRBAC policy; the average
cost is about 7% of the running time. The experiments were run on a Lenovo
IdeaCentre K430 with a 3.4 GHz Intel Core i7-3770 CPU.

6.1 Experiments using dataset with simple PEs

In experiments on this dataset, role intersection is configured to use FastMiner
for emea and americas small, CompleteMiner for the other policies, and RIC = 1
for all policies.

Comparison of original and mined policies. Figure 3 shows detailed results from
experiments on this dataset. In the column headings, µ is mean, σ is standard de-
viation, CI is half-width of 95% confidence interval using Student’s t-distribution,
and time is the average running time in minutes:seconds. There is no standard
deviation column for INT, because interpretability is unaffected by the REBA
and is the same for all TRBAC policies generated by extending the same RBAC
policy. Ignore the last 2 columns for now. The averages and standard deviations
are computed over the TRBAC policies created by extending each RBAC policy.
The WSC of the mined TRBAC policy ranges from about 1% lower (for apj)
to about 11% higher (for domino) than the WSC of the original TRBAC pol-
icy. The interpretability of the mined policy ranges from about 35% lower (for
firewall-2) to about 1% higher (for apj) than the interpretability of the original

http://www.cs.stonybrook.edu/~stoller/policy-mining/

Original Policy Mined Policy Avg |R|
Dataset WSC INT WSC INT Time OurAlg Mitra+

µ σ µ σ CI µ σ CI µ

americas small 6975 7.5 189 7100 78 29 140 7 2.5 58:56 297

apj 4879 10.0 385 4826 22 8.1 388 3.5 1.2 1:04 468 527

domino 449 2.5 23 499 70 26 20 1.5 0.57 0:02 30 40

emea 3929 4.4 32 4038 68 25 32 0.2 0.07 0:49 100 115

firewall1 1533 4.1 48 1653 58 22 44 3.7 1.4 1:45 97 130

firewall2 960 1.4 7 966 9.2 3.4 5 1.0 0.38 0:02 12 17

healthcare 168 1.4 14 168 3.9 1.5 14 0.42 0.16 0:01 15 25

Fig. 3. Results of experiments with simple PEs.

TRBAC policy. On average over the seven policies, the WSC is 3% higher, and
the interpretability is 12% lower. Thus, our algorithm succeeds in finding the
implicit structure in the TUPA and producing a policy with comparable WSC
and better interpretability, on average, than the original TRBAC policy.

Comparison of inheritance types. We ran our algorithm again on the same
dataset, specifying strongly restricted inheritance for the mined policies. This
caused a significant increase in the WSC of the mined policies. The percentage
increase averages 67% and ranges from 15% for apj to 140% for firewall-1. Intu-
itively, the reason for the increase is that, with strongly restricted inheritance,
the temporal information associated with directly assigned and inherited per-
missions may be different, and this may prevent removing inherited permissions
from a role’s directly assigned permissions. Inheritance type has less effect on
the average INT, increasing (worsening) it by about 9% on average, excluding
the outlier firewall-2, for which the average INT decreases from 4 to 1.

Evaluation of choice of initial roles. We evaluated two ways of reducing the cost
of the algorithm by creating fewer initial roles. (1) We modified Phase 1.1 to
create fewer initial roles by removing the use of permREB+ in Figure 1. Note that
Mitra et al.’s algorithm does not use an analogue of permREB+. This change
increased the average WSC by 36% on average over the policies used in this
experiment (all except emea and americas small, which were omitted because
of their longer running time), ranging from 13% for apj to 69% for healthcare.
It increased (worsened) the average INT by 37% on average over those policies,
ranging from 9% for apj to 67% for domino. (2) We modified Phase 1.1 to create
fewer initial roles by removing the first call to addRole. Note that Mitra et al.’s
algorithm does not include an analogue of this call. This change increased the
average WSC by 8% on average over the policies used in this experiment (all
except emea and americas small), ranging from 7% for domino and firewall-2
to 9% for apj. It increased (worsened) the average INT by 7% on average over
those policies, ranging from 0% for firewall-2 to 11% for domino.

Comparison with Mitra et al.’s algorithm. We ran Mitra et al.’s algorithm [7],
and our algorithm with number of roles as policy quality metric (because Mitra

et al. use this metric), on our dataset with simple PEs. Their code supports only
simple PEs, so we used only the simple PE dataset in the comparison. Their
code, implemented in C, gave an error (“malloc: ...: pointer being freed was
not allocated”) on some TRBAC policies generated for emea and firewall-1; we
ignored those results. Their code did not run correctly on americas small, so we
omitted it from this comparison.

The last two columns of Figure 3 show the numbers of roles generated by the
two algorithms. Standard deviations are omitted to save space but are small: on
average, 3% of the mean, for both algorithms. Mitra et al.’s algorithm produces
34% more roles than ours, on average. Our algorithm produces hierarchical poli-
cies, and their algorithm produces flat policies, but this does not affect the num-
ber of roles. There are many other differences between the algorithms, discussed
in Section 7, which contribute to the difference in results. The above paragraph
on evaluation of choice of initial roles describes two experiments that explore
differences between our algorithm and Mitra et al.’s and quantify the benefit of
those differences. The effects of some other differences between our algorithms,
such as the use of elimination vs. selection in Phase 4, were investigated in the
untimed case in [11] and likely have a similar impact here.

6.2 Experiments using dataset with complex PEs

In experiments on this dataset, role intersection is configured to use CompleteM-
iner for firewall2 and FastMiner for the other policies.

Comparison of original and mined policies. Figure 4 shows detailed results from
experiments on this dataset. The original TRBAC policies here have higher
WSC than the ones in Section 6.1, because complex PEs have higher WSC than
simple PEs. For apj, emea, and firewall1, we created 5 TRBAC policies (instead
of 30) from each, to reduce the running time of the experiments. The WSC of
the mined TRBAC policy ranges from about 2% higher (for firewall2) to about
57% higher (for firewall1) than the WSC of the original TRBAC policy. The
interpretability of the mined TRBAC policy ranges from about 34% lower (for
healthcare) to about 2% higher (for apj) than the interpretability of the original
TRBAC policy. On average over the six policies, the WSC is 20% higher, and
the interpretability is 16% lower. Thus, our algorithm finds most of the implicit
structure in the TUPA and produces a policy with moderately higher WSC and
better interpretability, on average, than the original TRBAC policy. The results
can be improved by using larger RIC, at the expense of higher running time.

The higher running times, compared to the dataset with simple PEs, are due
primarily to the larger number of candidate roles created by role intersection
(there are more overlaps between REBs in this dataset), and secondarily to the
larger overhead of manipulating more complex PEs.

Benefit of general PEs. PEs can be translated into sets of simple PEs. For
example, the REB {[all ·Weeks + {1,2,7} · Days + {1} · Hours B 8 · Hours]} can
be translated to the REB {[1,9], [25,33], [145,153]}. However, PEs are generally

Original Policy Mined Policy
Dataset WSC INT WSC INT RIC Time

µ σ µ σ CI µ σ CI µ

apj 16836 159 385 17434 337 419 391 1.9 2.3 0.7 50:43

domino 1156 49 23 1278 80 30 16 1.8 0.7 1 0:35

emea 5975 99 32 8683 284 353 32 0 0 0.7 201:10

firewall1 3712 97 48 5832 199 247 46 2.2 2.8 0.7 165:30

firewall2 1269 37 7 1291 52 19 5.3 0.68 0.3 1 1:00

healthcare 560 35 14 582 40 15 9.3 1.7 0.6 1 8:57

Fig. 4. Results of experiments with complex PEs.

more compact and efficient. In experiments with the healthcare policy, using this
translation and simple PEs was about 19x slower than using general PEs.

Effect of role-intersection cutoff. We investigated the cost-benefit trade-off when
varying the role-intersection cutoff RIC. Figure 5 shows running time and WSC
as functions of RIC, averaged over three of the smaller policies (domino, firewall2,
healthcare). The trade-off is favorable: as RIC decreases, running time decreases
more rapidly than WSC increases. For example, at RIC = 0.8, running time is
40% lower than with RIC = 1, and WSC is only 13% higher.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0.5 0.7 0.8 0.9 1

ra
tio

RIC

Time relative to RIC=1

WSC relative to RIC=1

WSC relative to input

Fig. 5. Relative running time and relative WSC as functions of RIC.

7 Related Work

We discuss related work on TRBAC policy mining and then related work on
RBAC mining. Role mining (for RBAC or TRBAC) is also reminiscent of some
other data mining problems, but algorithms for those other problems are not
well suited to role mining. For example, association rule mining algorithms are
designed to find rules that are probabilistic in nature. They are not designed to
produce a set of rules strictly consistent with the input that completely covers
the input and is minimum-sized among such sets of rules.

7.1 Related Work on TRBAC Policy Mining

Mitra et al. define a version of the TRBAC policy mining problem and present
an algorithm for mining a TRBAC policy from a TUPA [7]. It is an improved
version of their earlier work [6].

Our algorithm is more flexible, because it can optimize a variety of metrics,
including WSC and interpretability. Their algorithm is designed to optimize only
the number of roles. The importance of interpretability is discussed in Section
1. WSC is a more general measure of policy size than number of roles and can
more accurately reflect expected administrative cost. For example, the average
number of role assignments per user is a measure of expected administrative
effort for adding a new user [9], and this can be reflected in WSC by giving
appropriate weight to the size of the user-role assignment.

Our algorithm produces hierarchical TRBAC policies. Their algorithm pro-
duces flat TRBAC policies. Role hierarchy is a well-known feature of RBAC
that can significantly reduce policy size and administrative effort by avoiding
redundancy in the policy.

Some other differences are: (1) Our algorithm determines which candidate
roles to include in the final policy by elimination of low-quality roles, instead of
selection of high-quality roles. We showed that elimination gives better results
in the untimed case [11]. (2) Our algorithm creates more initial roles than theirs.
The benefit of creating these additional initial roles is shown in Section 6.1 in
the paragraph on evaluation of choice of initial roles. Their algorithm creates
unit roles, which are similar to initial roles but have only one permission; our
algorithm does not create unit roles. (3) Our algorithm performs fewer types
of role intersections than theirs. Specifically, it omits types of role intersections
that create PEs with time intervals that do not appear in the input, since these
PEs are probably not natural (intuitive) ones in the application domain.

Our implementation supports periodic expressions for specifying temporal
information, while theirs supports only ranges of hours that implicitly repeat
every day. Design and implementation of operations on sets of PEs is non-trivial.

7.2 Related Work on RBAC Mining

A survey of work on RBAC mining appears in [4]. The most closely related work
is Xu and Stoller’s elimination algorithm [11]. We chose it as the starting point
for design of our algorithm, because in the experiments in [11], it optimizes WSC
more effectively than Hierarchical Miner [8], while simultaneously achieving good
interpretability, and it optimizes WSCA, an interpretability metric defined in [8],
more effectively than Attribute Miner [8].

Our algorithm retains the overall structure of the elimination algorithm but
differs in several ways, due to the complexities created by considering time. Our
algorithm introduces more kinds of candidate roles than the elimination algo-
rithm, because it needs to consider grouping permissions that are enabled for the
same time or a subset of the time of other permissions. Our algorithm attempts
to merge candidate roles; the elimination algorithm does not. Construction of

the role hierarchy is significantly more complicated than in the elimination al-
gorithm; for example, with strongly restricted inheritance, a permission p can
be inherited by a role r from multiple junior roles with different REBs, which
may together cover all or only part of the time that p is available in r. This also
complicates adjustment of the role hierarchy when removing candidate roles.
The role quality metric used to select roles for removal is more complicated, to
give preference to roles that cover permissions for more times.

Acknowledgements. We thank the authors of [7]—Barsha Mitra, Shamik Sural,
Vijayalakshmi Atluri, and Jaideep Vaidya—for sharing their code and datasets
with us and helping us understand their work.

References

1. E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access
control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, 2001.

2. A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan.
Fast exact and heuristic methods for role minimization problems. In Proc. 13th
ACM Symposium on Access Control Models and Technologies (SACMAT), pages
1–10. ACM, 2008.

3. Q. Guo, J. Vaidya, and V. Atluri. The role hierarchy mining problem: Discovery
of optimal role hierarchies. In Proc. 2008 Annual Computer Security Applications
Conference (ACSAC), pages 237–246. IEEE Computer Society, 2008.

4. S. Hachana, N. Cuppens-Boulahia, and F. Cuppens. Role mining to assist au-
thorization governance: How far have we gone? International Journal of Secure
Software Engineering, 3(4):45–64, October-December 2012.

5. J. B. D. Joshi, E. Bertino, and A. Ghafoor. Temporal hierarchies and inheritance
semantics for GTRBAC. In Proceedings of the Seventh ACM Symposium on Access
Control Models and Technologies, pages 74–83. ACM, 2002.

6. B. Mitra, S. Sural, V. Atluri, and J. Vaidya. Toward mining of temporal roles. In
Proc. 27th Annual IFIP WG 11.3 Conference on Data and Applications Security
and Privacy (DBSec), volume 7964 of Lecture Notes in Computer Science, pages
65–80. Springer, 2013.

7. B. Mitra, S. Sural, V. Atluri, and J. Vaidya. The generalized temporal role mining
problem. Journal of Computer Security, 23(1):31–58, 2015.

8. I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. B. Calo, and J. Lobo.
Mining roles with multiple objectives. ACM Trans. Inf. Syst. Secur., 13(4):36:1–
36:35, 2010.

9. E. Uzun, D. Lorenzi, V. Atluri, J. Vaidya, and S. Sural. Migrating from DAC to
RBAC. In Proc. 29th Annual IFIP WG 11.3 Conference on Data and Applications
Security and Privacy (DBSec), volume 9149 of Lecture Notes in Computer Science.
Springer, 2015.

10. J. Vaidya, V. Atluri, and J. Warner. RoleMiner: Mining roles using subset enumer-
ation. In Proc. 13th ACM Conference on Computer and Communications Security
(CCS), pages 144–153. ACM, 2006.

11. Z. Xu and S. D. Stoller. Algorithms for mining meaningful roles. In Proc. 17th
ACM Symposium on Access Control Models and Technologies (SACMAT), pages
57–66. ACM, 2012.

