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Abstract. Over the last few years, data storage in cloud based services
has been very popular due to easy management and monetary advan-
tages of cloud computing. Recent developments showed that such data
could be leaked due to various attacks. To address some of these attacks,
encrypting sensitive data before sending to cloud emerged as an im-
portant protection mechanism. If the data is encrypted with traditional
techniques, selective retrieval of encrypted data becomes challenging. To
address this challenge, efficient searchable encryption schemes have been
developed over the years. Almost all of the existing searchable encryption
schemes are developed for keyword searches and require running some
code on the cloud servers. However, many of the existing cloud storage
services (e.g., Dropbox1, Box2, Google Drive3, etc.) only allow simple
data object retrieval and do not provide computational support needed
to realize most of the searchable encryption schemes.
In this paper, we address the problem of efficient execution of com-
plex search queries over wide range of encrypted data types (e.g., im-
age files) without requiring customized computational support from the
cloud servers. To this end, we provide an extensible framework for sup-
porting complex search queries over encrypted multimedia data. Before
any data is uploaded to the cloud, important features are extracted to
support different query types (e.g., extracting facial features to support
face recognition queries) and complex queries are converted to series of
object retrieval tasks for cloud service. Our results show that this frame-
work may support wide range of image retrieval queries on encrypted
data with little overhead and without any change to underlying data
storage services.

1 Introduction

Cloud computing is being adopted by organizations and individuals to address
various types of computation needs including file storage, archiving, etc. How-
ever, there have been several incidents of data leak in popular cloud storage
service providers [1,25]. To ensure the security of the sensitive data and pre-
vent any unauthorized access, users may need to encrypt data before uploading

1 https://www.dropbox.com
2 https://www.box.com/
3 http://drive.google.com/
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to cloud. If data uploaded to cloud is encrypted using traditional encryption
techniques, executing search queries on the stored data become infeasible. To
alleviate this situation many searchable encryption techniques have been pro-
posed [9,16,5,13,6,19,20,11,4]. Among those approaches, searchable symmetric
encryption (SSE) [9,16,5,13,6,19,4] emerges as an efficient alternative for cloud
based storage systems due to minimal storage overhead, low performance over-
head, and relatively good security.

However, almost all searchable encryption techniques require executing some
code on the cloud servers to enable efficient processing. On the other hand, pop-
ular commercial personal cloud storage providers1 2 3 only support basic file op-
erations like read and write file that makes it infeasible to apply traditional SSE
techniques. Furthermore, complex queries on multimedia data may require run-
ning different and expensive cryptographic operations. These limitations create
a significant problem for wide adoption of SSE techniques. Therefore, developing
SSE schemes that can run on the existing cloud storage systems without requir-
ing the cloud service providers cooperation emerges as an important and urgent
need. To our knowledge, only [19] considered a setup without computational sup-
port from the cloud storage but the proposed solution does not support efficient
complex querying over encrypted data.

Even though, one can wish that an alternative SSE as a service could be
offered in the near future by the cloud service providers, due to network effects,
many of the existing users may not want to switch their cloud service providers.
Therefore, any new “secure” cloud storage with SSE providers may have a hard
time in getting significant traction. So supporting SSE on the existing cloud
storage platforms without requiring any support from the cloud storage service
providers is a critical need.

In addition, adoption of multimedia (e.g., image, music, video, etc.) data for
social communication is increasing day by day. KPCB analyst Mary Meeker’s
2014 annual Internet Trends report4 states 1.8 billion photos shared each day.
However, indexing multimedia data is harder compared to text data. A signifi-
cant pre-processing is required to convert raw multimedia data to a searchable
format and queries made on multimedia data are complex as well. So building
efficient cryptographic storage system that can easily handle multimedia content
is a very important problem.

To address these challenges, in this paper, we propose an efficient searchable
encryption scheme framework that can work on existing cloud storage services
and can easily handle multimedia data. Our proposed framework only requires
file storage and retrieval support from cloud storage services. Furthermore, by
leveraging the extensible extract, transform and load operations provided by
our framework, very complex queries can be executed on the encrypted data. As
an example, we show how our framework could be used to run face recognition
queries on encrypted images. To our knowledge, this is the first system that
can support complex queries on encrypted multimedia data without significant
computational support from the cloud service provider (i.e., without running cus-

4 http://www.kpcb.com/blog/2014-internet-trends
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tomized code in the cloud). Main contributions of this work can be summarized
as follows:

– We propose a generic outsourcing framework that enables secure and efficient
querying on any data. Our framework supports complex querying on any en-
crypted data by allowing queries to be represented as series of simple equality
queries using the features extracted from the data. Later on, these extracted
features are transformed into encrypted indexes and these indexes are loaded
to cloud and leveraged for efficient encrypted query processing.

– We prove that our system satisfies adaptive semantic security for dynamic
SSE.

– We show the applicability of our framework by applying it to state-of-the-art
image querying algorithms (e.g., face recognition) on encrypted data.

– We implement a prototype of our system and empirically evaluate the effi-
ciency under various query types using real world cloud services. Our results
show that our system introduces very little overhead, which makes it remark-
ably efficient and applicable to real-world problems.

The rest of the paper is organized as follows: Section 2 discusses previous
related works, Section 3 provides the general setup and threat model of our
system, Section 4 describes internal details of each phases, Section 5 extends our
initial framework making it dynamic, in Section 6 we discuss the security of our
system, Section 7 shows an application of our proposed framework, Section 8
shows the experimentations, and in Section 9 we conclude our work.

2 Related Work

Currently there are few ways to build encrypted cloud storage with content based
search. Searchable symmetric encryption(SSE) is one of those, which allows users
to encrypt data in a fashion that can be searched later on. Different aspects of
SSE has been studied extensively as shown in an extensive survey of provably
secure searchable encryption by Bösch at el. in [4]. Curtmola at el. [9] provided
simple construction for SSE with practical security definitions, which was then
adopted and extended by several others in subsequent work. Few works also
looked into dynamic construction of SSE [16,5,13,14] so that new documents
can be added after SSE construction.

Another branch of study related to SSE is supporting conjunctive boolean
query. Cash at el. [6] proposed such a construction, where authors used multi-
round protocol for doing boolean query with reasonable information leakage.
In the process they also claimed to build the most efficient SSE in terms of
time and storage. Kuzu at el. [15] proposed an efficient SSE construction for
similarity search, where they used locality sensitive hashing to convert similarity
search to equality search. There are also work towards supporting efficient range
query, substring matching query, etc. [10], where a rich query is converted to an
exact matching query. However, these constructions require specialized server.
Importantly, we can easily adopt such a conversion technique in our framework.
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Naveed at el. [19] proposed a dynamic searchable encryption schema with
simple storage server similar to our setup. The system also hides certain level
of access pattern. However, authors did not consider complex query problem in
their work, which is one of the major challenges that we solved in this work.

Another way of querying encrypted database is oblivious RAM (ORAM) [20,11]
that also hides search access pattern and much secure. Despite recent develop-
ments [21], traditional ORAM remains inefficient for practical usage in cloud
storage system as described in [3]. Furthermore, our proposed system converts
complex operations into sequence of key value read and write operations, which
can easily be combined with ORAM technique to hide the access pattern.

Qin at el. [22] proposed an efficient privacy preserving cloud based secure
image feature extraction and comparison technique. Similar construction for
ranked image retrieval is proposed by [29,17,23]. These systems depend on highly
capable cloud server for preforming image similarity query.

Finally, there are few commercial secure cloud storage systems, e.g., Spi-
derOak5, BoxCryptor6,Wuala7, etc. Even though these systems are easy to use
and provide reliable security, these systems provide neither server based search
nor complex query support. All these systems depend on either operating system
or local indices to provide search functionalities. As a result, to provide search
functionalities these systems need to download and decrypt all the data stored
in cloud server, which might not be efficient solution in all circumstances.

3 Background and Threat Model

Searchable Symmetric Encryption (SSE) is one of the many mechanisms
to enable search over encrypted data. In a SSE schema, we not only encrypt the
input dataset, but also we create an encrypted inverted index. The index contains
mapping of encrypted version of keywords (called trapdoors) to list of document
ids that contains corresponding plain text keywords. Formally, a SSE schema
is defined as collection of 5 algorithms SSE = (Gen,Enc, Trpdr, Search,Dec)
Given security parameter Gen generates a master symmetric key, Enc generates
the encrypted inverted index and encrypted data sets from the input dataset.
Trpdr algorithm takes keywords as input and outputs the trapdoor, which is used
by Search algorithm to find list of documents associated with input keywords.
Finally, the Dec algorithm decrypts the encrypted document given the id and
proper key. We refer the reader to [9] for further discussion of SSE. Furthermore,
in a typical SSE settings, Gen, Enc, Trpdr, and Dec are performed in a client
device and the Search algorithm is performed in a cloud server. For this reason,
we need a server with custom computational support to run a SSE based system.
Here, we focus on building a framework that enables us to build SSE alike schema
with complex query processing capabilities using file storage servers that does
not have custom computation support.

5 https://spideroak.com/
6 https://www.boxcryptor.com/
7 https://www.wuala.com/
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Threat Model. In this study, we consider a setup, where a user owns a set
of documents, which includes multimedia documents. User wants to store these
documents into a cloud storage server in encrypted form. User also wants to
perform complex search queries over the encrypted data. Most importantly, user
wants to utilize existing cloud storage service, which is not capable of executing
any custom code provided by user. Formally cloud storage server Z can only
preform read and write operations. This simple requirement of cloud storage
server makes the system easily adoptable in several real world scenario. On
the other hand, user have devices with sufficient computation power that can
perform modern symmetric cryptography algorithms and are called clients.

In our system, the communication between server and client is done over
encrypted channel, such as https. So eavesdroppers can not learn any meaning
full information about the documents capturing the communication, apart form
existence of such communication. We also assume that the cloud storage server
Z is managed by Bob, who is semi-honest. As such, he follows the protocol as
it is define but he may try to infer private information about the document he
hosts. Furthermore, the system does not hide search access pattern, meaning Bob
can observe the trapdoors in search query. Based on the encrypted file accesses
after subsequent search queries Bob also can figure out trapdoor to document ids
assignments. However, Bob can not observe the plain text keyword of trapdoors.

4 The Proposed System

Our main motivation is to build encrypted cloud storage that can support com-
plex search query with support of simple file storage server. We generalize the
required computations into a five phase Extract, Transform, Load, Query, Post-
Process (ETLQP) framework. These five phases represent chronological order
of operations required to create, store encrypted index, and perform complex
operations. Figure 1(a) and 1(b) illustrates an overview of different phases in
our system.

4.1 Extract

In this phase we extract necessary features from a dataset. Let,D = {d1, d2, ..., dn}
be a set of documents, id(di) be the identifier of document di, Θ = {θ1, θ2, ..., θm}
be a set of m feature extractor functions. Functions in Θ can extract set of
feature and value pairs (f, v) from documents. We build list Ui with all the
feature value pairs extracted from di. For all the feature extractors θj ∈ Θ
we compute (f, v) ← θj(di) and store (f, v) in Ui. Finally we organize the re-
sult in P, such that P[id(di)] ← Ui. Such an example P is illustrated in Fig-
ure 1(c). Here, we have four documents {D1, ..D4}. D1 has feature value pairs
U1 ={(fa, vα),(fb, vβ), (fb, vγ)}, etc.

To clarify further, let us assume that, we want to build an encrypted image
storage application that can preform location based query over the encrypted
images. In other word, the system is capable of answering queries, such as, find
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Fig. 1. Overall workflow of our proposed system and important data structures. (a)
Index creation consists of extract, transform and load phases. (b) Search consists of
query and post-process phases. (c) P, output of extract phase that maps document ids
to feature value pairs, (d) Inverted index I, that maps search signatures to document
ids.

images taken in Italy. To support such a query, we implement a feature extractor
function θl, where θl extracts location information from image meta data. Output
of θl is defined as a feature value pair (“LOCATION”, “longitude and latitude
of image”). We define as many feature extractor necessary based on application
need. However, all feature extractor functions returns values in similar format.
In Section 7 we discuss in details how we defined more feature extractors and
use those to answer much more complicated queries.

4.2 Transform

In this phase we transform the extracted feature values into much simpler form so
that complex search operations can be expressed as series of equality searches.
We compute search signatures s form feature-value pairs and associate corre-
sponding documents with s. This association at query stage can be used to infer
existence of a feature-value pair in a document. Essentially here we define sets of
transform functions T = {t1, .., tp}, where each transform function is designed to
generate search signatures from a feature value pair (f, v) and Tf defines subset
of transformation functions that can be applied to feature f .

With these transform functions T , we generate an inverted index I that is
indexed by search signatures and contains list of document ids. For all the feature
value pairs in P, we generate search signature stf,v ← t(f, v) where t ∈ Tf . We
build document id list Vs for all the unique search signature s that contains
id(Di) if and only if there exists a feature value pair (f, v) that is in Ui and at
least one transformation function t that generates search signature s. Finally we
fill the inverted index I such that I[s] ← Vs. In Figure 1(d) we show such an
example I, which is created from P of Figure 1(c). Here, search signature s1,
s2, s3, s4, s5 are generated from feature value pairs (fa, vα), (fb, vβ), (fb, vγ),
(fa, vσ), (fa, vδ) accordingly.
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Similarly, in our encrypted image storage application example, we define a
transform function tl that takes geographic location and document id as input,
converts the location information to mailing address using reverse address lookup
service, takes the country information and document id to construct a search
signature using a collision resistant hash function.

Using such extract transform model has several benefits over adhoc model.
The proposed model helps us to organize the necessary computation into mod-
ules, which intern increase development efficiency. The feature extractor func-
tions can be reused in other project.

4.3 Load

In this phase we setup our encryption schema, encrypt the inverted index, and
upload the encrypted version into a file storage server Z. We initialize a master
encryption key K, three random constants C1, C2, C3, a secure pseudo random
permutation function ϕ, and a keyed pseudo random function H. Given a key, ϕ
encrypts data, ϕ−1 decrypts corresponding result, and H generates authentica-
tion code of messages. In addition, we define a small synchronized cache C and
an encryption key KC for encrypting the cache. C is always synchronized with
storage server Z. Synchronization is achieved by updating the server’s version
after any change in client’s version and before updating the cache locally most
recent version is downloaded from the server first. In C, we store document id
list size of all search signatures of I, which is notated by C.freq. Later, we also
use this cache to store information related to individual files to make the query
phase easier.

We divide all the document id lists in I into b length blocks and add padding
to last block if needed. The value of b is determined by defining and minimizing
a cost function (described in Subsection 4.6). We generate trapdoors T sj and

Ks
j for jth block of document list of I[s]. We use Ks

j to encrypt block contents

Algorithm 1 Load encrypted index

1: Require: K = Master key, I = Inverted index of search signatures, C = Synchro-
nized cache, KC = encryption key for cache, Z = File storage server.

2: b← optimize(I)
3: for all signature s in I do
4: blockss ← d |I[s]|b

e
5: for j = 1→ blockss do
6: T s

j ← H(K, s || j || C1), Ks
j ← H(K, s || j || C2)

7: sub← I[s].slice((j − 1)× b, j × b)
8: E [T s

j ]← ϕ(Ks
j , pad(sub))

9: end for
10: C.freq[s]← |I[s]|
11: end for
12: for all trapdoor t in E do
13: Z.write(t, E [t])
14: end for
15: Csig ← H(KC || C3, 1)
16: Z.write(Csig, ϕ(KC , C))
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and T sj as the key for encrypted inverted index E . To query the inverted index
later on, our system will regenerate these two trapdoors and perform inverse
operations to build the original document id list. In addition, we store number
of documents associated with a signature s in C.freq[s], then encrypt and upload
the cache. Algorithm 1 describes the operations necessary for load phase.

4.4 Query

In previous phases we have created an encrypted inverted index and uploaded
into file storage server Z. Query and post-process phases are dedicated for query-
ing the index and returning proper output to user. First, given a user query q,
we extract and transform it to a set of search signatures Q. We use number of
document ids per block, stored in C.freq, to compute block counts, which in
turn used to compute trapdoors Ks

j and T sj for each block of search signatures.
Using these trapdoors we retrieve and decrypt document ids. Finally, the result
is organized into a hash table R such that R[s] = I[s] for all s ∈ Q. Algorithm 2
contains the detail operations of query phase.

Algorithm 2 Query

1: Require: K = Master key, q = Query, b = block size, Z = File storage server
2: Q ← Extract and Transform q
3: for all search signatures s in Q do
4: blockss ← dC.freq[s]b

e
5: for i = 1→ blockss do
6: T s

j ← H(K, s || j || C1), Ks
j ← H(K, s || j || C2)

7: L← Z.read(T s
j )

8: add ϕ−1(Ks
j , L) in R[s]

9: end for
10: end for
11: return R

4.5 Post-process

In this step we further process the result of query phase to remove false posi-
tive entries. Given result set R from query phase for query q, we remove id of
document that does not match the original query. Therefore, R.remove(id(d))
if q(d) 6= True. Query that only contains exact search features, this phase is
optional.

4.6 Optimal block size analysis

Block size has a direct impact on performance of our proposed system. Larger
block size implies waste of space for padding and smaller block size implies many
blocks to process. So we need to find an optimal value of block size b that keeps
the over all cost to minimal. In our construction for each block we have a fixed
cost and a dynamic cost that is related to block length. We define fixed cost
as α and co-efficient of dynamic cost β. Cost can be in terms of time and size.
Both linearly depends on block size in our construction. So cost for a b length
block is (α+ β × b). Let, J (s) is |I[s]| meaning document id list size for search
signature s and total cost G(b) for blocking and encrypting given inverted index
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I for block length b then G(b) =
∑
s∈I

⌈
J (s)
b

⌉
(α+ β× b). We want to minimize

the above function for b. However, if contains a ceiling function, which can not
be minimize by taking derivatives and equating to zero. So we approximate the
probability distribution of J , i.e., lengths of document id list in I. We assumed
that, distribution is Pareto distribution , which is defined by probability density

function (PDF) f(x|γ, xm) =
γxγm
x(γ+1) , where x is the random variable, γ is

distribution parameter, and xm is minimum value of x. After several algebraic
simplification (explained in details in full version [24]), we find the first order
derivative

G′(b) = β − xγmβb−γ + (α+ βb)xγmγb
−γ−1 − γxγmb−γ(

α

b
+ β)− γxγm

γ − 1
b−γ−1α

Now we minimize b by setting G′(b) = 0 and solving the equation for b. In
experimentation we observe that method of moments estimation for xm and γ
gives almost correct value.

5 Dynamic Document Addition
Here we are going to improve our algorithms to support dynamic addition of
documents. Given a new document set for addition we first perform extract and
transform to build an inverted index. Next we compute number of blocks and
number of empty spaces in last block for each signature the cache C. If there
exists empty space we fill the empty spaces than create new blocks as needed. On
the other hand, if a new signature is observed in new inverted index we perform
exact same steps of load. Due to space limitation we deffer further discussion on
dynamic document addition for full version of the paper [24].

6 Security
Over the years, many security definitions have been proposed for searchable
encryption for semi-honest model. Among those simulation based adaptive se-
mantic security definition by Curtmola, at el., [9] is widely used in literature.
Later it is customized to work under random oracle model in [14]. We adapt this
definition to prove our security model. In short, we define, history Hη, trace λ
(the maximum amount of information that a data owner allows its leakage to
an adversary) and view v (the information that is accessible to an adversary) of
our system and show the existence of polynomial size simulator S such that the
simulated view vS(Hη) and the real view vR(Hη) of history Hη are computa-
tionally indistinguishable. Due to space limitation we defer the formal security
proof to our full version [24].

7 Application of ETLQP framework
As an application of our ETLQP framework we built an image storage system
that saves encrypted images in cloud storage and built an encrypted index to
search later on. Before going into further detail of our ETLQP framework imple-
mentation we briefly describe Fuzzy Color and Texture Histogram (FCTH) [7],
Eigenface [27], Locality Sensitive Hashing(LSH) [12], and range query to exact
query conversion mechanism [10].
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Fuzzy Color Texture Histogram (FCTH) [7] is an histogram of image
that combines texture and color information. It is widely used in content based
image retrieval systems (CBIR), e.g. [18,8]. FCTH of an image can be considered
as a vector with 192 dimensions and distance between FCTH vector of images
can be used to determine similarity among images.

Eigenface [27] is a very well studied, effective yet simple technique for face
recognition using static 2D face image. In summary, face images are considered
as a point in a high dimensional space. An eigenspace consisting few significant
eigen vectors are computed for approximating faces in a training face dataset.
Next, test face images are projected into the computed eigenspace. Distances of
test face images and all training faces images are computed. If any distance is
bellow a pre-determined threshold then those faces are considered a match for
associated test face. A detail formal explanation of eigen-face schema is presented
in full version [24].

Locality sensitive hashing is a technique widely used to reduce dimen-
sions. Core concept of LSH is to define a family of hash functions such that
similar items belong to same bucket with high probability. More specifically we
utilized LSH in euclidean space and adopted widely accepted projection over
random line technique described in [2]. Let, r be a random projection vectors, v
be an input vector, o be a random number used as offset, and w be bucket length
parameter fixed by user. The bucket id is computed by Round( v.r+ow ) function.
Finally, several such projection vectors are used to generate several bucket ids
for a single input vector. In this setting, nearby items will share at least a same
bucket with very high probability.

Range query to exact query conversion. We adopt the range query
mechanism described in [10]. Let, a be a discrete feature that has value ranging
from 0 to 2t−1, meaning it requires t bits to represent in binary. We first create
binary tree of t depth representing the complete range. Each leaf node (at depth
t) represent an element in the range and we level all left edge as 0 and right
edge as 1. So, the path from the root to a leaf node essentially represent the
binary encoding of that leaf. In transform phase, we convert an input value of
the range to t feature-value tuples, where the feature is concatenation of field
name, depth i and value is binary encoding of inner node at depth i. During the
query phase given a range we first find the cover as described in [10], create the
corresponding search signatures and perform the query.

7.1 ETLQP for image storage

To build an application using ETLQP framework described system section, pro-
grammer has to define proper extract and transformation functions. Load, Query
and Post-Process phases remain the same. For our image storage software we
consider four features location - where the picture was take, time - when the
picture was taken, texture and color - for searching similar pictures, and faces -
for face recognition. In our implemented system queries of first two features are
equality search and later two are similarity search. Similarity searches are diffi-
cult to perform since result not only contains exact matches but also contains
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results that are similar. So, we need to have a similarity measure for the fea-
ture in question. To accomplish such a similarity queries we utilize LSH, which
essentially helps us to convert the query to sequence of equality search. In addi-
tion, result of LSH can contain false positives. We need extra post processing to
remove those.

Extract. Location and time data are extracted from Exif8 meta-data. Exif
is a very popular standard for attaching image meta-data into image used by all
popular camera manufacturers. Camera with Global Positioning System (GPS)
module can store longitude and latitude of a picture taken into Exif data, which
can be extracted easily using available libraries9. We use FCTH for similarity
analysis and used a open source implementation of FCTH analyzer [18]. Finally,
for face recognition using Eigenface, we extract frontal faces from images using
haar cascade [28] frontal face pattern classifier.

Transform. Now we define appropriate transformations for extracted fea-
tures. Main idea behind the definition of transformation functions is to make the
query easier later on. So definition of transformation functions is mainly guided
by the query demand.

– Location. Location information in terms of longitude and latitude is difficult
to use in practice. We use OpenStreetMap’s reverse geolocation service10 to
determine address of latitude and longitude associated with the image. To
make query easier later, we generate search signatures of six sub-features of
the address - full address, city, county, country, state, and zip.

– Time. Similarly we break created date of an image into five sub-features
- complete date, year, month, day of month, and day of week. We generate
search signatures based on these sub-features. In addition, to support range
query based on date we convert the time into unix time stamp that essentially
represents seconds passed from 1 January 1970 without considering the leap
second. Then we divide the time stamp by number of seconds in a day (86400),
that gives us the number of days passed from epoch. Finally, we build the range
query binary tree with depth 20, which essentially is capable of covering dates
till year 4840. Then we create the feature value list as described earlier.

– Texture and Color. In the extract phase we extracted FCTH of provided
image, which is a 192 dimensional vector. We can treat each dimension as
different sub features but that will make it difficult to perform similarity search
later on. Instead we define an euclidean LSH schema that put near elements
into same bucket and use the bucket ids to generate search signatures.

– Face. We built an eigenface schema with extracted face images. Again to
preserve similarity we built an euclidean LSH schema with weight vectors of
faces and store the eigenspace related information into synchronized cache C.
In particular we store the average face, selected top eigenfaces, and weights of
all faces. Storing such information is the major reason of defining the cache C.

8 http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
9 https://drewnoakes.com/code/exif

10 http://wiki.openstreetmap.org/wiki/Nominatim

http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://drewnoakes.com/code/exif
http://wiki.openstreetmap.org/wiki/Nominatim
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Query and Post-Process. With previously defined extract and transform
functions client can perform time queries, such as find images that are taken
on specific year, month, day of week, day of moth, or in a rang of dates, etc.
Client can also perform location queries, such as find pictures taken in a coun-
try, state, city, etc. In both of these cases, we transform a query into encrypted
search signatures and retrieve associated encrypted document ids from the cloud
storage server. Finally we decrypt and display the result directly to the user. On
the other hand, for face recognition and image-similarity query, we extract ap-
propriate feature values from a query image and transform these values into LSH
bucket ids of previously defined LSH schema. We generate encrypted search sig-
nature, retrieve encrypted document ids, and decrypt the result like date and
time queries. However, before showing results to user we remove false positive
results introduced by the LSH schema.

8 Experimental Evaluation

Setup. In our proposed design we have two components client and server. Client
processes images, performs cryptographic operations, and produces encrypted
inverted index that is stored in server. In query phase client retrieves partial
index from the server based on user-query.

ETQLP client is written in Java using several other libraries for image
feature extraction. Cryptographic operations are performed using Java Crypto-
graphic Extension (JCE) implementation. During our experimentation, we exe-
cute the client program in a computer with Intel(R) Core(TM) i7-4770 3.40GHz
CPU, 16GB RAM running Ubuntu 14.04.4 LTS. Our implemented client can
store encrypted inverted index into different types of servers.

- File storage server in local network. We developed a very simple
web based storage service that has two end points file read and file write. Our
server is written in Python (v2.7.6) using Flask (v0.10.1) microframework and
files are stored in a MongoDB (v3.2.0). We deployed our local storage server in
a machine with Intel(R) Xeon(R) CPU E5420 2.50GHz CPU, 30GB of RAM
running CentOS 6.4. In addition, our client computer is also in the same network.

- Amazon S311is very popular commercial object and file storage system,
which provides easy to use representational state transfer (REST) application
program interface (API) for storing, retrieving and managing arbitrary binary
data or file. Amazon also provides very extensive software development kit (SDK)
for building applications to utilize it’s services. In our implementation, search
signatures of encrypted inverted index E are keys of S3 objects and content of
the objects are associated encrypted document id list.

- Personal file storage services. In our implementation the client is ca-
pable to use popular commercial file storage services, for example - Dropbox1,
Box2, and Google Drive3. However, due to rate limitation of these services we
could not perform extensive analysis. Details are presented in full version [24].

Dataset. We randomly selected 20109 images from Yahoo Flickr Creative
Commons 100 Million Dataset (YFCC100M) in [26], which contains basic in-

11 https://aws.amazon.com/s3/

https://aws.amazon.com/s3/
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Fig. 3. Time required in different phases of building and uploading the index for dif-
ferent number of images.

formation of 100 million media objects. Size of this random dataset is 42.3GB,
average file size is 2.15MB, number of faces detected 7027, and 4102 images have
latitude and longitude embedded in EXIF data.

 0

 1

 2

 3

 4

 5

 6

 7

1k 3k 5k 7k 9k 11k 13k 15k 17k 19k

S
iz

e 
(M

B
)

Number of files

Unencrypted index size
Encrypted index size
Cache size

Fig. 2. Index and cache sizes

Experiments. We measure perfor-
mance of different phases of our framework
for varying number of randomly selected im-
ages from above dataset. Horizontal axis of
most of the reported graphs is number of
randomly selected images used to build the
index and vertical axis is the observation.
We repeat each experiment for at least 3
times and report the average observation
value. We extracted four features of the im-
ages as discussed in Section 7. Figure 2 illus-
trates size growth of unencrypted inverted
index, encrypted inverted index, and synchronized cache. The growth is linear,
which implies index size increment is proportional to the number of files added.
Moreover, in our experiment we observed that for 20000 images encrypted in-
verted index size is only 7.05MB, which is about four average size images in our
dataset. So size over head of our proposed system is very low.

We also observe that feature extraction is the most time consuming phase
of our system. Figure 3(a) illustrates required time for extracting features. We
observe that face detection and extraction time is the dominating factor in this
phase. It requires 464.54 minutes to detect and extract faces from 20000 images
in sequential manner, averaging about 1.39 seconds per image. In addition, other
three features takes 85.87 minutes for 20000 images, averaging 0.26 seconds per
images. Even though it looks like a long time for a lot of images but time required
for individual image is very little. Furthermore, these experiments are done in
sequential manner. A multi-threaded implementation will certainly reduce the
over all time. In addition, in this prototype we implemented a separate program
to call native OpenCV API to detect faces and communicate the results back to
the main process, which added extra overhead. In contrast, transform phase is
one of the fastest phase in our implementation. Here, extracted feature values
are transformed into inverted index of search signatures and document ids. We
observed that the growth is almost linear and for 20000 images it only requires
696 milliseconds, shown in Figure 3(b).
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Fig. 4. Time required for different type of queries vs number of files.

Next we encrypt and load the inverted index into a cloud storage server.
In our experiments, we load the encrypted index into (1) Local server and (2)
Amazon S3. Figure 3(c) shows the time required for encrypting and loading
inverted index into local and Amazon S3 server. For 20000 images it requires
20.52 seconds to encrypt and load the entire inverted index split into 1MB blocks
into local storage server and 5.65 minutes to complete in Amazon S3 server.
Furthermore, the time growth is linear due to the linear growth of index size.

Once encrypted inverted index are uploaded in storage server, we perform
queries with different extracted features. In each of the cases we randomly select
five value of the respected feature and perform the query and report the average.
Figure 4 illustrates performance of the location, date, FCTH, and face queries.
Among the location queries we observe that query by full address is fastest
Query by state takes longest to finish and query by city performs in between.
This is because time require to finish a query is proportional to the number to
blocks fetched and processed. Very few images are like to have same full address
however more images likely to have common state or city. Among the date queries
range query and query by year-month-date (YMD) combination is the fastest
for similar reason. Finally, FCTH and face query requires longest time due to
long extract, transform, and post-processing step. We had to keep our discussion
short here because of space limitation. Detail analysis of these results and few
more experiment results are presented in the full version [24].

9 Conclusion

In this study, we addressed the problem of searchable encryption with sim-
ple server that can support complex queries with multimedia data type. We
made several contributions including an extensible general framework with se-
curity proof and its implementation. Our defined extract, transform, load, query
and post-process (ETLQP) framework can build efficient searchable encryption
scheme for complex data types (e.g, images). With this framework we can per-
form very sophisticated queries, such as face recognition, without needing cryp-
tographic computational support from the server. Our implementation shows
small overhead for building encrypted search index and performing such com-
plex queries. In addition, we also show that overhead of general cryptographic
operations is negligible compared to other necessary operations of a cloud based
file storage system.
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