The Fréchet/Manhattan Distance and the Trajectory Anonymisation Problem

Abstract : Mobile communication has grown quickly in the last two decades. Connections can be wirelessly established from almost any habitable place in the earth, leading to a plethora of connection-based tracking mechanisms, such as GPS, GSM, RFID, etc. Trajectories representing the movement of people are consequently being gathered and analysed in a daily basis. However, a trajectory may contain sensitive and private information, which raises the problem of whether spatio-temporal data can be published in a private manner.In this article, we introduce a novel distance measure for trajectories that captures both aspect of the microaggregation process, namely clustering and obfuscation. Based on this distance measure we propose a trajectory anonymisation heuristic method ensuring that each trajectory is indistinguishable from $$k-1$$ other trajectories. The proposed distance measure is loosely based on the Fréchet distance, yet it can be computed efficiently in quadratic time complexity. Empirical studies on synthetic trajectories show that our anonymisation approach improves previous work in terms of utility without sacrificing privacy.
Type de document :
Communication dans un congrès
Silvio Ranise; Vipin Swarup. 30th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2016, Trento, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9766, pp.19-34, 2016, Data and Applications Security and Privacy XXX. 〈10.1007/978-3-319-41483-6_2〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01633679
Contributeur : Hal Ifip <>
Soumis le : lundi 13 novembre 2017 - 11:46:28
Dernière modification le : lundi 13 novembre 2017 - 11:48:27
Document(s) archivé(s) le : mercredi 14 février 2018 - 14:38:11

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Christof Torres, Rolando Trujillo-Rasua. The Fréchet/Manhattan Distance and the Trajectory Anonymisation Problem. Silvio Ranise; Vipin Swarup. 30th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2016, Trento, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9766, pp.19-34, 2016, Data and Applications Security and Privacy XXX. 〈10.1007/978-3-319-41483-6_2〉. 〈hal-01633679〉

Partager

Métriques

Consultations de la notice

176