Privacy Preserving Probabilistic Record Linkage Using Locality Sensitive Hashes

Abstract : As part of increased efforts to provide precision medicine to patients, large clinical research networks (CRNs) are building regional and national collections of electronic health records (EHRs) and patient-reported outcomes (PROs). To protect patient privacy, each data contributor to the CRN (for example, a health-care provider) uses anonymizing and encryption technology before publishing the data. An important problem in such CRNs involves linking records of the same patient across multiple source databases. Unfortunately, in practice, the records to be matched often contain typographic errors and inconsistencies arising out of formatting and pronunciation incompatibilities, as well as incomplete information. When encryption is applied on these records, similarity search for record linkage is rendered impossible. The central idea behind our work is to create characterizing signatures for the linkage of attributes of each record using minhashes and locality sensitive hash functions before encrypting those attributes. Then, using a privacy preserving record linkage protocol we perform probabilistic matching based on Jaccard similarity measure. We have developed a proof-of-concept for this protocol and we show some experimental results based on synthetic, but realistic, data.
Type de document :
Communication dans un congrès
Silvio Ranise; Vipin Swarup. 30th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2016, Trento, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9766, pp.61-76, 2016, Data and Applications Security and Privacy XXX. 〈10.1007/978-3-319-41483-6_5〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01633680
Contributeur : Hal Ifip <>
Soumis le : lundi 13 novembre 2017 - 11:46:31
Dernière modification le : lundi 13 novembre 2017 - 11:48:25
Document(s) archivé(s) le : mercredi 14 février 2018 - 13:27:51

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ibrahim Lazrig, Toan Ong, Indrajit Ray, Indrakshi Ray, Michael Kahn. Privacy Preserving Probabilistic Record Linkage Using Locality Sensitive Hashes. Silvio Ranise; Vipin Swarup. 30th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2016, Trento, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9766, pp.61-76, 2016, Data and Applications Security and Privacy XXX. 〈10.1007/978-3-319-41483-6_5〉. 〈hal-01633680〉

Partager

Métriques

Consultations de la notice

39