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Runtime detection of zero-day vulnerability
exploits in contemporary software systems
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Abstract. It is argued that runtime verification techniques can be used to
identify unknown application security vulnerabilities that are a conse-
quence of unexpected execution paths in software. A methodology is
proposed that can be used to build a model of expected application exe-
cution paths during the software development cycle. This model is used
at runtime to detect exploitation of unknown security vulnerabilities us-
ing anomaly detection style techniques. The approach is evaluated by
considering its effectiveness in identifying 19 vulnerabilities across 26
versions of Apache Struts over a 5 year period.

1 Introduction

Contemporary software is routinely constructed from a myriad of components
and frameworks. With the emphasis on rapid construction and reuse comes a
tacit acceptance that it is neither practical nor expected that a programmer
should fully understand the minutiae of every component included with their
application. As a consequence, its not unusual for the programmer to focus on
understanding their application at the level of the business logic, while hoping
that abstraction neatly deals with the complex interoperation of its underly-
ing components. However, these underlying components often require particular
configuration and usage patterns in order to operate securely. These component
requirements may be ignored by the programmer, through ignorance or as a re-
sult of coding error in the application. A programmer, while focused on using an
external software component to implement one task may overlook that the ap-
plication is implicitly enabled to perform another, unexpected task. Flaws can
also occur within the components themselves, for similar reasons; the compo-
nent developer may not have anticipated all possible use-cases. A consequence
of what can be described as “dark code” [11] or “the dark side of the code” [16],
is that while the programmer expects certain program execution paths, other,
unexpected paths may be possible and give rise to a security vulnerability.

The software industry’s approach to software vulnerabilities includes security
quality assurance processes such as code reviews, static analysis and penetra-
tion testing. However, it is rarely possible to cover the subtleties of all of the
numerous components and their inter-operation. In addition, during application



development, third-party components are not routinely reviewed or tested for
vulnerabilities. Some of the security vulnerabilities that gained notoriety in re-
cent years, such as Heartbleed and Shellshock, were deployed for many years
before they were discovered, despite being used by large number of consumers.

Our position is that many software vulnerabilities can be attributed to pro-
gramming errors that enable unexpected software behavior. Runtime verifica-
tion [5] of software execution against a specified expected behavior can help iden-
tify unexpected behavior in the software. For small applications, limited require-
ments on expected behavior can be specified a priori, for example as a temporal
proposition [5]; however, this does not scale when the requirement is to constrain
emergent behavior across large complex systems of interoperating components.
An alternative strategy, used by anomaly detection techniques [4,6,7,17], is to
learn a behavioral reference profile from system logs of past /normal behavior and
use this profile at runtime to check behavior. However, practical application of
this approach has tended to generate profiles with limited expressiveness [18] for
relatively small and uncomplicated software components [14], such as sendmail
or Ipd, observed though system calls [7]. The practical challenges of applying
these techniques to contemporary enterprise software, such as dealing with scale
and alignment with software release processes have not been considered.

The contributions of the paper are as follows. The anomaly-detection model
proposed in [15] is extended to incorporate the notion of scope which provides an
effective way of dealing with scale in contemporary application systems. Based
on this model, an implementation framework is developed whereby existing soft-
ware testing techniques are adapted to generate profiles of expected behavior
that can be used for runtime verification. The approach has been evaluated
by considering its effectiveness in identifying code vulnerabilities across the 26
versions of Apache Struts over the past 5 years. Of significance is the result
that anomaly-detection/run-time verification techniques would have been quite
effective in identifying exploits of these zero-day vulnerabilities, prior to their
discovery. To the best of our knowledge this is the first successful construction
of profiles used to detect vulnerabilities in large-scale enterprise software.

The paper is organized as follows. Section 2 uses an example of contemporary
software development—a microblog application implemented with Struts—to il-
lustrate how easy it is for the programmer to unwittingly introduce a program-
ming flaw/security vulnerability. Section 3 reviews and considers the challenges
of applying techniques for anomaly detection to contemporary software systems
and describes our proposed approach. Section 4 discusses the evaluation of the
approach and Section 5 provides the conclusion.

2 Contemporary software development

Contemporary software is implemented using a variety of high-level program-
ming languages, software frameworks and third party components. While application-
level code may appear straightforward, enabling rapid and low-cost application
development, its underlying system is a complex arrangement of inter-dependent



class PostAction extends ApiAction {
private String message;

public void setMessage (String msg) {
this.message = msg; StrutsActionProxy: PostAction.<init>

) ServletInterceptor: ApiAction.setSession()

ParametersInterceptor: PostAction.setMessage ("Hello")
String userId = getUser().getId(); DeprecationInterceptor: PostAction.execute ()
datastore.add (userId, message); PostAction: PostAction.getUser ()

) PostAction: ApiAction.getSession()

PostAction: User.getId()

PostAction: Datastore.add("lucy", "Hello")

public void execute () {

public User getUser() {
return getSession () .get (USER);

}

Fig. 1. Micro-blog application code and trace

software whose behavior can be difficult for a programmer to fully comprehend.
There are a great many examples whereby misunderstanding of contemporary
software systems leads to errors in the application code that can be exploited as
security vulnerabilities. We consider this problem using a simple example that
runs through the paper.

2.1 A micro-blogging application

A micro-blogging social networking application provides an online facility for
users to post short text messages and share them with others. The application
provides a web interface and REST API for integration with various types of
clients, including desktop browsers and mobile devices. The application is built
using Apache Struts, a popular Model-View-Controller framework for J2EE.
Struts abstracts application logic from HTTP request processing flow by en-
capsulating it into objects called actions. For example, Figure 1 shows how the
action responsible for posting a new micro-blog message is implemented in just
a few lines of code. Actions can be mapped to specific URL paths, such as /api/
post. Struts can separately handle routine tasks, including parameter validation,
authentication, session handling and CSRF protection, before passing parameter
values to the action as associated by their setters. This facilitates the separa-
tion of business logic from HTTP processing concerns. Thus, rather than dealing
with low-level operations such as accessing parameters by name, the developer
need only implement a public setter. This makes the code re-usable, easier to
maintain, document and test.

Application behavior can be traced as a sequence of the underlying Java
method calls. For example, invoking the application using /api/post?message
=Hello results in the included trace fragment. Each method includes a reference
to its calling class. In the above, Struts creates an instance of PostAction, which
is provided with its session and parameter data and is in turn executed, and the
return value sent as response.

2.2 An unexpected vulnerability

While the implementation of the micro-blog post action appears straightforward,
it can be easy for a developer to overlook subtleties in the interoperation between



the application code and the underlying Struts framework. The code in Figure 1
contains one such oversight, that results from how the getUser method operates
with Struts, and results in a security vulnerability. Suppose that this method
was not intended to be a part of the action’s interface, rather, it is implemented
by the programmer as a means to provide convenient access to the user object
from the session. The method returns a User object, which is a container for
various user attributes, such as name and identifier and accessor methods. The
combination of a public getter for the User object and public setters for the
object makes it possible to manipulate user information request parameters. For
example, an attacker Alice can invoke /api/post?message=Helloguser.id=
frank in order to modify the user-id stored in the session to Frank and submit
a message on Frank’s behalf. A fragment of the execution trace in this case is:

StrutsActionProxy: PostAction.<init>
ServletConfigInterceptor: ApiAction.setSession()
ParametersInterceptor: PostAction.setMessage ("Hello")
ParametersInterceptor: PostAction.getUser()
PostAction: ApiAction.getSession()
ParametersInterceptor: User.setId("frank")
DeprecationInterceptor: PostAction.execute()
PostAction: PostAction.getUser ()

PostAction: ApiAction.getSession()

PostAction: User.getId()

PostAction: Datastore.add("frank", "Hello")

The Struts ParametersInterceptor parses and interprets the user.id at-
tribute as an instruction to set the id property of the user property. This
results in a sequence of operations equivalent to getUser () .setId ("frank").
This oversight by the developer illustrates how easy it can be to program an
unexpected execution path that compromises security. Accessing object fields
though a chain of getters and setters is a useful and documented feature of
Struts. However, it can come as a surprise to a programmer, who is focused more
on application-level development, that something as intuitive as implementing a
getter for the current user results in a security vulnerability.

This problem is further highlighted by an almost identical vulnerability (CVE-
2014-0094) that was found within Struts itself. Even though the consequences of
exposing a public getter may have been clear to the Struts developers, it is easy to
overlook the fact that every Java object (and therefore, every Struts action) also
contains a getClass method. This results in an unintended exposure of an ac-
tion’s Class object, accessed through request parameters [2]. Unfortunately, even
after the problem was discovered, the implemented remedy was incomplete. The
initial remedy black-listed the class parameter, however, it did not consider
uppercase parameters (such as Class). Eventually, three more vulnerabilities
were reported on incomplete remedies before the issue was believed addressed.

The micro-blogging application is one example of how programming error can
result in a security vulnerability whose identification and prevention require an
in-depth understanding of the underlying systems. However, given the complex-
ity of contemporary systems, our position is that there will always be some aspect
of the behavior that the programmer does not fully understand. For example,
a study of developers by Oliveira et. al. [13] found that 53% of its participants
knew about a particular coding vulnerability, however they did not correlate it
with their own programming activity unless it was explicitly highlighted.



3 Security vulnerabilities and anomaly detection

The use of anomaly detection in software execution has tended to focus on rela-
tively small-scale homogeneous applications. However, the microblogging exam-
ple illustrates that even very simple contemporary applications are in fact large
systems of interconnected components. This section considers the key challenges
encountered in applying anomaly detection techniques to contemporary applica-
tion software. For reasons of space, but without loss of generality, the discussion
is focussed on a common enterprise scenario of a web application/service built
on a high-level software platform (Java) and an MVC framework (Struts).

3.1 Abstraction and scope

The activity of an application is observed as a sequence of events, such as a
system log. These observations can be made at different levels of abstraction. For
example, the micro-blogging application activity could be observed as a series of
high-level user actions, such as posting or viewing a message. At a lower level of
abstraction the actions can be observed as HTTP calls to the application server.
Further lower levels describe the activity of the application code and its libraries,
Java virtual machine, operating system, and so forth. The objective is to use the
observed activity /log of the system to build a behavior reference model for use
in anomaly detection. The challenge is determining a level of abstraction that
enables anomalous execution paths to identify security vulnerabilities.

Security vulnerabilities occur at different levels of abstraction. Building refer-
ence models from observations of low-level interactions, such as operating system
calls [4,7,12] or Javascript [17] calls has been shown to be quite effective in de-
tecting specific exploits on the application, such as buffer overflow vulnerabilities
or cross-site scripting. However, the anomalous execution path in the micro-blog
example cannot be detected at a level of abstraction comparable with [4,7,12,17)
as observing the sequence of calls to the database looks the same as valid be-
havior. While one may think of this anomaly as occurring at a higher level of
abstraction, making observations based on HTTP requests is not sufficient in
this case (although we note that there are other anomalies that can be charac-
terized at this high-level). An analysis algorithm is proposed [15] that discovers
a level of event abstraction that provides good anomaly-detection accuracy in
transaction-like behaviors; it has proven quite effective in discriminating actions
that remain static from the parameters that can change within a transaction.

In our experiments we found that observing (Java) application behavior in
terms of its method calls and permission checks is the most effective in distin-
guishing the un-expected execution paths that lead to software vulnerabilities.
However, in practice it is unrealistic to base anomaly detection on every un-
derlying method call invoked as a consequence of executing an application. For
example, the few lines of the microblog application Java code in Figure 1 gen-
erate tens of thousands of method calls. Therefore, the scope of observation is
restricted to methods that belong to the specific component(s) of interest. Sec-
tion 2 considers detection of vulnerabilities in the microblog application code



and, therefore, restricts the observed scope to just those methods that belong
to this application’s Java package. In the experiment described in Section 4 the
focus is on detecting vulnerabilities in the code that implements Apache Struts
and therefore the scope is the 2400 methods defined within Struts packages.

3.2 Generating baseline activity

A Dbaseline of observed activity must be obtained in order to build the behav-
ior reference model for the software component. In order to be applicable to
an enterprise environment, the method of establishing baseline activity has to
be systematic, repeatable and aligned with application development/deployment
lifecycle. Most importantly, the baseline generation must provide sufficient cov-
erage for the normal/expected behavior of the application.

A common position is that a satisfactory baseline can be obtained as a record-
ing of “normal” activity obtained though monitoring application operation in its
target environment [6,7,17]. However this has practical limitations for enterprise
software; in particular, the system must run over a period of time in order to gen-
erate a baseline with sufficient coverage. As the software industry adopts faster
and more automated delivery approaches and software releases are as frequent
as on daily basis, building a (normal) baseline based on observation of applica-
tion in production is impractical. It would not only require the application to be
active for a significant length of time without anomaly detection, it also may be
impossible to obtain a sufficient baseline before it becomes obsolete.

We argue that is more appropriate to obtain the baseline and corresponding
behavioral model during the software testing phase. In [16] it is suggested that
unit tests might be used to generate the necessary system logs. Such a baseline
is useful if the required scope and level of abstraction is consistent with the
unit tests. Notwithstanding coverage, unit tests are typically constructed for a
specific component, in isolation, and may only be suitable for relatively sim-
ple components or utility libraries An alternative approach is using functional
and/or integration tests to also generate the baseline. Enterprise software is of-
ten subjected to extensive testing, usually highly automated and with controlled
coverage. Traces resulting from such software tests may provide a reliable and
systematic baseline model. However, as with unit tests, the functional test cov-
erage is usually built only to a certain satisfactory level but is rarely complete.
Additional coverage may be obtained using fuzz testing or application scanners
that automatically exercise application in order to perform non-functional types
of testing such as security or performance. The application scanners often use
functional test execution as its starting point and then extend the coverage by
exploring the application further in automated fashion.

In our experiments we found that using an application scanner allows the
application system to be explored in a comprehensive, un-biased and repeatable
manner and was the most effective for our task. The application scanner ex-
plores the application extensively to discover its structure, parameters, cookies
and so forth, and also engages in a series of tests in an attempt to discover se-
curity vulnerabilities. While the scanner interacts via high-level requests to the



application’s external interfaces, a system log/trace of the consequent low-level
actions is generated. If the scanner does not discover any security vulnerabilities
then it is this log that provides the baseline of expected activity.

3.3 Behavioral reference model

A number of approaches can be used to infer a reference model of system behav-
ior based on observed past activity, with varying complexity and precision. Sta-
tistical models [8] probe various system characteristics periodically to establish
a baseline of metrics. Such models, while useful for simple intrusion detection,
are not sufficiently rich to detect anomalous software execution. Sequence-based
techniques have been designed to infer acceptable behavior /policies for anomaly
detection [7,15] and process mining [1]. Strengths and weaknesses of existing
techniques have been studied [3,18] and expected properties of the reference
model discussed [6,14].

In many applications, activity may be contained in finite and separate units
of work, where a sequence of operations that have clear beginning and end and, in
general, follow some repeatable pattern is performed. Application behavior may
contain multiple such transaction-like work units. For example, observing the
micro-blogging application at a method call level, can be modeled as a collection
of different kinds of transaction behaviors, such as posting a message or reading a
message. Activity observations related to invocations of the same transaction are
similar and activity related to invocations of different transactions substantially
different. For this type of activity, rather than merging all transactions into
a single set of short-range correlations [7], the reference model should be able
to express units of activity separately from each other [15], thus at increased
precision and reduced chance for mimicry attack [19].

Correlations between sequences of operations and their target values can be
used to discover repeating patterns of behavior and [15] uses this to develop
an automated technique to partition a system trace into a collection of behav-
ioral norms. In our experiments we use these behavioral norms [15] to provide
a reference model for anomaly detection. A collection of behavioral norms is
generated, from baseline activity log of Java events, for a given scope and level
of abstraction, each corresponding to a sequence of method calls parameterized
by common target attributes. The approach is not unlike process mining [1] or
sequence call monitoring [6], however, behavioral norms can be used to provide
a more precise model for system-level behavior.

3.4 Runtime verification and Application Integration

While traditional logging may be useful for retrospective detection of anomalous
behavior, integrating runtime verification/anomaly detection with the applica-
tion provides the ability to interrupt application execution before the anomalous
operations are executed. Contemporary software platforms provide integration
techniques such as Aspects that may be suitable for easy and non-disruptive
enablement of execution monitoring and runtime verification.



The trapping and monitoring of application execution is implemented using
Runtime Verifier, a customized Java Security Manager. Its purpose is to intercept
permission check requests, such as the permission to open a file, connect to server
or execute a process. According to its mode of operation, this manager may log
the events, check that event execution is compliant with a norm-model provided,
and if required, prevent the execution of anomalous event sequences.

While the Java Security Manager is a natural integration point for monitoring
and controlling application execution, it is limited to those methods that have
explicit permission checks such as input/output operations or security related
activity such as access to cryptographic keys. An arbitrary off-the-shelf compo-
nent might not have been programmed with its own permissions. In this case
it is insufficient to rely on the Security Manager, and therefore, a Java Aspect
was developed that can intercept specific method calls that match programmer-
specified pattern. For example, in the case of the micro-blog application, the
aspect was configured to intercept method calls that are provided by classes of
the application. The aspect, on intercepting a method call, invokes the Security
Manager, which in turn forwards the call details as an event to the Runtime
Verifier runtime. This is depicted in Figure 2.

Application scanner Application server

[ Method calls ] [ Permission checks ] [ Behavioral model ]

[ Aspect }—)[ Security Manager }—P[ Runtime verifier }

Application

[ Functional tests

Vulnerability tests

Fig. 2. Java Runtime Verifier . .
Fig. 3. Experiment setup

Using a security manager in the implementation of the Runtime Verifier
permits control over application execution. Permissions and identified method
calls are checked prior to execution, and thus can be validated for compliance
with the behavioral model at runtime, and prevented, if considered anomalous.

4 Experimental evaluation

The previous section outlined our implementation of Java application-level anomaly
detection based on behavioral norms: checking that the actual execution of an
application is compliant with a model of expected behavior that was generated
during software development. Our thesis is that unknown security vulnerabili-
ties in software components can be identified as runtime anomalies arising from
unexpected execution paths.

Testing this thesis using a catalog of vulnerabilities hand-crafted for the
purpose, may provide insight, but their design can be contrived/cherry-picked
and is not an effective evaluation of whether the approach would work ‘in the
wild’. We therefore decided to test the thesis against an application that used



a well-established and popular enterprise-scale software component that has a
history of security vulnerabilities. In particular, the objective is to test whether
vulnerabilities reported against earlier versions of software can be identified as
anomalies, while those same anomalies are not reported against later versions of
the software in which the corresponding vulnerability has been remedied.

In the following we considered the vulnerability history of 26 versions of
Apache Struts over a five year period, starting with version 2.3.1, released in
December 2011, to version 2.3.24.1, released in September 2015.

4.1 Experiment setup

Figure 3 outlines the key elements of the experimental setup. In order to evaluate
Struts behavior in its typical environment, we developed a small Struts-based
web application based on the micro-blogging program described in Section 2.
The application makes conventional use of Struts, with a standard configuration
including default interceptor stack and properties.

The application system is built automatically and the experiment is carried
out separately for each version of Struts. Experiment characteristics, such as
execution times and sizes, were comparable for the different versions of Struts.
Experiments were orchestrated by Apache Maven and each iteration for a dif-
ferent Struts version comprised of two phases. In the first phase, a trace of the
application system’s execution is generated and from which the behavioral model
is built for the given version of Struts. In the second phase the effectiveness of
anomaly checking based on the generated behavioral model is verified.

4.2 Building behavioral models

A commercial application security scanner was run against the micro-blogging
web application. The scanner configuration was standard and not tailored in any
particular way for Struts. The same scanner configuration was repeatedly used
against each deployment of the application with a different version of Struts. In
each experiment, the scanner interacts with the micro-blogging web application,
black-box testing an extensive collection of known vulnerabilities and misconfig-
urations. The Runtime Verifier was deployed with the application and used to
build/check the behavior models in each experiment.

In our experiment, we consider the behavior of Struts, in terms of how it is
used by the application. Therefore, the Runtime Verifier (Section 3.3) was config-
ured to intercept all method calls within the Struts packages scope, that is org.
apache.struts2. ., corresponding to 460 distinct methods that are used in the
context of the micro-blogging web application. A single scan experiment resulted
in 8963 HTTP requests to the micro-blogging web application URLs with a range
of inputs, taking 8 minutes to complete. In monitoring the execution of the appli-
cation during this scan, the Runtime Verifier generates a 237 megabyte baseline
trace containing 2.76 million Struts events (in scope), which is analyzed, and a
set of behavioral norms is generated within approximately a further 5 seconds,
running on a mid-range computer. The norms are sequences of method calls,
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such as < .., UrlHelper.encode, UrlRenderer UrlProvider.getAnchor,
UrlRenderer UrlProvider.isPutInContext, ...),represented as tri-grams.

Figure 4 plots an example of the number of distinct norms (transactional
behavior patterns) generated, against the number of HTTP requests made by
the scanner to the application deployed with Struts version 2.3.1. ; From the start
of the scan, as the number of requests increase, the number of norms resulting
from the requests rapidly increase initially, and then appear to stabilize after
a period. This graph suggests that our scan size of 8963 requests is adequate,
after which no new norms are identified. Similar results were achieved for the
other versions of Struts. Having generated a behavioral norm model for a given
version of Struts and included it with the Runtime Verifier in the application
deployment, the second phase of the experiment involves testing the effectiveness
of using the model to detect vulnerabilities for that version of Struts.

4.3 Vulnerability tests

At the time of writing and based on the Common Vulnerabilities and Exposures
(CVE) entries in the National Vulnerability Database, there are 19 vulnerabili-
ties known to the general public for the 26 versions of Struts under study. For
each vulnerability, the CVE advisory was studied alongside the vulnerable Struts
code and the remediated version of the code, and an attack vector exploiting the
vulnerability was developed. Of the 19 vulnerabilities, attacks for the 18 listed
in Table 1 were developed; we could not find enough information to reproduce
the vulnerability identified in CVE-2012-4386. For each vulnerability, we imple-
mented an automated test case which attempts to exploit the vulnerability and
verify that the exploitation was successful.

For example, CVE-2013-2115 is a vulnerability that allows a remote attacker
to execute arbitrary OGNL code via a crafted request. It affects Struts JSP tags
for rendering URLs. Using the tag is convenient and relieves the developer from
having to manually map actions to URLs and passing parameters, thus further
separating application logic from low-level details. In order to render a URL for
a search action, including the current page’s parameters, the developer can use:
<s:url action="SearchAction" includeParams="all">. The tag is evalu-
ated to /api/search?name=Frank. However, the code for processing the tag
suffers from a security vulnerability. An attacker may add a request parameter by



including OGNL code and that code will be evaluated when processing the tag.
For example, the official security advisory for this vulnerability (CVE-2013-2115)
describes that an attacker may append x=${@java.lang.Runtime@getRuntime
() .exec (’cmd’) } to the page parameters. The OGNL code, enclosed in ${} is
evaluated and custom Java code is executed by the application. However, the
attack results in activity caused not only by an unexpected Struts execution
path, but also by the injected code involved in creating a process and accessing
a file binary. Rather than injecting malicious code that results in significantly
different behavior, each test case attempts to inject benign code that simply
sets a variable that can be subsequently checked to determine the success of the
attack. The objective of each test is to generate the minimal behavior needed to
explore the path of the attack, but it does not engage in subsequent behavior
that might be easily recognized as anomalous in its own right. In this way the
test case is intended to represent a worst-case scenario for anomaly detection.

In many cases developing the vulnerability test cases required some effort.
A number of the vulnerabilities are not clearly described in their respective ad-
visories and sometimes the details are intentionally undisclosed. For example,
CVE-2013-4310 (discussed below in this paper) is described as allowing “to by-
pass security constraints under certain conditions”. In order to prepare the
test case for this vulnerability it was necessary to understand its nature though
analysis of source changes of Struts.

Vulnerability test results. Table 1 contains® the outcome of testing each of
the 18 reported vulnerabilities against each of the 26 versions of Struts. Each

CVE ID 2.3.1 2.3.4 2.3.14 2.3.14.1 2.3.14.2 2.3.15 2.3.15.1 2.3.16 2.3.16.1 2.3.16.2 2.3.16.3 2.3.20 2.3.24 2.3.24.1
2015-5209[+++ +++ +++ +++ +++ +++ +++ +++ +++  +++  ++ -+ bt

2015-1831)— —— ——— ——— I ——_—__,—_,_,eeeTTTT-—
2014-7809[++— ++— ++— ++—  ++— ++— ++— ++- ++—  ++—  ++- - ———
2014-0116[+++ +++ +++ +++ +++ +++ +++ +++ +++ +++ -+ ——+ ——+ -+
2014-0118[+++ +++ +++ +++ +++ +++ +++ +++ +++ -+ -+ ——+ ——+

2014-0112[4++4+ +4++ +4++ +++ +++ +++ +++ F++ -+ - - ——— ——— ———
2014-0094[+++ +++ +++ 44+ 44+ A+ 4Ht A - = = ——— ——— ———
2013-4316(+++ +4++ +++ +++ +++ +++ +H+ ——— ——— ——— - ——— ——— ———
2013-4310[4+— 44— +4+— F++— F+— - 44— ——— ——— ——— ——— ——— ——— ———
20138-2251+4++ +++ +++ +++ +++ +++ ——— ——— ——— ——— ——— ——— ——— ——=
2013-2248[+4++ +++ +++ +++ +++ +++ ——— ——— ——— ——— ——— ——— ——— ——=
20138-2185(+4++ +++ +++ +++ +++ ——— ——— ——— ——— ——— ——— ——— ——— ——-
20138-2184[+4++ +++ +++ +++ +++ ——— ——— ——— ——— ——— ——— ——— ——— ——=
2013-2115|+++ +++ +++ +++

2013-1966|+++ +++ +++ ++

2018-1965(+++ +++ +++ —++

2012-4387|+++ +++

2012-0393 ++§<\ e
vulnerable attack successful anomalies not vulnerable attack failed no anomalies
Note that some outcomes were identical for different versions of Struts, and in the interest of saving space.

Table 1. Attack Outcomes on different versions of Struts.

3 Presented as a table, keeping in mind Edward R. Tufte’s (2004) observation that
“small non-comparative highly labeled data sets usually belong in tables”.



table cell contains three outcomes. The first indicates whether it was reported
that the particular version of Struts was indeed affected (+), or not () by the
vulnerability. The second outcome specifies whether the execution of the attack
for that vulnerability was successful (+), or not (-). The third outcome, specifies
whether th Runtime Verifier detected anomalous behavior during execution of
the test case (+), or not (-). For example, the outcome +++ means that the
version had the reported vulnerability, that the attack test case successfully
executed and that anomalies were detected (true positive).

Considering CVE-2013-2115, the URL tag vulnerability described above, we
see from Table 1, that the attack test-case successfully exploited this vulnera-
bility, and was detected as an anomaly, for all versions 2.3.1 — 2.3.14.1 publicly
announced to be vulnerable (+++). A closer examination of the execution trace
fragment, generated from the attack test case,

DefaultUrlHelper DefaultUrlHelper.translateAndEncode
DefaultUrlHelper DefaultUrlHelper.translateVariable
OgnlInvoke invoke

ServletUrlRenderer ComponentUrlProvider.getAnchor
ServletUrlRenderer ComponentUrlProvider.isPutInContext

identifies the anomaly as OGNL code used in rendering the URL. Examin-
ing execution traces may help identify that part of the code that is responsi-
ble for the vulnerability. Indeed, a study of subsequent versions of the Struts
source code that repair the vulnerability reveals that the issue was attributed to
translatevariable that invoked OGNL processing. In the repaired code, the
method was removed as unnecessary. Carrying out the same test-case on subse-
quent non-vulnerable versions results in an unsuccessful attack and no anoma-
lous behavior (——-), which is as expected. The corresponding trace fragment for
those versions shows that no OGNL code execution—the root cause of the vul-

nerability in previous versions—was observed in the context of URL rendering:

DefaultUrlHelper DefaultUrlHelper.encode
ServletUrlRenderer ComponentUrlProvider.getAnchor
ServletUrlRenderer ComponentUrlProvider.isPutInContext

Some tests executed with unanticipated outcomes. A surprising result —++,
indicates a successful attack, with the anomaly detected, for Struts version
2.3.14.1 for which no vulnerability was reported in CVE-2013-1965 and CVE-
2013-1966. A closer examination of these two vulnerabilities confirms that, con-
trary to publicly available information, version 2.3.14.1 is indeed vulnerable.

False negatives In most cases, Table 1 reports that the anomaly detection
identified successful attacks on vulnerable versions, while unsuccessful attacks
on non-vulnerable versions were not identified as anomalous. The table, however,
reports two vulnerabilities with a false negative result (++-), that is, a successful
attack on a vulnerable version for which anomalous behavior was not observed.

One false negative arises from CVE-2014-7809: a CSRF vulnerability caused
by a predictable token generated using a weak generator. It allows an attacker,
knowing a previous value of a token, to predict the value of the next token and
to use it to perform an attack. Although the attack is caused by a simple coding
error, we argue that it does not arise from an unexpected path of code execution.
A CSRF attack as a request using a token generated by the attacker results in



exactly the same behavior as a legitimate request made by the user. As such, it
can not be detected as an anomaly in the execution path.

Another false negative arises from CVE-2013-4310, which reports an ability
to bypass security constraints. Our investigation discovered that this vulnera-
bility is only applicable to applications that have a somewhat unusual security
mechanism. As mentioned in Section 2, actions in Struts are the basic unit of an
application’s business logic and are normally mapped to specific URL paths (such
as /api/post). Struts offers an alternative addressing through URL parameters
with action prefix, such as /api/other?action:post. The vulnerability de-
scribes a scenario when a security control, implemented outside struts, based on
specific URL pattern is bypassed using the alternative addressing. It could be
argued such scenario does not really describe a Struts vulnerability, but rather a
faulty security control that documented feature of Struts allows to facilitate. In
our experiment, the attack exploiting CVE-2013-4310 was undetected because
the application we implemented included use of action: prefixes. Addressing
actions though parameters was considered a normal behavior of the application
and, when executed during the attack, did not cause anomalous behavior.

False positives In two instances, the test cases result in false positives, that
is, anomalous behavior is detected for an unsuccessful attempt to exploit non-
vulnerable version (--+). This outcome is observed for CVE-2014-0114 and
CVE-2014-0116 in versions where these vulnerabilities are repaired. They are
variants of the problem discussed in Section 2 where the internal state of an ap-
plication can be modified through a chain of getters and setters, and in this case,
though crafted cookies. A study of the attack test-cases reveals that the anoma-
lous behavior is related to the special treatment that Struts gives to particular
cookie names. The original vulnerabilities were repaired by adding a blacklist
of disallowed cookie names (such as starting with class). Thus, processing a
normal cookie results in a behavior that is different to processing a cookie with
blacklisted name. However, in its standard configuration, the application scanner
does not generate a request involving a Struts black-listed cookie and, therefore,
the generated model of expected behavior does not include an execution path
corresponding to the security processing of a blacklisted cookie. Thus, the test-
case, while not an attack, is flagged as an anomaly.

Overall, this part of the experiment indicates that all vulnerabilities that
could be attributed to unintended code execution path in struts were success-
fully detected. It also shows that, with one exception of black-listed cookies,
in non-vulnerable versions, where malicious request is properly handled by the
application no anomalous behavior is reported.

4.4 Functional tests

On generating an expected model of behavior (for a given version of Struts) we
check that its norms are sufficiently complete by engaging a further standard
application scan and confirm that no anomalies are identified. This confirms



that ‘normal’ expected behavior is properly recognized by the Runtime Verifier.
However, for the purposes of the evaluation, we are interested in confirming that
the anomaly detection can also discriminate between attacking behavior that
exploits a vulnerability versus other behavior that executes code in the region
of the vulnerability, but does not actually exploit the vulnerability. To this end,
a suite of functional tests were developed to check this ability to discriminate.

For example, the URL tag vulnerability CVE-2013-2115 described in Sec-
tion 4.3 involves passing a crafted value through a URL parameter. The test
calls an application using an additional parameter but without OGNL code.
Some vulnerabilities require more advanced test cases. For example, the attack
test-case for CVE-2013-2251 involves passing a crafted string through a Struts-
specific request parameter, allowing indirect action addressing. We developed
two further functional test-cases that check this particular functionality. First
uses the indirect addressing, but with a correct action name, and checks that the
requested action was called. Second has an incorrect action but checks whether
the application replied with expected/corresponding error. The purpose of these
tests is to check whether the anomaly detection actually reacts to a genuine vul-
nerable path of execution or whether the path from related valid functionality is
flagged as an anomaly. By making sure that the functionality is exercised we can
distinguish between these two cases, exercising particular functionality normally
(even if in error scenario) and during the attack.

Overall, we developed 19 test cases that explore non-attacking behavior in
the region of the 18 vulnerabilities. The outcome-score of each test is similar to
the vulnerability tests and represented using two values. The first outcome value
reports whether the test was successful, that is whether the tested functional-
ity worked correctly. Note, that because we have also tested an application’s
response to an incorrect request, a successful outcome may mean that the appli-
cation correctly responded to an incorrect value, such presentation of an error
page. The second outcome value reports whether an anomaly was detected dur-
ing execution of the test. Most of the test outcomes are indicating a successful
test with no anomalies. However, in two cases the outcome indicates test failure
with no anomalies is observed. These are the test cases for indirect action ad-
dressing using action: prefix. The test fails for all versions from 2.3.15.2. This
is because, as a response to CVE-2013-4310, this functionality was disabled.

4.5 Experiment insights

The application scanner may trigger an unexpected behavior, which if unat-
tended to, becomes part of the model used in runtime verification. However,
this phenomenon was not observed during our experiments. Furthermore, we
assume that any vulnerability identified during scanning will be remediated by
modifying the source code and the scan repeated.

Anomaly detection/prevention adds a performance overhead that should be
considered. In order to integrate anomaly detection with the application we
used a Java Security Manager and AspectJ. These tools are routinely used for



implementing security mechanisms and their performance impact has been in-
vestigated [9,10]. During the the Struts experiment, the average time to process
an HTTP request from the scanner to the application took 4950us without in-
strumentation. With the Anomaly Manger enabled for runtime verification, the
average time increased by 3.85% to 5140us. However, the increase depends on
how much of application activity is covered by runtime verification: in the ex-
periment this was limited to the Struts library.

Part of our experimental setup involved inspecting the codebases of differ-
ent versions of Struts in order to identify the vulnerable code and implement
the attack tests. In carrying out this detailed code-level review we observed a
number of programming phenomena across the different versions. In particular,
the phenomena that some generic functionality of Struts allows for a specific
execution scenario that compromised security. The otherwise harmless features,
such as addressing actions, setting their parameters and evaluating expressions,
when used in a particular way allowed unintended operations. For example, five
vulnerabilities exploit the feature that allows setting action properties through
HTTP parameters and accessing sensitive objects such as session or class loader.

Overall, we observed that the majority of the programming issues relate to
rather simple programming errors. In particular, while a general functionality
was implemented, a specific, unexpected execution pattern was not considered
nor handled by the code. In some cases, such as accessing the class loader via pa-
rameter (CVE-2014-0094), we conjecture that the developers were surely aware
that accessing properties though parameters can be a security risk. Some specific
parameters, such as session object, were black listed but others that are less ob-
vious, such as class, were not. In other cases, when a vulnerability was identified
in one part of the framework it was not immediately correlated to another part
that was also vulnerable [2]. For example, the fix for CVE-2014-0094 addressed
class loader manipulation though request parameters but did not provide the fix
for the same attack using cookies. Our analysis of Struts vulnerabilities would
seem to confirm other studies [13] that indicate that developers tend to repeat
security errors even when they are aware of particular vulnerability.

5 Conclusion

We argue that many of the security vulnerabilities that are caused by program-
ing error can lead to unexpected execution paths that can be detected using
anomaly detection techniques. However, applying such techniques to contem-
porary, enterprise software is not trivial and poses a set of challenges such as
selecting the scope and abstraction level of software monitoring, establishing a
base line behavior and choosing suitable behavioral model.

We propose a methodology for putting anomaly detection into use for con-
temporary software components and apply it to Apache Struts as a part of large
scale application. Our experiments demonstrate that it is possible to learn a suf-
ficiently rich model of the application’s expected use of Struts such that it can be
used to detect anomalies in its subsequent use of Struts. Indeed, results indicate



that all 16 execution path-related vulnerabilities identified over 26 versions of
Struts over 5 years are effectively identified as anomalies. While the experiments
were comprehensive, they are limited to Struts vulnerabilities. Nevertheless, we
believe the results point to the potential of using anomaly detection techniques
in contemporary software and that further research on this topic is worthwhile.
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Ireland under grant SFI/12/RC/2289.
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