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Abstract—Error occurrence in embedded systems has signif-
icantly increased. Although inherent resource redundancy exist
in processors, such as in Very Long Instruction Word (VLIW)
processors, it is not always used due to low application’s Instruc-
tion Level Parallelism (ILP). Approaches benefit the additional
resources to provide fault tolerance. When permanent and soft er-
rors coexist, spare units have to be used or the executed program
has to be modified through self-repair or by using several stored
versions. However, these solutions introduce high area overhead
for the additional resources, time overhead for the execution of
the repair algorithm and storage overhead of the multiversioning.
To address these limitations, a hardware mechanism is proposed
which at run-time replicates the instructions and schedules them
at the idle slots considering the resource constraints. If a resource
becomes faulty, the proposed approach efficiently rebinds both
the original and replicated instructions during execution. In this
way, the area overhead is reduced, as no spare resources are used,
whereas time and storage overhead are not required. Results
show up to 49% performance gain over existing techniques.

I. INTRODUCTION

The reliability requirements of embedded systems are highly
increased due to both software and hardware characteris-
tics [1], such as critical applications, harsh operation envi-
ronments, transistor decreasing size or low supply voltage.
To provide correct system functionality, the system has to be
enhanced with fault tolerant techniques for both temporary
errors, caused by heat, radiation, electromagnetic interference,
etc., and permanent errors, caused by circuit manufacturing or
ageing. Several fault tolerance techniques use either hardware
or software redundancy. Hardware redundancy inserts addi-
tional resources to the system in order to execute several times
the instructions [2] providing performance almost equal to the
unprotected version, but in cost of area overhead. Software
redundancy executes the replicated instructions on the same
resources increasing the execution time [3].

Several embedded processors are designed with a high
number of parallel Function Units (FUs) providing inherent
resource redundancy. Due to the restricted ILP of most ap-
plications, several of these resources remain idle during the
application execution, so they could be exploited to improve
software redundancy techniques. Such approaches can be
implemented either in software or in hardware. Software-
based approaches replicate and schedule the instructions at
design-time [3] and thus increase the code size, the storage
needs and the power consumption compared with hardware
approaches, which perform the duplication at run-time [4].
However, when permanent errors also exist, these approaches

cannot be applied as they do not modify the execution of
the program to exclude faulty parts. To deal with permanent
errors, either the hardware has to be reconfigured using spare
units [5] or the executed program has to be modified in order
to avoid the use of faulty units. The use of spare units highly
increases the area overhead for both the FUs and the control.
The modification of the executed program is performed using
software by re-writing the program in the memory [6] or by
using multiple different versions of the program [7]. In the
first case, time overhead is introduced, whereas in the second
case the storage requirements are highly increased. A simple
hardware approach has been combined with a software repair
routine in [6], which sequentially schedules the instructions
that cannot be scheduled to other slots, whereas the detection
of the permanent errors has been performed up-front.

In this work, we propose a hardware-based approach for
both single and multiple, permanent and soft errors for het-
erogeneous statically scheduled data paths. Our technique
removes time and storage overhead and the need for spare
units. At run-time, it replicates and binds the instructions to
provide error detection and mitigation. If permanent errors
are detected, an efficient instruction binding is applied which
modifies at run-time the executed program. Both instruction
replication and binding explore the idle VLIW slots taking
into account the limitations on the type and the number of
resources. To support our contribution, we perform a set of
experiments for a VLIW processor with heterogeneous slots.
Duplication of instructions for error detection and triplication
for error mitigation are used by our approach in combination
with a number of possible permanent errors. Results show up
to 49% performance gain over existing techniques.

The remaining of this paper is organized as follows: Sec-
tion II describes the proposed technique, Section III presents
the experimental results, whereas Section IV discusses the
related work. Section V gives a conclusion of this work.

II. RUN-TIME INSTRUCTION REPLICATION AND BINDING

The target domain of the proposed approach is VLIW
processors, where a number of instructions is formatted as
one big instruction, named instruction bundle, which is issued
in parallel to the pipelined FUs of the processor. The proposed
approach takes advantage of the idle issue slots of VLIW
instruction bundles to: 1) execute original and replicated
instructions in order to provide fault tolerance and 2) rebinding
instructions in case of permanent errors. It can be combined
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Fig. 1: Illustration of the proposed approach

with several fault tolerant techniques, i.e. duplication and
triplication of instructions supporting error detection and mit-
igation, and it is applicable for any VLIW structure, i.e. any
issue width and number and type of FUs.

Fig. 1 illustrates the output of the proposed approach for a
simple case using duplication of instructions and one perma-
nent error. It shows the scheduled operations for an instruction
bundle and the available FUs for an 8-issue VLIW processor:
8 Arithmetic and Logic Units (ALUs), 4 Multipliers (MULs),
2 Memory operation units (MEMs) and 1 Branch unit (BR).
The original instruction bundle is depicted in Fig. 1(a) and the
instruction bundle with the duplicated instructions in Fig. 1(b).
In case of a permanent error detected in the multiplication unit
of the third slot, existing hardware techniques re-execute the
instruction scheduled at the third slot to another FU of another
time slot, as depicted in Fig. 1(c). To improve performance,
the proposed approach explores at run-time the rebinding of
original and replicated instructions to explore the existing FUs
and the idle slots, as depicted Fig. 1(d). In this example, the
instruction ADD3 is moved to the third slot, whereas the
instruction MUL1 is moved to the fourth slot without adding
a time slot. In case there is a need for an extra time slot, the
instructions that fit in the first time slot are placed there and
the remaining ones in the next time slot.

Fig. 2 depicts the two components added to the VLIW
pipeline: the Instruction Replication and Binding (IRB) and
the fault detector. The VLIW consists of four stages: Fetch
(F), Decode (DC), Execute (EX) and Memory/Write Back
(M/WB). The IRB takes the decode stage result, the mode, and
the faulty information as input, and has the binding info and
the fetch stall as output. The mode is defined by the designer
and it defines which fault tolerance technique is implemented:
i) duplication of instructions, ii) triplication of instructions, or
iii) duplication and re-execution. Depending on the mode, the
IRB duplicates or triplicates the instructions and binds them
in the idle slots of the instruction bundle taking into account
the limitations on the number and the type of resources. In
case not enough idle slots or FUs exist, a new time slot is
added by stalling the fetch of new instruction bundles. The
stall of the fetch stage is performed by propagating the fetch
stall command to the fetch stage. The faulty information is
used by the IRB in case of detected errors. When duplication
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Fig. 2: Hardware components inserted in the VLIW pipeline.

with re-execution is selected as mode and a temporary error
occurs, the IRB stalls the pipeline and re-executes the faulty
instruction in a different FU. If a permanent error is detected,
the IRB updates the state of the FUs and explores the idle
slots and the available FUs to bind efficiently the original
and replicated instructions. The binding information is sent
to the fault detector to inform how the instruction binding
has been performed. The fault detector uses this binding
information to decide which results are ready to be compared
and committed. When an error is detected, it is initially
assumed to be a temporary error. If a number of sequential
instructions continue to indicate that the FU is faulty, then the
fault detector decides that the error is permanent and sends
this information to the IRB to update the status of the FUs.
If the selected mode is triplication, the fault detector corrects
the error and propagates the corrected value for commit.

III. EXPERIMENTAL RESULTS

For the experimental part, we have used basic media
benchmarks extracted from MediaBench [8] and the VEX
VLIW processor [9] with HP VEX compiler. The VLIW is
configured based on realistic configuration of resources used
by commercial VLIWs, e.g. Intel Itanium [10], as depicted in
Fig. 1 and Fig. 2. A simulation tool has been developed using
Python to calculate the execution cycles of each application
compiled with the HP VEX compiler. Intermediate files (.cs.c)
from compiled simulator step are instrumented, linked and
compiled with GCC in order to provide processor’s execution
instruction sequence traces. Our tool scans these traces to
calculate the processor’s execution cycles and, thus, estimate
the performance of each approach. The area and power eval-
uation of our technique is under development. We perform
experiments by applying two fault tolerance techniques with
our approach: duplication and triplication of the instructions.
We provide performance results for one up to five concurrent
permanent errors occurring in any combination of the four
different types of FUs of the VLIW. Each time, at least one
non-faulty FU exists for each type of required FUs. Otherwise
the processor is declared as ”out of service”, as it is not able
to execute every instruction anymore.
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Fig. 3: Performance comparative results

Fig. 3 depicts the execution cycles of the unprotected
original code (N) and the proposed approach that applies
duplication (DMR) and triplication of the instructions (TMR).
With our method, the overhead of DMR and TMR with p = 0
permanent errors is in most of the cases less than 100%, which
is lower than the cycles expected when we execute twice or
three times the original code (N). This occurs as the proposed
approach efficiently explores the idle slots.

Table I depicts the impact of the multiple permanent errors
in the performance of our approach implementing DMR and
TMR. The performance overhead of DMR (resp. TMR) with
p = 1, . . . , 5 permanent errors is calculated relatively to DMR
(resp. TMR) with no errors (p = 0). For the DMR, the
performance overhead for motion, huff and crc remains quite
small, up to 27%, even for 5 concurrent permanent errors. As
these applications have a relatively small number of memory
and multiplication instructions, the impact in performance is
low when errors occur in MEM and MUL units. A similar
overhead exists for most of the remaining benchmarks with
up to 2 permanent errors. We observe that the concurrent
permanent errors effect most the performance of matrix mul,
with a maximum overhead of 75% in the case of 5 errors.
This overhead, in contrast to the first case, occurs because
matrix mul intensively uses the multiplication FUs, and, thus,
the lack of these resources due to errors leads to high overhead.
The last row shows the average overhead over the benchmarks.

Existing hardware approaches are applicable for single
permanent errors [11]. Extending them for multiple perma-
nent errors means that the instructions scheduled on a faulty
unit have to be re-executed to another unit by adding an
extra time slot. Similarly, hybrid approaches re-execute the
instruction that can not be assigned to a sequential slot [6].
The behavior of these approaches can be estimated by using
twice the execution cycles of the fault tolerance technique
without any permanent errors, one time for the performance
of the technique and a second time for the effect of the re-

execution of the instructions scheduled to faulty units. This
provides a lower bound because the execution cycles used are
computed without permanent errors and the multiplication by
two implies that all the faulty instructions of a bundle can
be executed in only one additional time slot. Therefore, these
values compared with our technic’s results give an estimation
of the lowest gain of the proposed approach (see Table II).

For our approach using the DMR, we observe that for all
the benchmarks we achieve a high performance gain even for
5 multiple concurrent permanent errors, as depicted in the left
part of Table II. The highest gains have been observed for the
crc benchmark, from 49% for one permanent error up to 40%
for 5 permanent errors and the smallest gains for matrix mul
from 32% for 1 permanent error up to 12% for 5 permanent
errors. In the case where our approach uses TMR, it has also
achieved a high performance gain for all the benchmarks, as
depicted in the right part of Table II. We observe that for up to
2 permanent errors we have high gains for all the benchmarks,
whereas for the matrix mul which has high ILP, the gains are
slightly reduced for 3, 4 and 5 permanent errors. The gains
of the TMR compared to the DMR are higher, even for the
instructions with high ILP. This occurs because due to the
triplication of the instructions, more time slots are required to
be added, which also increases the number of the idle slots.
As the proposed approach efficiently explores these idle slots
and the available FUs, it provides higher gains.

By comparing also the TMR approach with the optimal best
case, i.e. twice the time of the DMR without any permanent
error occurring, we observe some noticeable gain values. For
motion, huff, and crc we achieve the gains: 20%, 17% and
31% for 1 permanent error and 8%, 11% and 21% for 5
permanent errors. Due to the low ILP of some applications,
several idle slots exist and the proposed approach efficiently
explores them even in the case of triplicating instructions.
As the ILP increases and more permanent errors occur, it is
normal the gains, using TMR, to be reduced compared with
DMR. For the benchmarks fft, bcnt, adpcm enc, adpcm dec
and fir, the TMR of the proposed approach provides gains of
14% up to 3% for up to 3 permanent errors, whereas for the
dct and matrix mul the gain is only 2% for 1 permanent error.

IV. RELATED WORK

To provide fault tolerance in processors with inherent re-
source redundancy, software-based and hardware-based tech-
niques have been proposed to take advantage of the additional

TABLE I: Performance overhead (%)

Benchmark DMR TMR
1 2 3 4 5 1 2 3 4 5

motion 11 14 17 21 27 7 9 12 17 23
huff 11 14 15 19 21 7 8 10 12 14
fft 16 23 35 47 59 9 13 22 33 42
dct 21 28 37 48 58 13 17 23 32 39
bcnt 21 26 31 39 49 11 13 16 22 28
adpcm enc 21 26 34 42 47 12 16 23 30 33
adpcm dec 23 28 35 43 47 12 16 23 30 32
matrix mul 36 40 54 66 75 14 21 34 46 51
fir 16 20 27 34 38 10 14 20 26 30
crc 3 4 7 12 20 2 3 5 11 18
average 18 22 29 37 44 10 13 19 26 31



TABLE II: Lower bound on performance gain (%)

Benchmark DMR TMR
1 2 3 4 5 1 2 3 4 5

motion 44 43 42 40 37 46 46 44 41 38
huff 45 43 42 41 39 47 46 45 44 43
fft 42 39 33 27 21 46 43 39 34 29
dct 40 36 32 26 21 44 41 38 34 30
bcnt 39 37 35 30 25 44 43 42 39 36
adpcm enc 39 37 33 29 27 44 42 39 35 34
adpcm dec 38 36 32 29 26 44 42 39 35 34
matrix mul 32 30 23 17 12 43 40 33 27 24
fir 42 40 36 33 31 45 43 40 37 35
crc 49 48 46 44 40 49 49 48 45 41
average 41 39 35 31 28 45 43 41 37 34

resources. Software-based approaches replicate and schedule
the instructions at design-time. In this way, no additional hard-
ware control is required, but code size, storage and power con-
sumption are increased. For instance, the compiler duplicates
the operations and schedules them in different FUs of VLIW
processors [3] or exploits the idle slots for soft errors [12].
Hardware-based approaches duplicate the instructions at run-
time using specific hardware using the compiler’s result. To do
so, coupling of the VLIW pipelines is applied [4], [13]. When
the duplicated instructions do not fit in the current bundle,
an additional time slot is added. Combinations of software
and hardware approaches also exist. In [11] the instruction
duplication and scheduling is performed by the compiler,
whereas the comparison of the instructions is performed by
the hardware. In case of an error, re-execution takes place
through a simple HW operation rebinding. However, the
VLIW consists of homogeneous issue slots with FUs executing
any type of operations, whereas single errors are considered.
However, these approaches cannot be applied in the case of
permanent errors, as they do not modify program’s execution.

In case of permanent errors, either the hardware has to
be reconfigured using spare units or the execution of the
program has to be changed to avoid the faulty units. By
using spare hardware resources, the area and control overhead
are increased. The technique in [14] performs redundant
re-execution of the instructions by adding a set of spare
functional units in general purpose multiprocessors. In [15]
a spare function unit is added for error detection in VLIW,
whereas single errors of one type are considered. In [5],
spare function units are inserted to support TMR and when
not enough resources exist, the recovery is performed by re-
execution of the faulty instruction. The modification of the
execution of the program can be achieved either off-line in
software or on-line in hardware. The software approach of [7]
modifies the program memory, in case of an off-line detected
permanent fault, stores several versions of the scheduling.
In [16], [17], a coarse-grained L/U reconfiguration is proposed
for a single permanent fault for each hardware class of
ASICs based on band partitioning. The technique has been
extended for multiple faults by assuming one at each band
and each reconfiguration can isolate one faulty unit. The fault
detection is assumed to be already done. Some approaches
combine software and hardware implementations. In [6] a
software repair routine modifies the instructions permanently

in the memory. During start-up, a self-test takes place to
identify the faulty slots. This information is used to change
the schedule stored in the memory. If the repair routine fails,
a simple hardware binding sequentially maps the instructions
that cannot be assigned to other slots. In [18], the approach is
extended to cover pipeline registers, the register ports and the
bypass logic, and in [19] is combined with adaptive software-
based self-test, assuming though that the permanent errors
have been already detected.

V. CONCLUSION

VLIW processors provide hardware redundancy that is not
always exploited by the application. The remaining idle slots
can be used to execute replicated instructions for reliability
purposes. A hardware technique is proposed to replicate and
schedule the instructions at run-time, thus exploring the idle
slots under constraints in the FU number and type. When per-
manent errors occur, less FUs are available and the proposed
approach efficiently rebinds the original and the replicated
instructions based on the available resources and idle slots.
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