Decomposed Task Mapping to Maximize QoS in Energy-Constrained Real-Time Multicores

Abstract : Multicore architectures are now widely used in energy-constrained real-time systems, such as energy-harvesting wireless sensor networks. To take advantage of these multicores, there is a strong need to balance system energy, performance and Quality-of-Service (QoS). The Imprecise Computation (IC) model splits a task into mandatory and optional parts allowing to tradeoff QoS. The problem of mapping, i.e. allocating and scheduling, IC-tasks to a set of processors to maximize system QoS under real-time and energy constraints can be formulated as a Mixed Integer Linear Programming (MILP) problem. However, state-of-the-art solving techniques either demand high complexity or can only achieve feasible (suboptimal) solutions. In this paper, we develop an effective decomposition-based approach to achieve an optimal solution while reducing computational complexity. It decomposes the original problem into two smaller easier-to-solve problems: a master problem for IC-tasks allocation and a slave problem for IC-tasks scheduling. We also provide comprehensive optimality analysis for the proposed method. Through the simulations, we validate and demonstrate the performance of the proposed method, resulting in an average 55% QoS improvement with regards to published techniques.
Type de document :
Communication dans un congrès
35th IEEE International Conference on Computer Design (ICCD), Nov 2017, Boston, United States. IEEE, pp.6, 2017
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01633782
Contributeur : Olivier Sentieys <>
Soumis le : lundi 13 novembre 2017 - 13:31:32
Dernière modification le : jeudi 11 janvier 2018 - 02:09:28

Fichier

Mo17ICCD.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01633782, version 1

Citation

Lei Mo, Angeliki Kritikakou, Olivier Sentieys. Decomposed Task Mapping to Maximize QoS in Energy-Constrained Real-Time Multicores. 35th IEEE International Conference on Computer Design (ICCD), Nov 2017, Boston, United States. IEEE, pp.6, 2017. 〈hal-01633782〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

38