V. Antimirov, Partial derivatives of regular expressions and finite automaton constructions, Theoretical Computer Science, vol.155, issue.2, pp.291-319, 1996.
DOI : 10.1016/0304-3975(95)00182-4

URL : https://doi.org/10.1016/0304-3975(95)00182-4

V. M. Antimirov and P. D. Mosses, Rewriting extended regular expressions, 1st DLT, pp.195-209, 1994.
DOI : 10.1016/0304-3975(95)80024-4

URL : https://doi.org/10.1016/0304-3975(95)80024-4

R. Bastos, Manipulation of Extended Regular Expressions with Derivatives, 2015.

S. Broda, A. Machiavelo, N. Moreira, and R. Reis, ON THE AVERAGE STATE COMPLEXITY OF PARTIAL DERIVATIVE AUTOMATA: AN ANALYTIC COMBINATORICS APPROACH, International Journal of Foundations of Computer Science, vol.5, issue.07, pp.1593-1606, 2011.
DOI : 10.1016/0020-0190(94)90033-7

S. Broda, A. Machiavelo, N. Moreira, and R. Reis, ON THE AVERAGE SIZE OF GLUSHKOV AND PARTIAL DERIVATIVE AUTOMATA, International Journal of Foundations of Computer Science, vol.5, issue.05, pp.969-984, 2012.
DOI : 10.1017/CBO9781139195218

S. Broda, A. Machiavelo, N. Moreira, and R. Reis, A Hitchhiker's Guide to descriptional complexity through analytic combinatorics, Theoretical Computer Science, vol.528, pp.85-100, 2014.
DOI : 10.1016/j.tcs.2014.02.013

S. Broda, A. Machiavelo, N. Moreira, and R. Reis, Partial Derivative Automaton for Regular Expressions with Shuffle, 2015.
DOI : 10.1007/978-3-319-19225-3_2

URL : http://arxiv.org/abs/1503.00279

J. A. Brzozowski, Derivatives of Regular Expressions, Journal of the ACM, vol.11, issue.4, pp.481-494, 1964.
DOI : 10.1145/321239.321249

P. Caron, J. Champarnaud, and L. Mignot, Partial Derivatives of an Extended Regular Expression, 5th LATA, pp.179-191, 2011.
DOI : 10.1147/rd.32.0114

P. Caron, J. Champarnaud, and L. Mignot, A general framework for the derivation of regular expressions. RAIRO -Theor, Inf. and Applic, vol.48, issue.3, pp.281-305, 2014.

J. M. Champarnaud and D. Ziadi, From Mirkin's prebases to Antimirov's word partial derivatives, Fundam. Inform, vol.45, issue.3, pp.195-205, 2001.

T. Christiansen, . Foy, L. Wall, J. Orwant, P. Flajolet et al., Programming Perl, 2008.

M. Fürer, The complexity of the inequivalence problem for regular expressions with intersection, 7th ICALP, pp.234-245, 1980.
DOI : 10.1007/3-540-10003-2_74

W. Gelade, Succinctness of regular expressions with interleaving, intersection and counting, Theor. Comput. Sci, vol.411, pp.31-33, 2010.
DOI : 10.1007/978-3-540-85238-4_29

URL : http://alpha.uhasselt.be/~lucg6377/publications/mfcs08.pdf

W. Gelade and F. Neven, Succinctness of the Complement and Intersection of Regular Expressions, 25th STACS. LIPIcs Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, pp.325-336, 2008.
DOI : 10.1145/2071368.2071372

URL : https://hal.archives-ouvertes.fr/hal-00226864

H. Gruber, On the descriptional and algorithmic complexity of regular languages, 2010.

H. Gruber and M. Holzer, Finite Automata, Digraph Connectivity, and Regular Expression Size, 35th ICALP, pp.39-50, 2008.
DOI : 10.1007/978-3-540-70583-3_4

URL : http://www.in.tum.de/forschung/pub/reports/2007/TUM-I0725.ps.gz

T. Jiang and B. Ravikumar, A note on the space complexity of some decision problems for finite automata, Information Processing Letters, vol.40, issue.1, pp.25-31, 1991.
DOI : 10.1016/S0020-0190(05)80006-7

B. G. Mirkin, An algorithm for constructing a base in a language of regular expressions, Engineering Cybernetics, vol.5, pp.51-57, 1966.

H. Petersen, The Membership Problem for Regular Expressions with Intersection Is Complete in LOGCFL, 19th STACS, pp.513-522, 2002.
DOI : 10.1007/3-540-45841-7_42

K. Sen and G. Rosu, Generating Optimal Monitors for Extended Regular Expressions, Electronic Notes in Theoretical Computer Science, vol.89, issue.2, 2003.
DOI : 10.1016/S1571-0661(04)81051-X

URL : https://doi.org/10.1016/s1571-0661(04)81051-x