R. 1. Byers, B. Heeringa, M. Mitzenmacher, and G. Zervas, Heapable Sequences and Subseqeuences, Proceedings of ANALCO, pp.33-44, 2011.
DOI : 10.1137/1.9781611973013.4

URL : http://www.siam.org/proceedings/analco/2011/anl11_04_byersj.pdf

D. Romik, The surprising mathematics of longest increasing subsequences, 2015.
DOI : 10.1017/CBO9781139872003

G. Istrate, C. Bonchis¸, and . Bonchis¸, Partition into heapable sequences, heap tableaux and a multiset extension of hammersleys process, Combinatorial Pattern Matching, pp.261-271, 2015.
DOI : 10.1007/978-3-319-19929-0_22

J. Porfilio, A combinatorial characterization of heapability

R. Dilworth, A decomposition theorem for partially ordered sets, Annals of Mathematics, pp.161-166, 1950.
DOI : 10.2307/1969503

A. Gyárfás and J. Lehel, Covering and coloring problems for relatives of intervals, Discrete Mathematics, vol.55, issue.2, pp.167-180, 1985.
DOI : 10.1016/0012-365X(85)90045-7

G. Brightwell, Models of random partial orders, pp.53-83, 1993.
DOI : 10.1017/CBO9780511662089.004

P. Winkler, Random orders. Order, pp.317-331, 1985.
DOI : 10.1007/bf00582738

A. Schrijver, Theory of linear and integer programming, 1998.

J. Hammersley, A few seedlings of research, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 1972.

B. Logan and L. A. Shepp, A variational problem for random Young tableaux Advances in mathematics, pp.206-222, 1977.
DOI : 10.1016/0001-8708(77)90030-5

URL : https://doi.org/10.1016/0001-8708(77)90030-5

A. Vershik and S. Kerov, Asymptotics of Plancherel measure of symmetrical group and limit form of Young tables, Doklady Akademii Nauk SSSR, vol.233, issue.6, pp.1024-1027, 1977.

D. Aldous and P. Diaconis, Hammersley's interacting particle process and longest increasing subsequences. Probability theory and related fields, pp.199-213, 1995.
DOI : 10.1007/bf01204214

G. Brightwell, Random k-dimensional orders: Width and number of linear extensions, Order, vol.7, issue.4, pp.333-342, 1992.
DOI : 10.1007/BF00420352

B. Bollobás and P. Winkler, The longest chain among random points in euclidean space, Proceedings of the, pp.347-353, 1988.

B. Bollobás and G. Brightwell, The height of a random partial order: concentration of measure. The Annals of Applied Probability, pp.1009-1018, 1992.

P. Groeneboom, Hydrodynamical methods for analyzing longest increasing subsequences, Journal of Computational and Applied Mathematics, vol.142, issue.1, pp.83-105, 2002.
DOI : 10.1016/S0377-0427(01)00461-7

URL : https://doi.org/10.1016/s0377-0427(01)00461-7

N. Linial and Z. Luria, An upper bound on the number of high-dimensional permutations, Combinatorica, vol.22, issue.4, pp.471-486, 2014.
DOI : 10.1137/070693874

N. Linial and M. Simkin, Monotone subsequences in high-dimensional permutations . arXiv preprint, 2016.

J. Cardinal, S. Fiorini, and G. Van-assche, On minimum entropy graph colorings, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., p.43, 2004.
DOI : 10.1109/ISIT.2004.1365077

URL : http://www.ulb.ac.be/di/scsi/jcardin/CFVA_isit2004.ps.gz

E. Halperin and R. Karp, The minimum entropy set cover problem, Theoretical Computer Science, vol.348, issue.23, pp.340-350, 2005.
DOI : 10.1016/j.tcs.2005.09.015

URL : https://doi.org/10.1016/j.tcs.2005.09.015

J. Cardinal, S. Fiorini, and G. Joraet, Tight Results on Minimum Entropy Set Cover, Algorithmica, vol.44, issue.2, pp.49-60, 2008.
DOI : 10.1007/978-3-642-78240-4

J. Cardinal, S. Fiorini, and G. Joret, Minimum entropy orientations, Operations Research Letters, vol.36, issue.6, pp.680-683, 2008.
DOI : 10.1016/j.orl.2008.06.010

URL : http://arxiv.org/pdf/0802.1237

J. Cardinal, S. Fiorini, and G. Joret, Minimum entropy combinatorial optimization problems, Mathematical Theory and Computational Practice, pp.79-88, 2009.
DOI : 10.1007/s00224-011-9371-2

URL : http://arxiv.org/pdf/1008.2928.pdf

M. Kova?evi´kova?evi´c, I. Stanojevi´cstanojevi´c, and V. Senk, On the entropy of couplings, Information and Computation, vol.242, pp.369-382, 2015.
DOI : 10.1016/j.ic.2015.04.003

G. Istrate, C. Bonchis¸, L. P. Bonchis¸, and . Dinu, The Minimum Entropy Submodular Set Cover Problem, Language and Automata Theory, 2016.
DOI : 10.1007/978-3-319-30000-9_23

N. Alon and A. Orlitsky, Source coding and graph entropies, IEEE Transactions on Information Theory, vol.42, issue.5, 1995.
DOI : 10.1109/18.532875

URL : http://www.codiciel.fr/netlib/att/math/people/alon/papers/oneave.ps.Z

V. Doshi, D. Shah, M. Médard, and M. Effros, Functional Compression Through Graph Coloring, IEEE Transactions on Information Theory, vol.56, issue.8, pp.3901-3917, 2010.
DOI : 10.1109/TIT.2010.2050835

URL : http://scripts.mit.edu/~vdoshi/images/uploads/dcc.pdf

J. Barbay and I. Munro, Succinct Encoding of Permutations: Applications to Text Indexing, Encyclopedia of Algorithms, pp.915-919, 2008.
DOI : 10.1007/978-0-387-30162-4_411

J. Barbay and G. Navarro, On compressing permutations and adaptive sorting, Theoretical Computer Science, vol.513, pp.109-123, 2013.
DOI : 10.1016/j.tcs.2013.10.019

URL : http://arxiv.org/pdf/1108.4408