Unary Self-verifying Symmetric Difference Automata

Abstract : We investigate self-verifying nondeterministic finite automata, in the case of unary symmetric difference nondeterministic finite automata (SV-XNFA). We show that there is a family of languages $$\mathcal {L}_{n\ge 2}$$ which can always be represented non-trivially by unary SV-XNFA. We also consider the descriptional complexity of unary SV-XNFA, giving an upper and lower bound for state complexity.
Type de document :
Communication dans un congrès
Cezar Câmpeanu; Florin Manea; Jeffrey Shallit. 18th International Workshop on Descriptional Complexity of Formal Systems (DCFS), Jul 2016, Bucharest, Romania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9777, pp.180-191, 2016, Descriptional Complexity of Formal Systems. 〈10.1007/978-3-319-41114-9_14〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01633957
Contributeur : Hal Ifip <>
Soumis le : lundi 13 novembre 2017 - 15:32:56
Dernière modification le : lundi 13 novembre 2017 - 15:35:32

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Laurette Marais, Lynette Zijl. Unary Self-verifying Symmetric Difference Automata. Cezar Câmpeanu; Florin Manea; Jeffrey Shallit. 18th International Workshop on Descriptional Complexity of Formal Systems (DCFS), Jul 2016, Bucharest, Romania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9777, pp.180-191, 2016, Descriptional Complexity of Formal Systems. 〈10.1007/978-3-319-41114-9_14〉. 〈hal-01633957〉

Partager

Métriques

Consultations de la notice

17