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Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk

Abstract. We survey recent results on the descriptional complexity of
self-verifying finite automata. In particular, we discuss the cost of simu-
lation of self-verifying finite automata by deterministic finite automata,
and the complexity of basic regular operations on languages represented
by self-verifying finite automata.

1 Introduction

A self-verifying finite automaton is a nondeterministic automaton whose state
set consists of three disjoint groups of states: accepting states, rejecting states,
and neutral states. On every input string, at least one computation must end
in either an accepting or in a rejecting state. Moreover, there is no input string
with both accepting and rejecting computations.

The existence of an accepting computation on an input string proves the
membership of the string to the language. This is the same as in a nondeter-
ministic finite automaton (NFA). However, in a self-verifying finite automaton
(SVFA), the existence of a rejecting computation definitely proves that the input
is not in the language. This is in contrast with NFAs, where the existence of a
non-final computation leaves open the possibility that the input may be accepted
by a different computation. Thus, even if the transitions are nondeterministic,
when a computation of an SVFA ends in an accepting or in a rejecting state, the
automaton ”can trust” the outcome of that computation, and accept or reject
the input. The name ”self-verifying” comes from this property. SVFAs were in-
troduced in [4], and were considered mainly in connection with probabilistic Las
Vegas computations. However, as pointed in [8], they are also interesting per se.

Every SVFA can be converted to an equivalent deterministic finite automa-
ton (DFA) by the standard subset construction [19]. On the other hand, every
complete DFA may be viewed as a self-verifying finite automaton with all the
final states being accepting, and all the non-final states being rejecting. Hence
SVFAs recognize exactly the class of regular languages.

From the descriptional point of view, every n-state NFA can be simulated
by a DFA of at most 2n states [19]. This bound is known to be tight in the
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binary case [5, 14, 18]. However, Assent and Seibert [1] proved that in the DFA
obtained by applying the subset construction to an SVFA some states must be
equivalent. As a consequence, they obtained an upper bound for the conversion
of self-verifying automata to deterministic automata in O(2n/

√
n). Later this

result was strengthened in [11], where the tight bound for such a conversion was
given by a function g(n) which grows like 3n/3. The witness languages meeting
the bound g(n) were defined over a binary alphabet.

The investigation of self-verifying automata was further deepened by Jirásek
et al. [9]. Using the tight bound g(n) from [11], it was shown that a minimal
SVFA for a regular language may not be unique. Then the authors introduced an
sv-fooling set lower bound technique for the number of states in SVFAs. Using
this technique, they obtained tight upper bounds on the complexity of reversal,
boolean operations, star, left and right quotients, and asymptotically tight upper
bound for concatenation of languages represented by SVFAs.

Here we survey these results. We deal with SVFA-to-DFA conversion in Sec-
tion 2, and discuss the complexity of basic regular operations on SVFAs in
Section 3. To conclude this introduction, let us recall some basic notions and
preliminary results. For further details, the reader may refer to [21].

All DFAs in this paper are assumed to be complete, and NFAs have a unique
initial state. Sometimes we also consider NNFAs — nondeterministic finite au-
tomata with a nondeterministic choice of the initial state [22] — where we admit
multiple initial states.

A self-verifying finite automaton (SVFA) is a tuple A = (Q,Σ, δ, s, F a, F r),
where Q,Σ, δ, and s are the same as in an NFA, F a is the set of accepting states,
F r is the set of rejecting states, and F a ∩F r = ∅; the remaining states in Q are
called neutral. It is required that for each input string w in Σ∗, there exists at
least one computation ending in an accepting or in a rejecting state, and there
are no strings w such that both δ(s, w) ∩ F a and δ(s, w) ∩ F r are nonempty.

The language accepted by the SVFA A, denoted as La(A), is the set of
all input strings having a computation ending in an accepting state, while the
language rejected by A, denoted as Lr(A), is the set of all input strings having
a computation ending in a rejecting state. It follows directly from the definition
that La(A) = (Lr(A))c for each SVFA A. Hence, when we say that an SVFA A
accepts a language L, we mean that L = La(A) and Lc = Lr(A).

The state complexity of a regular language L, sc(L), is defined as the smallest
number of states in any DFA for L. The state complexity of a regular operation
is the maximal state complexity of languages resulting from the operation, con-
sidered as a function of the state complexities of the operands. Similarly, the
nondeterministic state complexity and self-verifying state complexity of a regu-
lar language L, denoted by nsc(L) and svsc(L), is defined as the smallest number
of states in any NFA (with a unique initial state) and SVFA, respectively, for L.

Every NNFA A = (Q,Σ, δ, I, F ) can be converted to an equivalent DFA
A′ = (2Q, Σ, ·, I, F ′), where R · a = δ(R, a) for each R in 2Q and each a in Σ,
and F ′ = {R ∈ 2Q | R∩F ̸= ∅} [19]. The DFA A′ is called the subset automaton
of the NFA A. Let us recall two observations from [8, 11].
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Proposition 1 ([8, 11]). Let a language L be accepted by an n-state SVFA.
Then the languages L and Lc are accepted by n-state NFAs. ⊓⊔

Proof. Let L be accepted by an SVFA A = (Q,Σ, δ, s, F a, F r). Then L is ac-
cepted by NFA (Q,Σ, δ, s, F a), while Lc is accepted by NFA (Q,Σ, δ, s, F r). ⊓⊔

Proposition 2 ([8, 11]). Let languages L and Lc be accepted by an m-state and
n-state NNFAs, respectively. Then svsc(L) ≤ m+ n+ 1. ⊓⊔

Proof. Let L be accepted by an m-state NNFA N = (Q,Σ, δ, I, F ) and Lc be ac-
cepted by an n-state NNFA N ′ = (Q′, Σ, δ′, I ′, F ′). Then we can get an SVFA A
for L with m + n + 1 states from NFAs N and N ′ as follows. We add a new
initial state s going to δ(I, a)∪δ′(I ′, a) on each a in Σ. The state s is accepting if
ε ∈ L, and it is rejecting otherwise. All the states in F are accepting in SVFA A,
and all the states in F ′ are rejecting in A. ⊓⊔

2 SVFA-to-DFA Conversion and Minimal SVFAs

The SVFA-to-DFA conversion was first studied by Assent and Seibert [1]. Then
Jirásková and Pighizzini [11] obtained a tight upper bound for such a conversion.

Proposition 3 ([1, Theorem 2.1]). Every n-state SVFA can be converted to
an equivalent DFA of at most O(2n/

√
n) states.

Proof (Proof Idea). If S and T are two reachable subset of the subset automaton
of an SVFA A such that S ⊆ T , then S and T are equivalent. This gives an upper
bound

(
n

⌊n/2⌋
)
∈ O(2n/

√
n). ⊓⊔

Theorem 4 ([11, Theorem 9]). Every n-state SVFA can be converted to an
equivalent DFA of at most g(n) states, where

g(n) =


1 + 3(n−1)/3, if n mod 3 = 1 and n > 4,

1 + 4 · 3(n−5)/3, if n mod 3 = 2 and n > 5,

1 + 2 · 3(n−3)/3, if n mod 3 = 0 and n > 3,

n, if n 6 2.

(1)

Moreover, the bound g(n) is tight, and can be met by a binary n-state SVFA.

Proof (Proof Idea). To an n-state SVFA A, we assign an undirected graph G(A)
whose vertex set is Q, and which contains an edge {p, q} if and only if two com-
putations starting from p and q cannot give contradictory answers on the same
string. Then each reachable subset in the subset automaton of A is represented
by a clique in G(A). Moreover, if S and T are two subsets such that S ∪ T is a
clique in G(A), then S and T are equivalent [11, Lemma 4]. Hence the number of
states in the minimal DFA for L(A) is given by the number of maximal cliques
in G(A). Next, in G(A) there is exactly one maximal clique containing the initial
state of A. This results in at most 1 + f(n − 1) states, where f(n) denotes the
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Fig. 1. The witnesses for SVFA-to-DFA conversion; n = 13, 12, and 14.

maximum number of possible maximal cliques in a graph with n nodes and, as
shown by Moon and Moser [17, Theorem 1], we have f(n) = 3n/3 if n mod 3 = 0,
f(n) = 4 · 3⌊n/3⌋−1 if n mod 3 = 1, and f(n) = 2 · 3⌊n/3⌋ if n mod 3 = 2. This
gives the upper bound. For tightness, let A = (Q, {a, b}, δ, q0, F a, F r), where
n = 1+3m and m > 2, see Fig. 1 (left) for m = 13, be an automaton defined by

Q = {q0} ∪ {(i, j) | 0 6 i 6 2, 1 6 j 6 m},
δ(q0, a) = δ(q0, b) = {(0, 1), (0, 2), . . . , (0,m)},
and for all i, j with 0 6 i 6 2 and 1 6 j 6 m,

δ((i, j), a) =

{
{(i, j + 1)}, if j < m,
{(0, 1)}, otherwise,

δ((i, j), b) = {((i+ 1) mod 3, j)},
F a = {q0, (0,m)}, and F r = {(1,m), (2,m)}.

It is shown in [11, Lemma 8] that A is an SVFA whose minimal DFAs requires
g(n) states. To get witnesses for n = 3k or n = 3k + 2, we modify the SVFA A
as shown in Fig. 1 (middle and right). ⊓⊔

Thus if we know that the minimal DFA for a language L has more then g(n)
states, then by Theorem 4, every SVFA for L must have at least n + 1 states.
We use this result to show that a minimal SVFA may not be unique.

Example 5. Consider the two 7-state non-isomorphic SVFAs shown in Fig. 2.
Apply the subset construction to both of them. In both cases, the subset au-
tomata restricted to the reachable states are the same. These subset automata,
and therefore also the two SVFAs, accept the language (a + b)∗a(a + b)2, the
minimal DFA for which has 8 states. Since we have g(6) = 7, every SVFA for
this language has at least 7 states. Hence both SVFAs in Fig. 2 are minimal. ⊓⊔
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Fig. 2. Two non-isomorphic minimal SVFAs for the language (a+ b)∗a(a+ b)2.
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3 Lower Bound Methods and Operations on SVFAs

To prove that a DFA is minimal, we only need to show that all its states are
reachable from the initial state, and that no two distinct states are equivalent. To
prove minimality of NFAs, a fooling set lower bound method may be used [2, 6].
A fooling set for a language L is a set of pairs of strings {(u1, v1), . . . , (un, vn)}
satisfying two conditions:

(i) for each i, uivi ∈ L, and
(ii) if i ̸= j, then uivj /∈ L or ujvi /∈ L.

In the case of SVFAs, we change the two conditions. The first condition can be
removed since we have either an accepting or rejecting computation on every
string. Before modifying the second condition, consider the following example.

Example 6. Let L be accepted by the 3-state NFA shown in Fig. 3. Let A be an
SVFA for L. Let us show that A has at least 6 states. Consider the following
pairs of strings:

(u1, v1) = (a2, a2) Acc (u4, v4) = (a2ba, a2) Rej
(u2, v2) = (a2b, a) Acc (u5, v5) = (a, a) Rej
(u3, v3) = (a2b2, ε) Acc (u6, v6) = (ab, ε) Rej

The strings u1v1, u2v2, and u3v3 are in L, while u4v4, u5v5, and u6v6 are not
in L, so we must have accepting and rejecting computations in A on these strings:

s
u1−→ p1

v1−→ f1 ∈ F a, s
u4−→ p4

v4−→ f4 ∈ F r,
s

u2−→ p2
v2−→ f2 ∈ F a, s

u5−→ p5
v5−→ f5 ∈ F r,

s
u3−→ p3

v3−→ f3 ∈ F a, s
u6−→ p6

v6−→ f6 ∈ F r.

Since u1v2 = a3, and a3 is not in L, we must have p1 ̸= p2 because otherwise
s

u1−→ p1 = p2
v2−→ f2 would be an accepting computation on u1u2. Similarly, u1v3

and u2v3 are not in L, so p1, p2, and p3 must be pairwise distinct. On the other
hand, the strings u4v5, u4v6, and u5v6 are in L, and therefore the states p4, p5, p6
must be pairwise distinct. Next, let 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. If i ≤ j, then ujvi

is not in L, and therefore pi ̸= pj because otherwise s
uj−→ pj = pi

vi−→ fi would
be an accepting computation on ujvi. Finally, if i > j, then uivj is in L, and
therefore pi ̸= pj . Thus all the state pi are pairwise distinct, so the SVFA A has
at least 6 states. ⊓⊔

Notice that in the previous example, we were able to interchange the right
sides of two pairs (ui, vi) and (uj , vj) so that at least one of the resulting strings
uivj and ujvi had a ”different finality” than the concatenations ujvj and uivi,
respectively. We formalize this in the following definition.

1 2 3
a, b

b

a, b

a

Fig. 3. An NFA for the language L in Example 6.
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Definition 7. A set of pairs of strings F = {(u1, v1), (u2, v2), . . . , (un, vn)}
is called an sv-fooling set for a language L if for all i, j with i ̸= j at least
one of the following two conditions holds:

(i) exactly one of the strings uivj and ujvj is in L, or
(ii) exactly one of the strings ujvi and uivi is in L.

Lemma 8 (Lower Bound Method for SVFAs). Let F be an sv-fooling set
for a language L. Then every SVFA for the language L has at least |F| states.
Proof. Let A be an SVFA for the language L with the initial state s. Then for
each uivi, there is an accepting or a rejecting computation of SVFA A on uivi.
Fix such a computation for each uivi. Let pi be the state in this computation that
is reached after reading ui, and let fi be the final state reached after reading vi.
Let us show that the states p1, p2, . . . , pn must be pairwise distinct.

Assume for contradiction that there are i and j with i ̸= j such that pi = pj .
Then we have

s
ui−→ pi = pj

vj−→ fj and s
uj−→ pj

vj−→ fj ; and

s
uj−→ pj = pi

vi−→ fi and s
ui−→ pi

vi−→ fi.
It follows that there are computations on uivj and on ujvj that end in state fj .
Thus either both this strings are in L, or both of them are in Lc. Moreover,
there are computations on ujvi and uivi that end in state fi, so either both
these strings are in L, or both of them are in Lc. Hence neither (i) nor (ii) in
the definition of an sv-fooling set holds, which is a contradiction. ⊓⊔

Notice that the lemma above may also be applied to a model of SVFAs with
multiple initial states [11, Section 5]. Hence if a language L is accepted by an
n-state SVFA with multiple initial states, we cannot have an sv-fooling set of
size more than n. In such a case, we can use the following observation to prove
that an SVFA with a unique initial state needs one more state.

Lemma 9. Let F = {(u1, v1), (u2, v2), . . . , (un, vn)} be an sv-fooling set for L.
For each i, let there exist a string wi such that {(ui, vi)} ∪ {(ε, wi)} is an sv-
fooling set for L. Then every SVFA for L has at least |F|+ 1 states.

Proof. For each pair in F , fix an accepting or a rejecting computation as in
Lemma 8. Then the unique initial state, reached after reading ε, must be different
from all the states reached after reading the left part of any pair in F . It follows
that the SVFA has at least |F|+ 1 pairwise distinct states. ⊓⊔
Example 10. Let us continue our previous example. Define w1 = w2 = w3 = a2,
w4 = w5 = ε, and w6 = a. Notice that we have

ui · a2 ∈ L and ε · a2 /∈ L for i = 1, 2, 3,
ui · ε ∈ L and ε · ε /∈ L for i = 4, 5,
u6 · a /∈ L and ε · a ∈ L.

By Lemma 9, every SVFA for L has at least 7 states. ⊓⊔
In what follows we use this simple methods to get tight upper bounds on the

self-verifying complexity of reversal, boolean operations, star, and left and right
quotients. In the case of concatenation, we get an asymptotically tight upper
bound.
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3.1 Reversal

If a language L is accepted by an n-state DFA A, then the language LR is
accepted by an n-state NNFA AR obtained from A by swapping the role of the
initial and final states of A, and by reversing all the transitions. By applying the
subset construction to NNFA AR, we get a DFA for LR of at most 2n states.
The bound 2n is known to be tight [14, 16], and the witness languages can be
defined over a binary alphabet [12, 13].

If a language L is represented by an n-state NFA A, then we can construct an
NNFA AR for LR in the same way as for DFAs. An equivalent NFA may require
one more state. The upper bound n + 1 is known to be tight, with worst-case
examples defined over a binary alphabet [7, 10]. Our next result shows that the
self-verifying state complexity of the reversal operation is given by the function
2n+ 1. Notice that the reverse of our worst-case example is a generalization of
our NFA language in Example 6.

Theorem 11 ([9]). Let n ≥ 3. Let L be a regular language over an alphabet Σ
with svsc(L) = n. Then svsc(LR) ≤ 2n+ 1, and the bound is tight if |Σ| ≥ 2.

Proof. Let A = (Q,Σ, δ, s, F a, F r) be an SVFA for L. Then L is accepted by the
n-state NFA N = (Q,Σ, δ, s, F a), and Lc is accepted by the n-state NFA N ′ =
(Q,Σ, δ, s, F r) by Proposition 1. By swapping the role of initial and final states
in NFAs N and N ′, and by reversing all the transitions, we get n-state NNFAs for
languages LR and (Lc)R = (LR)c. By Proposition 2, we have svsc(LR) ≤ 2n+1.
This proves the upper bound.

For tightness, let L be the language accepted by the DFA A shown in Fig. 4.
Construct an NFA AR for the language LR as described above. Denote by [i, j]
the set of integers {k | i ≤ k ≤ j}; notice that [i, j] = ∅ if i > j. Consider the
following family of 2n subsets

R =
{
[1, i] | 1 ≤ i ≤ n

}
∪
{
[i+ 1, n] | 1 ≤ i ≤ n

}
.

Notice that each set inR is reachable in the subset automaton of the NFA AR

from the initial subset {n − 1}. Thus for each subset S in R, there is a string
uS by which the initial state {n− 1} of the subset automaton of AR goes to S.
Consider the following set of 2n pairs of strings:

F = {(u[1,i], a
n−i) | 1 ≤ i ≤ n} ∪ {(u[j+1,n], a

n−j) | 1 ≤ j ≤ n}.

Let us show that the set F is an sv-fooling set for the language LR.

n n−1 n−2 . . . 2 1
a, b a, b a, b a, b a, b

a

b

Fig. 4. The binary witness for reversal meeting the bound 2n+ 1.
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First, notice that the string an−i is accepted by the NFA AR from a subset
S of [1, n] if and only if the state i is in the subset S. To show that F is an
sv-fooling set for L, we have three cases to consider:

(1) Let 1 ≤ i < k ≤ n. Then u[1,i] · an−k /∈ LR and u[1,k] · an−k ∈ LR.

(2) Let 1 ≤ j < ℓ ≤ n. Then u[j+1,n] · an−ℓ ∈ LR and u[ℓ+1,n] · an−ℓ /∈ LR.

(3) Let 1 ≤ i ≤ n and 1 ≤ j ≤ n. Here we have two subcases:

(3a) If i ≤ j, then u[j+1,n] · an−i /∈ LR and u[1,i] · an−i ∈ LR.

(3b) If i > j, then u[1,i] · an−j ∈ LR and u[j+1,n] · an−j /∈ LR.

Hence we have shown that F is an sv-fooling set for the language LR. Now, we
use Lemma 9 to show that one more state is necessary for an SVFA to accept LR.
To this aim, let wi = an−1 for i = 1, 2, . . . , n, wn+j = ε for j = 1, 2 . . . , n − 1,
and w2n = a. Then we have

ε · an−1 /∈ LR while u[1,i] · an−1 ∈ LR if 1 ≤ i ≤ n and n ≥ 3,

ε · ε /∈ LR while u[j+1,n] · ε ∈ LR if 1 ≤ j ≤ n− 1.

ε · a ∈ LR while u∅ · a /∈ LR since n ≥ 3.
By Lemma 9, every SVFA for LR has at least 2n+ 1 states. ⊓⊔

3.2 Boolean Operations

To get a DFA for the complement of a given regular language, we only need
to interchange the final and non-final states in a DFA for the given language.
Formally, if a regular language L is accepted by a DFA A = (Q,Σ, δ, s, F ), then
the language Lc is accepted by the DFA A′ = (Q,Σ, δ, s,Q \ F ). Moreover, if A
is minimal, then A′ is minimal as well. It follows that the state complexities of
a regular language and its complement are the same.

On the other hand, if a language is represented by an NFA, we first apply
the subset construction to this NFA, and only after that we can interchange the
final and non-final states. This gives an upper bound 2n. This upper bound is
known to be tight [2, 20], and witness languages can be defined over a binary
alphabet [10]. Our first observation shows that the self-verifying complexity of
a language and its complement are the same.

Then we consider the following four Boolean operations: intersection, union,
difference, and symmetric difference. In the general case of all regular languages,
the state complexity of all four operations is given by the function mn, and
the worst-case examples are defined over a binary alphabet [3, 15, 19, 23]. The
nondeterministic state complexity of intersection and union is mn and m+n+1,
respectively, with witness languages defined over a binary alphabet [7].

The difference and symmetric difference on languages represented by NFAs
have not been studied yet. Since both these operations require complementation,
the nondeterministic state complexities m ·2n and m ·2n+n ·2m of difference and
symmetric difference, respectively, could be expected. In the case of self-verifying
state complexity, we obtain a tight upper bound mn for all four operations, with
worst-case examples defined over a binary alphabet.
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Theorem 12 ([9]). Let K and L be languages over an alphabet Σ with
svsc(K) = m and svsc(L) = n. Then

(i) svsc(Lc) = n,
(ii) svsc(K ∩ L), svsc(K ∪ L), svsc(K \ L), svsc(K ⊕ L) ≤ mn,

and all the bounds are tight if |Σ| ≥ 2. ⊓⊔

Proof. (i) Let L be accepted by an SVFA A. To get an SVFA A′ for the language
Lc, we only need to interchange the accepting and rejecting states in the SVFA A.
Moreover, if A is minimal, then A′ is minimal as well.

(ii) Now we consider intersection. Let K and L be accepted by SVFAs A =
(QA, Σ, δA, sA, F

a
A, F

r
A) and B = (QB , Σ, δB , sB , F

a
B, F

r
B) of m and n states.

Construct the product automaton A×B = (Q,Σ, δ, s, F a, F r), where
Q = QA ×QB; s = (sA, sB);
F a = {(p, q) | p ∈ F a

A and q ∈ F a
B} and F r = {(p, q) | p ∈ F r

A or q ∈ F r
B};

δ((p, q), a) = δA(p, a)× δB(q, a) for each (p, q) in Q and each a in Σ.
The product automaton A×B accepts K ∩ L, and it is self-verifying.

For tightness, consider languages K = {w ∈ {a, b}∗ | #a(w) ≡ 0 mod m}
and L = {w ∈ {a, b}∗ | #b(w) ≡ 0 mod n} accepted by an m-state and n-state
DFAs, so also SVFAs, respectively. Then the set of pairs F = {(aibj , am−ibn−j) |
0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1} is an sv-fooling set of size mn for K ∩ L.

Let us continue with union and difference. Since K∪L = (Kc∩Lc)c, and self-
verifying state complexity of a language and its complement are the same, we can
get an SVFA for the union of K and L as follows. We first construct SVFAs for
Kc and Lc. Then we construct an SVFA for Kc ∩Lc. Finally, we take an SVFA
for the complement of the resulting language. As witness languages, we can take
the complements of the witnesses for intersection. Similar considerations can be
done also for difference since K \ L = K ∩ Lc.

Finally, we consider symmetric difference. To get the upper bound, we con-
struct a product automaton for symmetric difference in a similar way as for
intersection. However, now the sets of accepting and rejecting states are

F a = {(p, q) | p ∈ F a
A and q ∈ F r

B} ∪ {(p, q) | p ∈ F r
A and q ∈ F a

B};
F r = {(p, q) | p ∈ F a

A and q ∈ F a
B} ∪ {(p, q) | p ∈ F r

A and q ∈ F r
B}.

This is an mn-state SVFA for the symmetric difference of given languages.
For tightness, let K and L be languages accepted by DFAs A and B shown in

Fig. 5. Construct a product automaton for K⊕L as described above, and notice
that the set F = {(aibj , am−1−ibn−1−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1}
is an sv-fooling set for the language K ⊕ L. ⊓⊔

0 1 . . . m−2 m−1
a

b

a

b

a a

b

a

b

0 1 . . . n−2 n−1
b

a

b

a

b b

a a, b

Fig. 5. The binary witnesses for symmetric difference meeting the bound mn.
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3.3 Star

The state complexity of the star operation is 3/4 · 2n with binary witness lan-
guages [10, 15, 23]. In the unary case, the tight bound on the state complexity of
star is (n−1)2+1 [23, 24]. The nondeterministic state complexity of star is n+1,
with witnesses defined over a unary alphabet [7]. In this section we show that
the self-verifying state complexity of star is 3/4 · 2n. Our worst-case examples
are defined over an alphabet which grows exponentially with n. However, for a
four-letter alphabet, we still get an exponential lower bound 2n−1 − 1.

Theorem 13 ([9]). Let L be a language over Σ with svsc(L) = n. Then
(i) svsc(L∗) ≤ 3/4 · 2n, and the bound is tight if |Σ| ≥ 3/4 · 2n + 1;
(ii) the bound 2n−1 − 1 can be met by a quaternary language.

Proof. (i) Let A = (Q,Σ, δ, s, F a, F r) be an SVFA for L. If only the initial
state s is accepting, then L∗ = L. Assume that A has k accepting states that are
different from s. Construct an NFA A∗ for L∗ from A as follows. First, add a new
initial and final state q0 and for each symbol a in Σ, add a transition from q0 to
δ(s, a) if δ(s, a)∩F a = ∅, and to {s}∪ δ(s, a) otherwise. Next, for each state q in
Q and each symbol a, add a transition from q to s on a whenever δ(q, a)∩F a ̸= ∅.
The initial state of A∗ is q0, and the set of final states is {q0}∪F a. Now consider
the subset automaton of A∗. Notice that no set containing a state in F a and not
containing s is reachable in the subset automaton. Next, we can show that the
empty set is unreachable. Hence the subset automaton has at most 2n−1+2n−1−k

reachable subsets. The maximum is attained if k = 1, and it is equal to 3/4 · 2n.
To prove tightness, consider the following family of 3/4 · 2n − 1 subsets:

R =
{
S | S ⊆ {0, 1, . . . , n − 1} and 0 ∈ S

}
∪
{
S | ∅ ≠ S ⊆ {1, 2, . . . , n − 2}

}
.

Let Σ = {a, b} ∪ {cS | S ∈ R} be an alphabet consisting of 3/4 · 2n +1 symbols.
Let L be accepted by an n-state DFA A = ({0, 1, . . . , n − 1}, Σ, δ, 0, {n − 1}),
where the transitions are defined as follows: δ(i, a) = (i+ 1) mod n; δ(0, b) = 0,
δ(i, b) = i+ 1 if 1 ≤ i ≤ n− 2, and δ(n− 1, b) = n− 1; and for each set S in R,

δ(i, cS) =

{
0, if i ∈ S,

n− 1, if i /∈ S.

The transitions on a and b in A are shown in Fig. 6 (top-left), and the transitions
on the symbol c{1,3} in the case of n = 5 are shown in Fig. 6 (bottom-right).

0 1 . . . m−2 m−1
a

b

a, b a, b a, b

a

b

0 1 2 3 4

c{1,3}

c{1,3}
c{1,3}

c{1,3}
c{1,3}

Fig. 6. The witness for star; symbols a a b (top-left) and symbol c{1,3} for n = 5.
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0 1 . . . m−3 m−2 m−1
a, c, d

b

a, b, c, d a, b, c, d a, b, c, d a, b, d

b, c, d

ac

Fig. 7. The quaternary DFA of a language L with svsc(L∗) ≥ 2n−1 − 1.

Construct an NFA A∗ for the language L∗ as described above. Notice that
each subset in R is reachable in the subset automaton of A∗, that is, for each
subset S in R, there is a string uS , by which {q0} goes to the subset S. Then
the set F = {(uS , cS) | S ∈ R} is an sv-fooling set of size 3/4 · 2n − 1 for L∗.
Finally, by setting wS = ε if n− 1 /∈ S and wS = b otherwise, we use Lemma 9
to show that one more state is necessary in every SVFA for the language L∗.

(ii) Consider the language L accepted by the quaternary DFA B shown in
Fig. 7. Notice that the transitions on symbols a and b are the same as in the
DFA A above. It follows that all the subsets of {0, 1, . . . , n − 1}, that have
been shown to be reachable in the subset automaton of A∗, are reachable in
the subset automaton of B∗ as well. In particular, all the non-empty subsets of
{0, 1, . . . , n−2} are reachable. Similarly as in the proof above, let uS be a string
over {a, b} by which the initial subset {q0} goes to S in the subset automaton.
Our aim is to describe an sv-fooling set for L∗ of size 2n−1 − 1. To this aim, for
every non-empty subset S of {0, 1, . . . , n−2}, define the string vS = v0v1 · · · vn−2

of length n− 1 over {c, d} as follows:

vn−2−i =

{
c, if i ∈ S,

d, if i /∈ S,

that is, the string vS somehow describes the set S, however, in a reversed order:
we can assign the symbol σ(i) = c to each state i in S and the symbol σ(i) = d to
each state i outside the set S, and then we have vS = σ(n−2)σ(n−3) · · ·σ(1)σ(0).
Then, for every set S, the string vS is accepted by B∗ from every state outside
the set S, while vS is rejected by B∗ from every state in S. It follows that
{(uS , vS) | ∅ ̸= S ⊆ {0, 1, . . . , n− 2}} is an sv-fooling set for L∗. ⊓⊔

3.4 Left and Right Quotients

The left quotient of a language L by a string w is w\L = {x | wx ∈ L},
and the left quotient of a language L by a language K is the language K\L =∪

w∈K w\L. The state complexity of the left quotient operation is 2n−1 [23], and
its nondeterministic state complexity is n+1 [10]. In both cases, the worst-case
examples are defined over a binary alphabet.

The right quotient of a language L by a string w is L/w = {x | xw ∈ L}, and
the right quotient of a language L by a language K is L/K =

∪
w∈K L/w. If a

language L is accepted by an n-state DFA A = (Q,Σ, ·, s, F ), then the language
L/K is accepted by a DFA that is exactly the same as the DFA A, except for
the set of final states that consists of all the states q of A, such that there exists
a string w in K with q · w ∈ F [23]. Thus sc(L/K) ≤ n. The tightness of this
upper bound has been shown using binary languages in [23].
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Here we show that the self-verifying complexity of the left quotient operation
is 2n−1. To prove tightness, we use an exponential alphabet. Then, using a four
letter alphabet, we get a lower bound 2n−1 − 1. Finally, we show that the self-
verifying state complexity of right quotient is given by the function g(n), where
g(n) is the tight upper bound for SVFA-to-DFA conversion given in (1) on page 3.

Theorem 14 ([9]). Let K,L ⊆ Σ, svsc(K) = m, and svsc(L) = n. Then
(i) svsc(K\L) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2n + 1;
(ii) the bound 2n−1 − 1 can be met by quaternary languages.

Proof. (i) Let L be accepted by an SVFA A = (Q,Σ, δ, s, F a, F b). Then the
language K\L is accepted by an NNFA N = (Q,Σ, δ, I, F a), where a state q
is in I if it can be reached from the initial state of A by a string in K. After
applying the subset construction to the NNFA N , we get a DFA for K\L, in
which the empty set is unreachable. This gives the upper bound.

To prove tightness, consider the family R of all non-empty subsets of
{0, 1, . . . , n − 1}. Let Σ = {a, b} ∪ {cS | S ∈ R} be an alphabet consisting of
2n+1 symbols. Let K = a∗∪a∗bm−2 be a language over Σ. Then K is accepted
by an m-state DFA, and the set {(bi, bm−2−i) | 0 ≤ i ≤ m− 2} ∪ {(bm−1a, ε)} is
an sv-fooling set of size m for the language K. Hence svsc(K) = m.

Let L be accepted by an n-state DFA B = ({0, 1, . . . , n−1}, Σ, δ, 0, {n−1}),
where the transitions are defined as follows: δ(i, a) = (i + 1) mod n; δ(0, b) =
δ(1, b) = 0, and δ(i, b) = i if 2 ≤ i ≤ n−1; and for each subset S of {0, . . . , n−1},
we have δ(i, cS) = 0 if i ∈ S, and δ(i, cS) = n− 1 otherwise.

Construct an NNFA N for the language K\L from the DFA B by making all
the states of B initial. Each subset S inR is reachable in the subset automaton of
the NNFA N by a string uS . Now, in the same way as in the proof of Theorem 13,
we can prove that the set of pairs {(uS , cS) | S ∈ R} is an sv-fooling set of size
2n − 1 for the language K\L.

(ii) The language K over {a, b, c, d} is the same as in (i). The language L is
accepted by the DFA B′, in which the transitions on a and b are the same as in
the DFA B above, and the transitions on c and d are the same as in Fig. 7. In
a similar way as in the proof of Theorem 13 (ii), we can describe an sv-fooling
set

{
(uS , vS) | ∅ ̸= S ⊆ {0, 1, . . . , n− 2}

}
of size 2n−1 − 1 for K\L. ⊓⊔

Theorem 15 ([9]). Let K,L ⊆ Σ, svsc(K) = m, and svsc(L) = n. Then
(i) svsc(L/K) ≤ g(n), and the bound is tight if |Σ| ≥ g(n) + 2;
(ii) the bound Ω(2n/3) can be met by quaternary languages. ⊓⊔

Proof. (i) Let a language L be accepted by an n-state SVFA. First, convert this
SVFA to an equivalent minimal DFA. By Theorem 4, this DFA has at most g(n)
states. By making certain states final based on the language K, we get a DFA
for L/K of at most g(n) states.

For tightness, let n = 1 + 3k and k > 2; the arguments can be extended to
the other values of n in a straightforward way. Consider the grid Q = {(i, j) |
0 ≤ i ≤ 2 and 1 ≤ j ≤ k} of 3k nodes. Let R be the following family of 3k

subsets R =
{
{(i1, 1), (i2, 2), . . . , (ik, k)} | i1, i2, . . . , ik ∈ {0, 1, 2}

}
, that is, each
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subset in R corresponds to a choice of one element in each column of the grid Q.
Let Σ = {a, b, c} ∪ {dS | S ∈ R} be an alphabet consisting of 3 + 3k symbols.

Let K = {cℓ | ℓ ≥ m − 2} be the language over Σ that contains all the
strings in c∗ of length at least m− 2. We have svsc(K) = m. Let L be accepted
by a (3k + 1)-state SVFA B, in which the transitions on a, b are the same as in
the binary witness for SVFA-to-DFA conversion in Theorem 4. Next, symbol c
performs the cyclic permutation on each row of the grid Q, and maps the initial
state to each state in the first row. Finally, for each set S in R, symbol dS maps
every state (i, j) of S to the state (1, j), and it maps every state (i, j) outside S
to (0, j). Then we can show that svsc(L/K) = g(n).

(ii) Let Σ = {a, b, c, d}. Let K = {cℓ | ℓ ≥ m− 2} be a language over Σ with
svsc(K) = m. Let L be accepted by an n-state SVFA B′ in which the transitions
on a, b are the same as in the SVFA B in case (i). By c and d, the state q0 goes
to {(0, 1), . . . , (0, k)}, and each state (i, j) with j ≤ k − 1 goes to {(i, j + 1)}.
The state (0, k) goes to {(1, 1)} on both c, d. The state (1, k) goes to {(0, 1)}
on c, and it goes to {(2, 1)} on d. The state (2, k) goes to {(2, 1)} on both c, d.
Then we get svsc(L/K) ∈ Ω(2n/3). ⊓⊔

3.5 Concatenation

The state complexity of concatenation is m2n − 2n−1, and its nondeterministic
state complexity is m + n. In both cases, the worst-case examples can be de-
fined over a binary alphabet [7, 10, 15, 23]. The aim of this subsection is to get
asymptotically tight bound Θ(3m/3 · 2n) on the self-verifying state complexity
of the concatenation operation. Recall that g(n) is the tight upper bound for
SVFA-to-DFA conversion given in (1) on page 3.

Theorem 16 ([9]). Let K,L ⊆ Σ, svsc(K) = m, and svsc(L) = n. Then
(i) svsc(KL) ≤ g(m) · 2n;
(ii) the bound 1/2 · g(m) · 2n can be met if |Σ| ≥ g(m) + 2n + 4;
(iii) the bound Ω(2m/3 · 2n) can be met if |Σ| ≥ 8.

Proof. (i) Let K and L be accepted by SVFAs A and B, respectively. First,
convert the SVFA A to a minimal DFA A′. Then, construct an NNFA N for the
language KL from automata A′ and B in a usual way. Next, apply the subset
construction to N . In the subset automaton of N , every reachable subset can be
expressed as {q} ∪ T , where q is a state of A′ and T is a subset of the state set
of B. Since A is an SVFA, the DFA A′ has at most g(m) states by Theorem 4.
Thus the subset automaton of N has at most g(m) · 2n reachable states.

(ii) For the sake of simplicity, we consider the case of m = 1 + 3k a k ≥ 2.
Consider the grid Q = {(i, j) | 0 ≤ i ≤ 2 and 1 ≤ j ≤ k} of 3k nodes. Let R ={
{(i1, 1), (i2, 2), . . . , (ik, k)} | i1, i2, . . . , ik ∈ {0, 1, 2}

}
. Let Σ = {a, b, c, d, e} ∪

{fS | S ∈ R} ∪ {gT | T ⊆ {0, 1, . . . , n − 1}} be an alphabet consisting of

5+3
m−1

3 +2n symbols. Let K be the language over Σ accepted by m-state SVFA
A = (Q ∪ {q0}, Σ, δ, q0, F

a, F r), where the transitions on a, b, c are the same as
in the case of right quotient, the symbols d, e, gT are ignored, and transitions
on fS are defined by
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δ((i, j), fS) =

{
{(1, j)}, if (i, j) ∈ S,

{(0, j)}, if (i, j) /∈ S;

Let L be the language accepted by DFA B = ({0, 1, . . . , n− 1}, Σ, ·, 0, {0}),
where i · a = i · b = i · c = i · fS = i; i · d = (i+ 1) mod n; 0 · e = 0, i · b = i+ 1 if
1 ≤ i ≤ n− 2, and (n− 1) · b = 1;

i · gT =

{
n− 1, if i ∈ T ,

0, if i /∈ T .

Construct an NFA N for KL and show that each set in the family RN ={
S ∪ T | S ∈ R with (0, k) /∈ S, and T ⊆ {0, 1, . . . , n − 1}

}
is reachable in the

corresponding subset automaton. Then prove that F = {(uS∪T , gT · fS · ck) |
S ∪ T ∈ RN} is an sv-fooling set for the language KL.

(iii) The idea of the proof is to define strings vS and vT over an eight-letter
alphabet for some sets S in R, namely, for those that consist only of the states in
the first and second row of the gridQ, and for each subset T of {1, . . . , n−2}. As a
result, we get an sv-fooling set {(uS∪T , vT ·vS ·c2k) | S ∈ R′, T ⊆ {1, . . . , n−2}},
where R′ contains all the sets in R which only have states in the the first or
second row of the grid Q. This gives a lower bound in Ω(2m/3 · 2n). ⊓⊔

4 Conclusions

Table 1 summarizes the results on the self-verifying state complexity of consid-
ered operations, and compares them to the known results on their state complex-
ity and nondeterministic state complexity. The last column of the table displays
the size of an alphabet which was used to define witness languages. For star and
quotients, an exponential lower bound can be obtained by using a four-letter
alphabet. In the case of concatenation, a lower bound in Ω(2m/32n) is met by
languages defined over an eight-letter alphabet. The tight upper bound for the
concatenation operation remains open even in the case of a growing alphabet.

DFAs NFAs SVFAs |Σ|
complement n 2n n 1
intersection mn mn mn 2
union mn m+ n+ 1 mn 2
difference mn ? mn 2
symmetric difference mn ? mn 2
reversal 2n n+ 1 2n+ 1 2
star 3/4 · 2n n+ 1 3/4 · 2n 3/4 · 2n + 1
left quotient 2n − 1 n+ 1 2n − 1 2n + 1
right quotient n n g(n) g(n) + 2

concatenation (m− 1
2
) · 2n m+ n Θ(3m/3 · 2n) g(m) + 2n + 4

Table 1. The state complexity, nondeterministic, and self-verifying state complexity
of basic regular operations.



Self-Verifying Finite Automata and Descriptional Complexity 15

References

1. Assent, I., Seibert, S.: An upper bound for transforming self-verifying automata
into deterministic ones. Theor. Inform. Appl. 41, 261–265 (2007)

2. Birget, J. C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

3. Brzozowski, J. A.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15, 71–89 (2010)
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