A. Aggarwal, R. M. Colombo, and P. Goatin, Nonlocal Systems of Conservation Laws in Several Space Dimensions, SIAM Journal on Numerical Analysis, vol.53, issue.2, pp.963-983, 2015.
DOI : 10.1137/140975255

URL : https://hal.archives-ouvertes.fr/hal-01016784

D. Amadori and W. Shen, AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW, Journal of Hyperbolic Differential Equations, vol.32, issue.01, pp.105-131, 2012.
DOI : 10.1080/03605309508821159

P. Amorim, R. M. Colombo, and A. Teixeira, On the Numerical Integration of Scalar Nonlocal Conservation Laws, ESAIM: M2AN, pp.19-37, 2015.
DOI : 10.1007/s00205-010-0366-y

G. Anzellotti and M. Giaquinta, BV functions and traces, Rend. Sem. Mat. Padova, vol.60, pp.1-21, 1978.

D. Armbruster, P. Degond, and C. Ringhofer, A Model for the Dynamics of large Queuing Networks and Supply Chains, SIAM Journal on Applied Mathematics, vol.66, issue.3, pp.896-920, 2006.
DOI : 10.1137/040604625

G. R. Baker, X. Li, and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes, Physica D: Nonlinear Phenomena, vol.91, issue.4, pp.349-375, 1996.
DOI : 10.1016/0167-2789(95)00271-5

C. Bardos, A. Y. Le-roux, and J. Nédélec, First order quasilinear equations with boundary conditions, Communications in Partial Differential Equations, vol.2, issue.33, pp.1017-1034, 1979.
DOI : 10.1090/S0025-5718-1977-0478651-3

N. Bellomo, B. Piccoli, and A. Tosin, MODELING CROWD DYNAMICS FROM A COMPLEX SYSTEM VIEWPOINT, Mathematical Models and Methods in Applied Sciences, vol.6, issue.supp02, p.1230004, 2012.
DOI : 10.1016/j.plrev.2009.07.001

F. Betancourt, R. Bürger, K. H. Karlsen, and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, vol.24, issue.3, pp.855-885, 2011.
DOI : 10.1088/0951-7715/24/3/008

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, vol.4, issue.5, pp.217-241, 2016.
DOI : 10.1137/040617790

URL : https://hal.archives-ouvertes.fr/hal-00954527

C. Chalons, P. Goatin, B. , and L. M. Villada, High order numerical schemes for one-dimension nonlocal conservation laws, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01418749

R. M. Colombo, M. Garavello, and M. Lécureux-mercier, A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, Mathematical Models and Methods in Applied Sciences, vol.6, issue.04, p.1150023, 2012.
DOI : 10.1007/s00205-010-0366-y

URL : https://hal.archives-ouvertes.fr/hal-00586008

R. M. Colombo, M. Herty, and M. Mercier, Control of the continuity equation with a non local flow, ESAIM: Control, Optimisation and Calculus of Variations, vol.3, issue.2, pp.353-379, 2011.
DOI : 10.1016/S0167-6911(02)00275-X

URL : https://hal.archives-ouvertes.fr/hal-00361393

R. M. Colombo and M. Lécureux-mercier, Nonlocal Crowd Dynamics Models for Several Populations, Acta Mathematica Scientia, vol.32, issue.1, pp.177-196, 2011.
DOI : 10.1016/S0252-9602(12)60011-3

URL : https://hal.archives-ouvertes.fr/hal-00632755

R. M. Colombo and E. Rossi, Modeling crowd movements in domains with boundaries

R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Mathematica Scientia, vol.35, issue.4, pp.906-944, 2015.
DOI : 10.1016/S0252-9602(15)30028-X

E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Granular Flows with Application to Crowd Dynamics, Multiscale Modeling & Simulation, vol.9, issue.1, pp.155-182, 2011.
DOI : 10.1137/100797515

Q. Du, Z. Huang, and P. G. Lefloch, Nonlocal conservation laws. I. A new class of monotonicitypreserving models ArXiv e-prints, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01423461

L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol.19, 2010.

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, 2001.

E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol.80, 1984.
DOI : 10.1007/978-1-4684-9486-0

P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Networks and Heterogeneous Media, vol.11, issue.1, pp.107-121, 2016.
DOI : 10.3934/nhm.2016.11.107

URL : https://hal.archives-ouvertes.fr/hal-01234584

D. Helbing, Self-organization in Pedestrian Crowds, pp.71-99, 2012.
DOI : 10.1007/978-3-642-24004-1_3

D. Helbing, P. Molnár, I. Farkas, and K. Bolay, Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, pp.361-383, 2001.
DOI : 10.1068/b2697

S. Hoogendoorn and W. Daamen, Pedestrian Behavior at Bottlenecks, Transportation Science, vol.39, issue.2, pp.147-159, 2005.
DOI : 10.1287/trsc.1040.0102

J. Málek, J. Ne?as, M. Rokyta, and M. R??i?ka, Weak and measure-valued solutions to evolutionary PDEs, of Applied Math. and Mathematical Computation, 1996.
DOI : 10.1007/978-1-4899-6824-1

E. Rossi, Definitions of solution to the IBVP for multiD scalar balance laws. arXiv, 2017.

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numerische Mathematik, vol.90, issue.3, pp.563-596, 2002.
DOI : 10.1007/s002110100307