Data Anonymization as a Vector Quantization Problem: Control Over Privacy for Health Data

Abstract : This paper tackles the topic of data anonymization from a vector quantization point of view. The admitted goal in this work is to provide means of performing data anonymization to avoid single individual or group re-identification from a data set, while maintaining as much as possible (and in a very specific sense) data integrity and structure. The structure of the data is first captured by clustering (with a vector quantization approach), and we propose to use the properties of this vector quantization to anonymize the data. Under some assumptions over possible computations to be performed on the data, we give a framework for identifying and “pushing back outliers in the crowd”, in this clustering sense, as well as anonymizing cluster members while preserving cluster-level statistics and structure as defined by the assumptions (density, pairwise distances, cluster shape and members...).
Type de document :
Communication dans un congrès
Francesco Buccafurri; Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Edgar Weippl. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9817, pp.193-203, 2016, Availability, Reliability, and Security in Information Systems. 〈10.1007/978-3-319-45507-5_13〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01635008
Contributeur : Hal Ifip <>
Soumis le : mardi 14 novembre 2017 - 16:06:34
Dernière modification le : mercredi 15 novembre 2017 - 01:15:13

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yoan Miche, Ian Oliver, Silke Holtmanns, Aapo Kalliola, Anton Akusok, et al.. Data Anonymization as a Vector Quantization Problem: Control Over Privacy for Health Data. Francesco Buccafurri; Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Edgar Weippl. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9817, pp.193-203, 2016, Availability, Reliability, and Security in Information Systems. 〈10.1007/978-3-319-45507-5_13〉. 〈hal-01635008〉

Partager

Métriques

Consultations de la notice

12